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Abstract

We present an algorithm for automatically predicting the topological family of
any RNA three-way junction, given only the information from the secondary
structure: the sequence and the Watson-Crick pairings. The parameters of the
algorithm have been determined on a data set of 33 three-way junctions whose
3D conformation is known. We applied the algorithm on 53 other junctions and
compared the predictions to the real shape of those junctions. We show that the
correct answer is selected out of nine possible configurations 64 % of the time.
Additionally, these results are noticeably improved if homology information is
used. The resulting software, Cartaj, is available online and downloadable (with
source) at: http://cartaj.lri.fr
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1. Introduction

RNA molecules fold into complex three-dimensional structures in a hierarchi-
cal and modular way, with recurring autonomous building blocks being packed
together to form the molecule. These modules are also hierarchical: high level
modules, like RNA junctions, are made of smaller, lower level modules, in this
case of Watson-Crick helices linked together by single strands.

Knowledge of the shape of the lower level modules can give us insight on
the shape of the higher level ones, leading to an approximation of the shape
of the molecule that can be refined in subsequent steps. Since Watson-Crick
helices have a well-defined shape, RNA junctions are the next obvious tar-
get (Bindewald et al., 2008; Lescoute et al., 2005; Lescoute and Westhof, 2006;
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Laing and Schlick, 2009). Notably, in Lescoute and Westhof (2006), the authors
have showed that the three-way junctions where two helices are approximately
stacked can be divided in three families A, B and C, according to the position of
the third helix (P3) relatively to the two other helices that are stacked together
(P1 and P2). Figure 1 shows a schematic drawing of each of the families.

Family A Family B Family C

Figure 1: Schematic drawings of the families A, B and C (from Lescoute and Westhof
(2006)).

The topology of each of the families is notably due to the different non
Watson-Crick interactions that occur within the helices, and between the helices
and the other nucleotides of the junction. After a thorough examination of 33
junctions whose three-dimensional structure was known, Lescoute and Westhof
gave some hints towards predicting the family of a junction, given its secondary
structure.

In this paper, we propose a method for automatically predicting the topolog-
ical family of any given three-way junction, with only information from sequence
and the deduced secondary structure (only Watson-Crick interactions). We also
show that the accuracy of the prediction is noticeably improved if homology
information is given in addition, that is a set of sequences that are homologous
to the input sequence. We evaluate the accuracy of our method on a set of 86
junctions from the structural databases, and we compare it to other possible
approaches.

2. Materials and Methods

2.1. Data

We distinguished the following three data sets:

LW: The 33 junctions from Lescoute and Westhof (2006).

FR3D: In order to test our predictions, we automatically extracted the three-
way junctions from all molecules in the non-redundant FR3D database
(Sarver et al., 2008). We found 86 junctions, among them 53 were new
junctions – “new” being defined here as having a secondary structure dif-
ferent from that of the junctions in LW. Details on the extraction process
are given in the next subsection.
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ALL: This dataset includes all the 86 different junctions from the previous two
datasets.

Table 1 shows the number of junctions from each family in each of the
datasets.

Set A B C Total
LW 10 7 16 33
FR3D 16 13 24 53
ALL 26 20 40 86

Table 1: Number of junctions from families A, B, and C in the data sets.

2.2. Extraction of junctions

Starting with the PDB files taken from the non redundant FR3D Database
(Sarver et al., 2008), we extracted the secondary structure of the molecules
with RNAView (Yang et al., 2003) and removed the pseudoknots with K2N
(Smit et al., 2008) using the default method. Then, we extracted all three-way
junctions. We defined a three-way junction as a junction between three helices,
considering as in Waugh et al. (2002) that an helix must contain at least two
consecutive (Watson-Crick) base-pairs.

A special attention was given to what we call homologous junctions. We say
that two junctions are homologous if they appear at the same place in the three-
dimensional structures of two homologous RNAs. This is the case, for example,
for the the junctions 1J5E 001 and 2AVY 29 that appear, respectively, in the
16S RNAs of T. thermophilus and E. coli (see Supplementary Material). We
kept every instance of homologous junctions that differ in sequence or secondary
structure.

