
Week 4 – Part 2

Introduction to 2D Graphics & Java 2D

Vector graphics
!  Use of geometric primitives: points, lines, curves, etc.
!  Primitives are created by using mathematical

equations
!  Can be zoomed infinitively, moved or transformed

without losing in quality

Raster (bitmap) graphics
!  Images represented as pixels
!  Resolution dependent: scaling affects image quality
!  Stored in image files

2D graphics

Vector-based
!  Adobe Illustrator
!  CorelDraw
!  Inkscape

Raster-based
!  Photoshop
!  Painter
!  GIMP

Types of image editors Java 2D API

Provides 2D graphics, text & image capabilities
!  Wide range of geometric primitives
!  Mechanisms for hit detection of shapes, text, images
!  Color & transparency
!  Transformations
!  Printing
!  Control of the quality of rendering

Java 2D – Base classes

Graphics class : abstract base class for all graphics
contexts, allowing applications to draw onto components

public class RectWidget extends JPanel {
 private int posx, posy, w, h;
 private Color color;

 public RectWidget(int x, int y, int w, int h, Color color){
 this.posx = x; this.posy = y;
 this.w = w; this.h = h;
 this.color = color;
 }

 public void paint(Graphics g) {
 g.setColor(color);
 g.drawRect(x, y, w, h);
 }

}

Java 2D – Base classes

JComponent’s relevant methods

public paint(Graphics g)
protected paintComponent(Graphics g)
protected paintBorder(Graphics g)
protected paintChildren(Graphics g)

public print(Graphics g)
protected printComponent(Graphics g)
protected printBorder(Graphics g)
protected printChildren(Graphics g)

Java 2D – Base classes

Graphics2D class : extends Graphics class to provide more
sophisticated control over geometry, transformations, etc.

 private double x, y, w, h;
 ...

 public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 g2.draw(new Rectangle2D.Double(x , y, w, h));
 }

Geometric primitives

Shapes

Quadratic Bézier curve Cubic Bézier curve

Arbitrary shapes (GeneralPath)

Bézier curves

Parametric curves widely used in Computer Graphics

Used to model smooth curves that can be scaled indefinetely

First studied by mathematician Paul de Casteljau (1959) and
widely publicized by Pierre Bézier (1962)

Bézier curves
Defined by a set of control points: P0, ..., Pn

Linear Bézier curve: straight line between P0 and P1
 B(t) = (1 – t)P0 + tP1, t ∈ [0,1]

Quadratic Bézier curve:
 B(t) = (1 - t)2P0+2(1 - t)tP1+t2P2, t ∈ [0,1]

Cubic Bézier curve:
 B(t) = (1 – t)3P0+3(1 – t)2tP1+3(1-t)t2P2+t3P3, t ∈ [0,1]

Examples in Java

// create new QuadCurve2D.Float
QuadCurve2D q = new QuadCurve2D.Float();
q.setCurve(p0.getX(), p0.getY(), p1.getX(), p1.getY(), p2.getX(), p2.getY());
g2.draw(q);

// create new CubicCurve2D.Double
CubicCurve2D c = new CubicCurve2D.Double();
c.setCurve(p0.getX(), p0.getY(), p1.getX(), p1.getY(), p2.getX(), p2.getY(),

 p3.getX(), p3.getY());
g2.draw(c);

Curves from points

Given a sequence of points, how do we create a
smooth curve?

Curves from points

Given a sequence of points, how do we create a
smooth curve?

Easy but ugly: connect the points with straight lines

Curves from points

Better solutions: parametrize the curve as
connected cubic Bézier curves

B-spline

S1...S4 are the points

C1...C6 are additional
control points

C1

C2

C3 C4

C5 C6

Arbitrary shapes

GeneralPath path = new GeneralPath();

Move the current point of the path to the given point
 path.moveTo(x, y);

Add a line segment to the current path
 path.lineTo(x, y);

Add a quadratic curve segment to the current path
 path.quadTo(ctrlx, ctrly, x2, y2);

Add a cubic curve segment to the current pathclosePath
 path.curveTo(ctrlx1, ctrly1, ctrlx2, ctrly2, x3, y3);

Close the current path
 path.closePath();

Stroking and painting

stroke patterns

filling patterns

gradient filling colors

Rendering hints & antializing

public void paint (Graphics g){
 Graphics2D g2 = (Graphics2D)g;
 RenderingHints rh = new
RenderingHints(RenderingHints.KEY_TEXT_ANTIALIASING,

 RenderingHints.VALUE_TEXT_ANTIALIAS_ON);
g2.setRenderingHints(rh);
 ...

}

Restricts the drawing area to be rendered

Clipping

Restricts the drawing area to be rendered

 rect.setRect(x + marginx, y + marginy, w, h);
 g2.clip(rect);
 g2.drawImage(image, x, y, null);

Clipping

Tansformations

rotate, scale, translate, shear methods of Graphics2D
g2.translate(100, 200);

AffineTransform class
AffineTransform atransf = new AffineTransform();
atransf.rotate(Math.PI/2); // rotate 90°
g2.transform(atransf);

Affine Transformations

