
Input: pointing devices, input-output
mappings, multi-touch and mid-air
interaction

(complete set of slides)

Input devices vs. Finger-based input

Indirect vs. Direct pointing

Indirect: The position of the cursor
is controlled by the device

Direct: Fingers manipulate visual
objects directly on the screen

Absolute vs. Relative pointing

 Absolute: 1-to-1 mapping between input and
output space

 Relative: Input controls the relative position of
the cursor (always indirect)

indirect direct

Hovering mode

 Tracking the position of the pointing device
(e.g., the pen) or the finger from distance

 Hover widgets http://www.youtube.com/watch?v=KRXfaZ8nqZM

Absolute pointing

Direct input
!  Hovering feedback is not indispensable as there is a

clear mapping between pen/fingers and the screen
!  Main drawback: occlusion problems

Indirect input
!  « Hovering » is indispensable: users must know the

position of the cursor before starting drawing

Wacom Cintiq

regular graphics tablet

Relative pointing

Common devices: mouse and touchpad

« Clutching » instead of « hovering » mode
!  Lift the mouse or finger to « re-calibrate » movement
!  Use of smaller input space to traverse a larger output space

How would you map the input space of the tablet to the output space of the wall?
Smarties: https://www.lri.fr/~chapuis/publications/CHI14-smartiestk.mp4

Buxton’s 3-state model (1990)

A. Two-state model for mouse

Buxton’s 3-state model (1990)

B. Two-state model for a touch tablet

Buxton’s 3-state model (1990)

C. Three-state model for a gaphics tablet with stylus

Relative pointing: Mappings

 Position control: maps human input to the
position of the cursor (or object of interest)

 Examples: mouse, touchpad

 Rate (or velocity) control: maps human input to
the velocity of the cursor (or object of interest)

 Examples: joystick, trackpoint

Trackpoint

Isotonic vs. Isometric devices

 Isotonic (iso-tonic = equal tension/force):
Absence of resistance, free movement
!  Mouse, pen, human arms, etc.

 Isometric (iso-metric = equal measure):
 Absence of movement, resistance as we press

Isotonic vs. Isometric devices

 Isotonic (iso-tonic = equal tension/force):
Absence of resistance, free movement
!  Mouse, pen, human arms, etc.

 Isometric (iso-metric = equal measure):
 Absence of movement, resistance as we press

 Elastic: Resistance increases with movement
!  Joystick, trackpoint

Elastic/Isometric devices

 There is a neutral position

 As we apply force, an opposing force develops

 Self-calibration: I we free the device, the opposing
force bring the device to its neutral position

General principles

 Isotonic devices (e.g., mouse) most appropriate for
position control

 Elastic/isometric devices (e.g., joystick) most
appropriate for rate (velocity) control

Mixed control (Casiez et al., 2007)

 How can we increase the input space of a trackpad to
reduce clutching: trackpad + trackpoint

 RubberEdge http://www.youtube.com/watch?v=kucTPG_zTik

Position control Velocity control

Mixed control

 The wrist as a mixed-control device (Tsandilas et al. 2013)
 position control around the neutral wrist position
 rate control near extemes angles

 No need for clutching

Output resolution

 Dots per Inch (DPI)

 For screens where dots are pixels, we use the
term Pixels per Inch (PPI)

Input resolution (isotonic devices)

 Input resolution often measured in counts per inch
(CPI)
!  Also refered to as Dots per Inch (DPI)

 A modern mouse: 400 to 10000 CPI
!  Detection of displacements between 64µm and 2.54µm

(about the size of a bacterium)

Input resolution (isotonic devices)

 Input resolution often measured in counts per inch
(CPI)
!  Also refered to as Dots per Inch (DPI)

 A modern mouse: 400 to 10000 CPI
!  Detection of displacements between 64µm and 2.54µm

(about the size of a bacterium)

« Useful » resolution: 200-400 CPI (Aceituno et al. 2013)
!  Maximum resolution that users can benefit from

Control-Display (CD) gain

CDgain = Vpointer / Vdevice

Vpointer: velocity of cursor
Vdevice : velocity of input device

Control-Display (CD) gain

CDgain = Vpointer / Vdevice

Vpointer: velocity of cursor
Vdevice : velocity of input device

CDgain=1
When the mouse moves 1cm, the cursor also moves 1cm

CDgain< 1
The cursor moves slower than the mouse: Better precision

CDgain > 1
The cursor moves faster than the mouse: Faster, less clutching

Range of usable CD gains

from Casiez et al. (2008)

Pointer acceleration

 The CD gain is not constant but changes as a
function of the speed of the device
!  The faster I move the device, the faster the cursor

(acceleration)
!  Slow movements cause the CD gain to decrease: better

precision

Acceleration functions

 Also known as transfer functions

from Casiez and Roussel (2011)

Nancel et al. (2013) found that with a good acceleration function, users could
be very accurate and fast acquiring targets on a large high-resolution display
even when the available input space was very small

Laser pointing – RayCasting

 Main strength: Natural, as the device or hand points
directly to the target

 Drawback: Sensitive to hand tremor and tracking precision.
 Depending on the distance of the user, small hand
movement can cause large displacements, inappropriate for
accurate pointing from distance

Solutions

Relative Pointing + Clutching (Vogel & Balakrishan, 2005)

Solutions

Hybrid Control (Vogel & Balakrishan, 2005)

http://www.youtube.com/watch?v=j26JQxMhBog

Direct input

 Strengths: The user interacts directly with the objects
as in the real world

 Drawbacks: Lower accuracy due to occlusion,
parallax, limited input resolution of the human limbs

The parallax problem

Incorrect perception of where the target is

Occlusion problems

The finger covers the object of interest.
Here, the letter under the users finger
grows and moves upwards to reduce
the problem.