Finally, we excluded the junction from 3E5C (SAM-III riboswitch) because
of a ligand that changes its configuration. We also excluded one junction from
2A64 (bacterial RNase P) because one of its unpaired strands formed a pseudo-
knot with another part of the molecule.

Altogether, we found 86 junctions that can be clustered into 39 classes of
homologous junctions. Table 4 gives the 26 classes that contain more than one
junction. More details can be found in the Supplementary Material where all
the junctions are grouped by families (A, B or C) then by homology, and their
sequences and secondary structures are given.

2.3. Prediction workflow

Figure 2 gives the general outline of the prediction workflow. For a given
three-way junction there are three possible stackings and, for each stacking,
three possible families. Hence, we have to choose between nine different con-
figurations. We assign a score to each of these configurations. This score is
denoted sc for any given configuration c. It is a linear combination of four
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Figure 2: Prediction workflow. A given junction can have three stackings; for each
stacking, the junction can be in three families (A, B or C), depending on the angle
of the third helix. This gives nine configurations. We compute a score for each
configuration (see figure 3), and the configuration with the best score is our prediction.

partial scores, denoted sc,i for i ∈ {1, 2, 3, 4}. Each of these partial scores
is computed according to a specific criterion. Indeed, according to Lescoute
and Westhof (2006), classification of three-way junctions strongly depends of
a small number of parameters. We consider only four parameters of sequence
and (secondary) structure, as shown in figure 3, excluding any tertiary structure
information. Finally, we take the configuration with the best score as our best
putative prediction.

Here are the four criteria and how their associated scores are computed,
roughly. The precise formulas are given in the supplementary material.

G

C

G

G
C

C

G
G

C
U A

G

A
C

G
U

G

A
C

G

C

Closing base-pairs:
How frequently does helix number x end with a GC base-
pair?

Relative length of the strands:
Let 𝚫 be the difference of length between the two 
strands not involved in a stacking.
In family A, 𝚫 is lower than 0,
In family C, 𝚫 is greater than 0,
In family B, 𝚫 is about 0

Length of the stacking strand:
The shorter the strand, the more likely the two helices 
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Figure 3: The different criteria used to evaluate a configuration. Each criterion is given
a numerical score, and those scores are aggregated together in order to produce a total
score for the considered configuration.
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sc,1: Length of the stacking strand. When two helices are coaxially stacked,
it is usually those connected by the shortest strand. Hence, for a given
configuration, the shortest the strand of the two stacked helices, the better
the score. If a strand has length zero, we give it an even better score, as
there is no counter-example in the Lescoute-Westhof data set.

sc,2: Relative length of the strands. In a given configuration, one strand is
involved in the stacking. Let the other two strands be called below and
above. In family A, the below strand is longer than the above one, and
vice-versa in family C. In family B, the two strands are about the same
length. We compute ∆, the difference between the length of above and that
of below. The value of ∆ determines the score for a given configuration.

sc,3: Closing base-pairs of the helices. We numbered the helices of a junction
according to the transcription order (the first helix is the one that contains
the lowest nucleotide id). We then computed the frequency of each type
of closing base-pair in the helices of each family, and built a score matrix
for each base pair. The score sc,3 depends on this matrix.

sc,4: Bonus criteria. We take into account some possibilities of tertiary links,
as the presence of two consecutive adenines in a strand that could form
an A-minor motif, as is often observed in family C.

