UI software architectures &
Modeling interaction

(part of this content is based on previous classes from A. Bezerianos, S. Huot, M.

Beaudouin-Lafon, N.Roussel, O.Chapuis)

Software architecture - MVC

Assignment 1

Design and implement an interactive tool for
creating the layout of comic strips

https://www.lri.fr/~fanis/teaching/IS12014/assignments/ass1/

structure of an interactive system

What we see
= output

— visible part
« front end »

What we act with
= input

What happens —
= treatment

= computation L invisible part
= communication « back end »
= data (storage and access)

example 1

Musi
&

] X . -
- Y 4
Toh KA nal]

[p—

= YN ot Tures

SRR TR, TR BRI W - data model (albums, artists,
n categories, etc.)
- communication with iTunes

SnewasoBoy
e

server
- manage queries
- manage sales

- security

2 Toe T 0y 1)
e esres

P —

& Babr smsana (Rl

7 o ot Gk e
a

Films (PRROTWAT ARG Tout atiche > © Gontonas So
e —_——— a—— =
front end

example 3

B csv pata

Email
everymallbiz 1139 MANNING HWY,CLY,76604
bizmail biz

o back end

<::> - tabular structure
- storage and data access

swhitaker52@eyecdenet |54 TALLEY RUNBRISTOL 63113

back end

147 FLEMING HWY MORA 37823

hadcode@evenmatlco uk [1341 BYRNE DR, SUMNER 30450

front end

example 2

- geometric models

- calculations (transformations,
rendering, etc.)

- store and access designs

back end

front end

link between the two parts

... programming using an organization model

organize, structure an interactive application
by separating:

= Data and their treatment: the Model
= Data representation: the View

= Application behavior to input: the Controller

Model «Model-View-Controller>»(MVC)

MVC is :

= A design pattern (standardized design solution independent of

programming language)

= A software architecture (a way to structure an application or a

set of software packages)
Introduced in 1979 by Trygve Reenskaug

Strongly linked to OO programming (Smalltalk)

MVC: interactions between components

Model

- application functionality
- data access and management

View Controller
- presentation of data and - manage user input
functionality to the user - update application behavior

MVC: ideal interactions between
components

Model

- application functionality
- data access and management

View Controller
- presentation of data and - manage user input
functionality to the user - update application behavior

\ user /

MVC: interactions between components

Model

- application functionality
- data access and management

View Controller
- presentation of data and - manage user input
functionality to the user - update application behavior

/

user input

MVC: interactions between components

Model

- application functionality
- data access and management

View Controller
- presentation of data and - manage user input
functionality to the user ~ pF======m———mmmme - update application behavior
notification
/‘ of input
user input

MVC: interactions between components

Model (i E internal operations

- application functionality
- data access and management

notification
of state change

View Controller
- presentation of data and - manage user input
functionality to the user ~ pF======mmm—mmmmme - update application behavior
notification
/ of input

user input

MVC: interactions between components

Model

- application functionality
- data access and management

notification
of state change

View Controller
- presentation of data and - manage user input
functionality to the user ~ pF======m———mmmmme - update application behavior
notification
/‘ of input
user input

MVC: interactions between components

Model (i E internal operations

- application functionality
- data access and management

notification
of state change

N selectaView

View Controller
- presentation of data and - manage user input
functionality to the user - update application behavior

' notification AN

/ of input

user input

MVC: interactions between components

Model (i E internal operations

- application functionality
- data access and management

request state

notification
of state change

N selectaView

View Controller
- presentation of data and - manage user input
functionality to the user » - update application behavior

/' notification AN

/ of input

user input

MVC: interactions between components

Alternative architecture

Model (i E internal operations

- application functionality
- data access and management

notification
of state change

Y update a View [~
View Controller
- presentation of data and - manage user input
functionality to the user ¥ - update application behavior