Examples from http://podlipensky.com/2011/01/mobile-usability-sliders/

Problematic design Better design

Occlusion problems

Sliding Widgets (Moshovich, 2009)
Replacing push buttons by sliding ones to reduce ambiguity due to
occlusion or parallax problems (crossing-based selection)

http://www.youtube.com/watch?v=Pw5nmLSYrvE

Hand occlusion Occlusion-Aware Interfaces
(Vogel & Balakrishan, 2010)

http://www.youtube.com/watch?v=j-b9q4ZjLHo

Other clever solutions

PhantomPen (Lee et al, 2012)

http://www.youtube.com/watch?v=r62wxK3Rma4

Other clever solutions

Interaction with small touch devices
(Baudisch and Chu, 2009) LucidTouch (Wigdor et al , 2007)

http://www.youtube.com/watch?v=qbMQ7urAvuc

Multi-touch

Apple magic trackpad iPad, iPhone,
smartphones, tablets

Vertical public displays

Tabletops

The history of multitouch

 For the long history of touch and multitouch,
see Buxton’s overview page:

 http://www.billbuxton.com/multitouchOverview.html

Touch points & degrees of freedom

 Degrees of freedom = the number of
parameters that may vary independently

 Examples:
!  One touch point can control the X and Y position of an

object (2 degrees of freedom)

!  Two touch points can control the X and Y position of an
object, its rotation, and its scale (4 degrees of freedom)

Touch points & degrees of freedom

 We can control more degrees of freedom

 1. By adding more touch points

 2. By sensing parameters other than position
!  Pressing force of a finger
!  Moving speed or acceleration
!  Size of contact point

 3. By adding new input modalities
!  e.g., tilting the device while touching

Detecting fingers

 Capacitive touchscreens (e.g., tablets and
smartphones) do not differentiate between
different fingers: they only detect contact points

 Some vision-based systems (e.g., some tabletops)
create a model of the whole hand, but their
accuracy can be low

Detecting fingers

 Capacitive touchscreens (e.g., tablets and
smartphones) do not differentiate between
different fingers: they only detect contact points

 Some vision-based systems (e.g., some tabletops)
create a model of the whole hand, but their
accuracy can be low

 How would it be useful to
 differentiate between fingers?

Detection problems & feedback

Making detection visible to the user

Ripples (Microsoft Research, 2009)
http://www.youtube.com/watch?v=BXLsdhoRXF4

Detection problems & feedback

Making detection visible to the user

Ripples (Microsoft Research, 2009)
http://www.youtube.com/watch?v=BXLsdhoRXF4

Think about other technologies where detection can be
problematic, e.g., motion sensing by Kinect

Multi-touch: Common gestures

from http://www.mobiletuxedo.com/touch-gesture-icons/

Multi-finger interaction for multi-
user tabletops

Wu and Balakrishnan, 2003

http://www.dgp.toronto.edu/research/tabletop/tabletop640x480.mpg

Gesture elicitation studies

 Gesture elicitation (Wobbrock et al., 2009)
!  Asking target users to create their own gesture vocabulary
!  Then, define gestures based on the identified common

gesture patterns

Gesture elicitation studies

 Morris et al. (2010) found that peope preferred gestures
defined by larger groups of end-users than gestures
defined by HCI researchers
!  HCI researchers proposed physically and conceptually more

complex gestures than end-users

 The approach has been used by other researchers for
defining gestures for a wide variety of input modalities:
mid-air gestures, motion gestures, folding-paper gestures, etc.

 Problem of « legacy » bias: Users are often biased by
their previous exposure to commercial systems.

Beyond touch

Flexible displays Transformable displays (Ramakers et al., 2014)
http://www.raframakers.net/wiki/Main/Paddle

Programming for multitouch

 There are many platform-dependent toolkits for
capturing and handling touch events

 Example
 The Android SDK (based on Java) provides listeners of
simple multi-finger touch events (move, down, up) and
common touch gestures (tap, double tap, long press,
fling, scroll)

Programming for cross-platform
interaction

 How do we communicate events between
different devices and different platforms?

Programming for cross-platform
interaction

Protocols for communicating generic events
Open Sound Control: http://opensoundcontrol.org/introduction-osc

IVY: http://www.eei.cena.fr/products/ivy/

Protocol for communicating multitouch events
TUIO: http://www.tuio.org

Open Sound Control (OSC)

 Initially developed for the communication between
synthesizers, digital instruments, and musical software

 Widely used by the music and HCI communities

 Client/Server architecture, where the OSC server
receives OSC messages from one or multiple OSC clients
!  The server and the clients can be in different devices/platforms

 Implementation for many platforms and programming
languages, e.g., Java: http://www.illposed.com/software/javaosc.html

TUIO

Based on OSC: Client/Server architecture where
devices can send multitouch events to
interested applications

Support for a wide range of multitouch devices
and platforms: http://www.tuio.org/?software