2.4. Score computation

For a given criterion i, the nine configurations can be ranked by decreasing
scores sc,i. Let rc,i be the rank of configuration c for the criterion i. The global
score for configuration c is then defined as:

sc =

∑
i wisc,i∑
i rc,i

where wi is a constant weight assigned to each criterion i.
We divide the sum of the scores by the sum of the ranks as a way to ensure

that, in order to have a high total score, a configuration must be good in several
tests, relatively to the other possible configurations. For example, for a given
configuration, if the sum of its scores is 42 and its ranks are 1, 3, 3 and 3, it
gets a total score of 4.2, but if its ranks are 1, 1, 1 and 1, it gets a total score
of 10.5. That way, a good score in one test doesn’t outweight mediocre scores
in the other tests.

The values of the weights wi have been fixed as follows. We explored all
possible combinations of the wi’s between 0 and 4 by step of 0.5. We picked the
combination that provided the best results on the Lescoute-Westhof data set.
This gave: wc,1 = wc,2 = wc,4 = 1 and wc,3 = 2.

3. Results and Discussion

3.1. Prediction result

For the three data sets described in section 2.1, we computed how many
times we predicted the correct answer in the first position, or in the first three
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positions among the nine possible ones (see table 2). Randomly selecting a
configuration would produce the correct answer in the first position in 11 % of
the cases, and in the first three positions in 33 % of the cases. We predict the

Data set Size First position First 3 positions
LW 33 20 (60.6 %) 31 (93.4 %)
FR3D 53 35 (66.0 %) 44 (83.0 %)
ALL 86 55 (64.0 %) 75 (87.2 %)

Table 2: Quality of the predictions on the three datasets. The correct configuration gets
the best score 64 % of the time. Moreover, 87 % of the time, the correct configuration
is among the best 3 scores.

correct configuration in the first position 64 % of the time, and in the first three
positions 87 % of the time.

Looking at these results, one could think that the first test conclusively
predicts the stacking, and that the difficulty lies in predicting the family, be-
cause the first three configurations correspond to the families A, B and C of
that stacking. This is not the case; the correct answer being in the second or
third position does not imply that the first three configurations have the same
stacking.

Therefore, having additional knowledge about the stacking would help us to
decide between those cases. We tried using the approach from Tyagi and Math-
ews (2007) to predict the stacking. One shortcoming of that method is that it
can only work on junctions with a relatively low number of unpaired bases; a
strand must contain less than two unpaired nucleotides for the nearest-neighbor
model to be able to predict a stacking. In our application, this approach cor-
rectly predicted 8 stackings (25 % of the stackings) in the Lescoute-Westhof
data set, and failed to predict the remaining 26 ones. Those 26 false negative
are due in part to the limitation mentioned previously, in part to errors of the
method, and in part to differences in our definitions of stacked helices (see the
discussion in Tyagi and Mathews (2007, p944)).

In the 8 positive cases, we already predicted the correct stacking with our
simple strand length criterion. Using stacking predictions from Tyagi and Math-
ews did not improve our prediction, suggesting that our simple criterion is “good
enough” in first approximation.

We also tried to use MC-Fold (Parisien and Major, 2008) to predict tertiary
interactions inside our junctions. Our approach does not take tertiary interac-
tions into account, but we hoped that they could at least help us predict the
stacking by reducing the lengths of the unpaired strands. We took the junctions
from the LW dataset, constrained their Watson-Crick interactions, and applied
MC-Fold on them.

The first observation was that we found the exact real junction among the
best 10 candidates given by MC-Fold only once, because the original junction
was very constrained and contained few tertiary interactions. Therefore, we
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cannot expect MC-Fold to produce a perfect tertiary structure for the junctions,
but we can hope that it provides enough hints to help us decide on the stacking.

Our junction MC-Fold candidates

0
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2

0

0

1

1

1
3

3

0
0

0

Real structure

Figure 4: Secondary structure of junction 1J5E 001, its tertiary structure extracted
from the PDB, and three of the first MC-Fold candidate structures. The numbers
indicate the lengths of the unpaired strands that we used to compute the stacking
scores. We consider that MC-Fold predictions help us when the length of the strand
involved in the stacking is lowered, comparatively to the other lengths. In the example
above, the length of the red strand is lowered from 3 to 2 or 1, but the length of the
green strand is lowered to 0, producing a much higher score for that strand.

