Input: pointing devices, input-output mappings, multi-touch and mid-air interaction

(complete set of slides)

Input devices vs. Finger-based input

Indirect vs. Direct pointing

Indirect: The position of the cursor is controlled by the device

Direct: Fingers manipulate visual objects directly on the screen

Absolute vs. Relative pointing

Absolute: 1-to-1 mapping between input and output space

indirect

Relative: Input controls the relative position of the cursor (always indirect)

Hovering mode

Tracking the position of the pointing device (e.g., the pen) or the finger from distance

Hover widgets http://www.youtube.com/watch?v=KRXfaZ8nqZM

Absolute pointing

Direct input

- Hovering feedback is not indispensable as there is a clear mapping between pen/fingers and the screen
- Main drawback: occlusion problems

Indirect input

 « Hovering » is indispensable: users must know the position of the cursor before starting drawing

Relative pointing

Common devices: mouse and touchpad

- « Clutching » instead of « hovering » mode
 - Lift the mouse or finger to « re-calibrate » movement
 - Use of smaller input space to traverse a larger output space

How would you map the input space of the tablet to the output space of the wall? Smarties: <u>https://www.lri.fr/~chapuis/publications/CH114-smartiestk.mp4</u>

Buxton's 3-state model (1990)

Buxton's 3-state model (1990)

A. Two-state model for mouse

B. Two-state model for a touch tablet

Buxton's 3-state model (1990)

C. Three-state model for a gaphics tablet with stylus

Relative pointing: Mappings

Position control: maps human input to the position of the cursor (or object of interest) Examples: mouse, touchpad

Rate (or velocity) control: maps human input to the velocity of the cursor (or object of interest) Examples: joystick, trackpoint

Trackpoint

Isotonic vs. Isometric devices

Isotonic (iso-tonic = equal tension/force):Absence of resistance, free movementMouse, pen, human arms, etc.

Isometric (iso-metric = equal measure): Absence of movement, resistance as we press

Isotonic vs. Isometric devices

Isotonic (iso-tonic = equal tension/force): Absence of resistance, free movement

• Mouse, pen, human arms, etc.

Isometric (iso-metric = equal measure): Absence of movement, resistance as we press

Elastic: Resistance increases with movement • Joystick, trackpoint

Elastic/Isometric devices

There is a neutral position

As we apply force, an opposing force develops

Self-calibration: I we free the device, the opposing force bring the device to its neutral position

General principles

Isotonic devices (e.g., mouse) most appropriate for position control

Elastic/isometric devices (e.g., joystick) most appropriate for rate (velocity) control

Mixed control (Casiez et al., 2007)

How can we increase the input space of a trackpad to reduce clutching: trackpad + trackpoint

RubberEdge http://www.youtube.com/watch?v=kucTPG_zTik

Mixed control

The wrist as a mixed-control device (Tsandilas et al. 2013) position control around the neutral wrist position rate control near externes angles

No need for clutching

Output resolution

Dots per Inch (DPI)

For screens where dots are pixels, we use the term Pixels per Inch (PPI)

Input resolution (isotonic devices)

Input resolution often measured in **counts per inch** (CPI)

- Also refered to as Dots per Inch (DPI)
- A modern mouse: 400 to 10000 CPI
- Detection of displacements between 64µm and 2.54µm (about the size of a bacterium)

Input resolution (isotonic devices)

Input resolution often measured in **counts per inch** (CPI)

- Also refered to as Dots per Inch (DPI)
- A modern mouse: 400 to 10000 CPI
- Detection of displacements between 64µm and 2.54µm (about the size of a bacterium)
- « Useful » resolution: 200-400 CPI (Aceituno et al. 2013)
 - Maximum resolution that users can benefit from

Control-Display (CD) gain

 $CD_{gain} = V_{pointer} / V_{device}$

 $V_{pointer}$: velocity of cursor V_{device} : velocity of input device

Control-Display (CD) gain

 $CD_{gain} = V_{pointer} / V_{device}$

 V_{pointer} : velocity of cursor V_{device} : velocity of input device

 $\mbox{CD}_{\mbox{gain}}{=}1$ When the mouse moves 1cm, the cursor also moves 1cm

 $\rm CD_{gain} < 1$ The cursor moves slower than the mouse: Better precision

 $CD_{gain} > 1$ The cursor moves faster than the mouse: Faster, less clutching

Range of usable CD gains

from Casiez et al. (2008)

Pointer acceleration

The CD gain is not constant but changes as a function of the speed of the device

- The faster I move the device, the faster the cursor (acceleration)
- Slow movements cause the CD gain to decrease: better precision

Acceleration functions

Also known as transfer functions

from Casiez and Roussel (2011)

Nancel et al. (2013) found that with a good acceleration function, users could be very accurate and fast acquiring targets on a large high-resolution display even when the available input space was very small

Laser pointing – RayCasting

Main strength: Natural, as the device or hand points directly to the target

Drawback: Sensitive to hand tremor and tracking precision. Depending on the distance of the user, small hand movement can cause large displacements, inappropriate for accurate pointing from distance

Solutions

Relative Pointing + Clutching (Vogel & Balakrishan, 2005)

Solutions

Hybrid Control (Vogel & Balakrishan, 2005)

http://www.youtube.com/watch?v=j26JQxMhBog

Direct input

Strengths: The user interacts directly with the objects as in the real world

Drawbacks: Lower accuracy due to occlusion, parallax, limited input resolution of the human limbs

The parallax problem

Incorrect perception of where the target is

Occlusion problems

The finger covers the object of interest. Here, the letter under the users finger grows and moves upwards to reduce the problem.