We put 20 junctions through MC-Fold and manually looked at the best
3 candidates for each of them. Instead of having only Watson-Crick helices,
we assumed that tertiary interactions were part of the helices, and then we
checked if using those “extended” helices improved the stacking score of the
correct configuration, comparatively to the other configurations. When that
was the case, then we said that tertiary information “helped” us, whether our
final prediction was correct or not (see figure 4). In those 20 junctions, using
the tertiary information extracted from the PDB files helped us 6 times, using
the first MC-Fold candidate helped us 1 time, and using any one of the best
3 MC-Fold candidates helped us 3 times, but it was assumed that we knew
which candidate to pick. A common problem was that MC-Fold often produced
several strands of lengths 0, thus predicting all of them being a good stacking
candidate.

These results suggest that MC-Fold does not improve our approach by help-
ing us on the strand lengths criterion. It is possible that it might help us if we
introduced tertiary criteria, which was not within the scope of our work, but we
still would have to choose among the several candidates.

In table 3, we consider our classification method as binary yes/no tests that
determine whether a junction belongs to a given family. We show the positive
predictive value (PPV), specificity and sensitivity of those tests:

PPV =
TP

TP + FP

Specificity =
TN

TN + FP
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Family PPV Specificity Sensitivity
A 0.60 0.67 0.85
B 0.44 0.94 0.20
C 0.83 0.58 0.74

Table 3: Positive predicting value (PPV), specificity and sensitivity of our classification,
considering binary tests such as “does this junction belong to family A?”, on the
complete dataset. Random choice between the 3 families would give a PPV of 0.33, a
specificity of 0.66 and a sensitivity of 0.33.

Sensitivity =
TP

TP + FN

where TP stands for “true positives”, TN for “true negatives”, FP for “false
positives” and FN for “false negatives”.

The overall results are good for families A and C, with, in particular, a
PPV much higher than what could be expected with a random choice. The
high specificity and low sensitivity of the test for family B shows that we are
rarely wrong, but also rarely right, meaning that we rarely predict a junction
as being in family B at all. It is the least well-defined of the three families and
we lack decisive criteria: it has no bonus score sc,4, but trying to compensate
by adding a fixed bonus score, or by ignoring the bonus criteria completely does
not improve the overall predictions. It is interesting to note that Family C is
the most prevalent family and Family B the rarest one.

3.2. Improving the predictions by using sequence homology

We consider here the problem where the entry data are not a single junction,
but a set of n homologous junctions {J0, . . . , Jn}. therefore they are supposed
to be in the same topological family.

In this case we compute a global score for the set, as follows. Let sc,i(k) the
score for configuration c and criterion i of the junction Jk. Then we set:

Sc,i =

∑
j sc,i(j)

n

and the global combined score for a configuration c is:

Sc =

∑
i wiSc,i∑
i rc,i

In other words, we compute, for each test, the mean of the scores of each junc-
tion, and then compute the final score as we did previously.

We grouped the junctions in clusters according to homology, as detailed in
Section 2.2. We considered only the 26 clusters containing more than one junc-
tion. Those clusters are given in table 4. The column “Sep.” shows how many
junctions have been correctly predicted, separately from the others, by using
the classical scoring function. In 8 clusters (31 %), one junction is predicted
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Id Junctions Fam. Sep.

1 1J5E 001, 2AVY 29 A 1/2
2 1J5E 002, 2AVY 32 A 1/2
3 1J5E 003, 2AVY 35 A 2/2
4 1J5E 004, 2AVY 47 A 1/2
5 1J5E 006, 2AVY 40 B 0/2
6 1J5E 008, 2AVY 3 C 2/2
7 1J5E 011, 2AVY 49 C 2/2
8 1J5E 007, 2AVY 42 B 2/2
9 1S72 001, 2AW4 5, 2ZJR 1 A 3/3

10 1S72 002, 2AW4 10, 2ZJR 4 A 3/3
11 1S72 003, 2AW4 50, 2ZJR 47 A 3/3
12 1S72 004, 1FG0 7, 2AW4 51 A 2/3
13 2ZJR 101, 2AW4 109 B 2/2
14 1S72 007, 2AW4 28, 2ZJR 24 B 0/3
15 1S72 008, 2AW4 52, 2ZJR 49 B 0/3
16 1S72 010, 2AW4 21, 2ZJR 0 C 3/3
17 1S72 011, 2AW4 18, 2ZJR 10 C 2/3
18 1S72 012, 2AW4 27, 2ZJR 21 B 0/3
19 1S72 013, 2AW4 99, 2ZJR 92, 1FG0 14 C 4/4
20 1HC8 001, 2AW4 44, 1S72 47, 1QA6 0, 1MMS 0, 2ZJR 41 C 6/6
21 1S72 005, 2AW4 86, 2ZJR 82 B 3/3
22 1S72 014, 2AW4 0, 2ZJR 106, 1UN6 0 C 1/4
23 1E8O 001, 1MFQ 001, 1LNG 0 C 2/3
24 1U8D 001, 1Y26 0, 2EET 0 C 2/3
25 1MME 001, 2QUS 0, 2OEU 0 C 3/3
26 3D2G 0, 2HOJ 0 B 0/2

Table 4: The 86 junctions clustered by homology. Each line contains a cluster of homologous
junctions (clusters containing a single junction are not shown). The “Sep.” column shows
how many of the junctions in that cluster are separately predicted correctly, separately; the
value is in bold face for the contradictory clusters. Clusters that are correctly predicted by
the global scoring function Sc are shown with a grey background. Note that there is only one
contradictory cluster without a gray background (ie. badly predicted), number 23.

in a wrong configuration despite the fact that we got the correct configuration
for some others. Let us us call these clusters the contradictory clusters. In the
remaining 18 clusters, all the junctions are either correctly predicted or badly
predicted. It is to be noted that the 5 clusters that we completely fail to predict
are in family B, confirming that our classification lacks decisive criteria for that
family.

Rows with a gray background in the table show a good prediction result for
the cluster when the global scoring function Sc defined above is used. Seven
out of the eight contradictory clusters are now subject to the right prediction;
the remaining cluster is now badly predicted. Comparison in prediction results
with or without homology information is provided in table 5.

In most real cases, we are not given a set of junctions with the secondary
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Without homology With homology
All correct 17 24
Contradictory 8 0
None correct 5 6
Junctions correct 50 57

Table 5: Using homology knowledge improves the predictions where homologous junctions
were not predicted in a consistent way, but does not help when they were predicted consistently
wrong.

structures deduced from the crystallographic tertiary structures, but most gen-
erally an approximate sequence alignment providing a consensus structural ar-
rangement hopefully close to the real secondary structure. How does our ap-
proach handle these cases? To assess this, we used alignments from the Com-
parative RNA Web site (Cannone. et al., 2002). For each ribosomal junction
J of our dataset, we randomly picked 500 aligned sequences, used the refined
secondary structure from J for all these alignments, and applied our prediction
method using the average score Sc. We ensured that the number of sequences
we picked was big enough to be representative of all the available sequences in
the alignments. Out of the 5 contradictory clusters of ribosomal junctions, 2 or
3 of them are now correcly predicted, depending on the structure we used when
we had several choices.

4. Conclusion

We described an automated method for predicting the topological family of
three-way RNA junctions from their secondary structure only. We showed that
this approach works well on single junctions, and is improved either by having
sequence alignements for that junction or, even better, a set of homologous 2D
structures deduced from crystallographic data. Among the three topological
families, Family B, the rarest one, is the less well predicted by our method,
showing that new criteria have to be found for that family.

The Cartaj software (http://cartaj.lri.fr) that implements our method can
be used as it. It is also meant for being part of RNA modelling softwares and
platforms.
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