Problematic design Better design

Examples from http://podlipensky.com/2011/01/mobile-usability-sliders/

Occlusion problems

Sliding Widgets (Moshovich, 2009) Replacing push buttons by sliding ones to reduce ambiguity due to occlusion or parallax problems (crossing-based selection)

http://www.youtube.com/watch?v=Pw5nmLSYrvE

Hand occlusion

Occlusion-Aware Interfaces

(Vogel & Balakrishan, 2010)

(b) Occlusion-Aware Dragging

http://www.youtube.com/watch?v=j-b9q4ZjLHo

Other clever solutions

PhantomPen (Lee et al, 2012)

http://www.youtube.com/watch?v=r62wxK3Rma4

Other clever solutions

LucidTouch (Wigdor et al , 2007) http://www.youtube.com/watch?v=qbMQ7urAvuc

Interaction with small touch devices (Baudisch and Chu, 2009)

Multi-touch

Apple magic trackpad

iPad, iPhone, smartphones, tablets

Vertical public displays

The history of multitouch

For the long history of touch and multitouch, see Buxton's overview page:

http://www.billbuxton.com/multitouchOverview.html

Tabletops

Touch points & degrees of freedom

Degrees of freedom = the number of

parameters that may vary independently

Examples:

- One touch point can control the X and Y position of an object (2 degrees of freedom)
- Two touch points can control the X and Y position of an object, its rotation, and its scale (4 degrees of freedom)

Touch points & degrees of freedom

We can control more degrees of freedom

- 1. By adding more touch points
- 2. By sensing parameters other than position
- Pressing force of a finger
- Moving speed or acceleration
- Size of contact point
- 3. By adding new input modalities
- e.g., tilting the device while touching

Detecting fingers

Capacitive touchscreens (e.g., tablets and smartphones) do not differentiate between different fingers: they only detect contact points

Some vision-based systems (e.g., some tabletops) create a model of the whole hand, but their accuracy can be low

Detecting fingers

Capacitive touchscreens (e.g., tablets and smartphones) do not differentiate between different fingers: they only detect contact points

Some vision-based systems (e.g., some tabletops) create a model of the whole hand, but their accuracy can be low

How would it be useful to differentiate between fingers?

Detection problems & feedback

Making detection visible to the user

Ripples (Microsoft Research, 2009) http://www.youtube.com/watch?v=BXLsdhoRXF4

Detection problems & feedback

Making detection visible to the user

Ripples (Microsoft Research, 2009) http://www.youtube.com/watch?v=BXLsdhoRXF4

Think about other technologies where detection can be problematic, e.g., motion sensing by Kinect

Multi-touch: Common gestures

from http://www.mobiletuxedo.com/touch-gesture-icons/

Multi-finger interaction for multiuser tabletops

(a) Flat Hand (f) Vertical Hand (g) Horizontal Hand (f) Titled Horizontal Hand (g) Horizontal Hand (g) Too Vertical Hand (g) Two Vertical Hands (g) Two Corner-Shaped Hanc (g) Two Vertical Hands (g) Two Corner-Shaped Hanc

http://www.dqp.toronto.edu/research/tabletop/tabletop640x480.mpg

Gesture elicitation studies

Gesture elicitation (Wobbrock et al., 2009)

- Asking target users to create their own gesture vocabulary
- Then, define gestures based on the identified common gesture patterns

Gesture elicitation studies

Morris et al. (2010) found that peope preferred gestures defined by larger groups of end-users than gestures defined by HCI researchers

 HCI researchers proposed physically and conceptually more complex gestures than end-users

The approach has been used by other researchers for defining gestures for a wide variety of input modalities: mid-air gestures, motion gestures, folding-paper gestures, etc.

Problem of « legacy » bias: Users are often biased by their previous exposure to commercial systems.

Beyond touch

Flexible displays

Transformable displays (Ramakers et al., 2014) http://www.raframakers.net/wiki/Main/Paddle

Programming for multitouch

There are many platform-dependent toolkits for capturing and handling touch events

Example

The Android SDK (based on Java) provides listeners of simple multi-finger touch events (move, down, up) and common touch gestures (tap, double tap, long press, fling, scroll)

Programming for cross-platform interaction

How do we communicate events between different devices and different platforms?

Programming for cross-platform interaction

Protocols for communicating generic events Open Sound Control: <u>http://opensoundcontrol.org/introduction-osc</u> IVY: <u>http://www.eei.cena.fr/products/ivy/</u>

Protocol for communicating multitouch events TUIO: <u>http://www.tuio.org</u>

Open Sound Control (OSC)

Initially developed for the communication between synthesizers, digital instruments, and musical software

Widely used by the music and HCI communities

Client/Server architecture, where the OSC server receives OSC messages from one or multiple OSC clients • The server and the clients can be in different devices/platforms

Implementation for many platforms and programming languages, e.g., Java: <u>http://www.illposed.com/software/javaosc.html</u>

TUIO

Based on OSC: Client/Server architecture where devices can send multitouch events to interested applications

Support for a wide range of multitouch devices and platforms: <u>http://www.tuio.org/?software</u>