~/ notification AN

/ @ of input
user input

refresh

MVC: interactions between components

Model (i E internal operations

- application functionality
- data access and management

request state

notification
of state change

N selecta View

View Controller
- presentation of data and - manage user input
functionality to the user » - update application behavior

notification AN

J
/ @ of input
user input

refresh

MVC: referencing between components

Model

. / N 4
View Viodel Controller \
View Model

Controler

A

MVC: the model MVC: the view

The model: The view:
= Represents data = Shows the (or one) representation of the data in the
model

= Gives access to data

= Ensures consistency between data representation

= Gives access to data management functionality and their state in the model (application)

= Exposes the application functionality

Output of the application
Functional layer of the application

MVC: the controller advantages of MVC

The controller: Clean application structure

= Represents the application behavior w.r.t. user

Adapted to concepts of O-O programming
actions

Independence of
data - representation - behavior

= Translates user actions to actions on the model

= Calls the appropriate view w.r.t. the user actions
and the model updates Modular and reusable

Effect and treatment of input

disadvantages of MVC

Implementation complex for large applications

Too many calls between components
= « Spaghetti » code

Controller and View are often tightly linked to
Model (and often to each other)

:> need to adapt implementation

0800

First Name Last Name

Kathy Smith Snowboarding S false
Dohn DRI Rowing 3 liue

Sue Black Knitting 2 false
Jane White speed reading 20 true
Joe Brown Pool 10 false

) Table Model
Table Object <:> Object <:> Table Data

Jjavax.swing.JTable javax.swing.table. TableModel

MVC and Java Swing Widgets

Model-View-Controller separation not strict

Model categories:
Visual status of GUI controls, e.g., pressed or armed button
Application-data model, e.g., text in a text area
Swing uses a model by default for each widget

View & Controller (often part of the same UI object)
Look & Feel + Listener
Examples : JButton, JLabel, JPanel, etc.

example

The data

Object[][] data = {
{"Kathy", "Smith","Snowboarding", new Integer(5), new Boolen(false)},
{"John", "Doe", "Rowing", new Integer(3), new Boolean(true)},
{"Sue", "Black","Knitting", new Integer(2), new Boolean(false)},
{"Jane", "White","Speed reading", new Integer(20), new
Boolean(true)},
{"Joe", "Brown","Pool", new Integer(10), new Boolean(false)}

example example

The model The view

class MyTableModel extends AbstractTableModel {
private String[] columnNames = ..
private Object[][] data = ..

TableModel dataModel = new MyTableModel();

JTable table = new JTable(dataModel);

JScrollPane scrollpane = new JScrollPane(table);
public int getColumnCount() {

return columnNames.length;

}

public int getRowCount() {
return data.length;

}

public String getColumnName(int col) {
return columnNames[col];

}

public Object getValueAt(int row, int col) {

return data[row][col];

}

example

The controller

public class MySelectionListener implements ListSelectionListener {
private JTable table;

public MySelectionListener(JTable table){
this.table = table;

table.setCellSelectionEnabled(true);

ListSelectionModel cellSelectionModel = table.getSelectionModel(); M Od el I n g I n te I‘a Ctl o n

cellSelectionModel.setSelectionMode(ListSelectionModel. SINGLE_SELECTION);
cellSelectionModel.addListSelectionListener(this);

public void valueChanged(){

}

WIMP interfaces

WIMP: Window, Icons, Menus and Pointing

Presentation

= Windows, icons and other graphical objects

Interaction

= Menus, dialog boxes, text input fields, etc

Input

= pointing, selection, ink/path

Perception-action loop

= feedback

direct manipulation: examples

Editing documents WYSIWYG: What You See Is What You Get
text editors (e.g., Word, OpenOffice)
bitmap/vector graphics (e.g., Photoshop, Illustrator).
Counter-example: Latex ...

Icon interaction:
= Generic interface
= Use of metaphors
= drag-and-drop

= -3

[

Il

Dokument Bearbeten Ansicht Gehezu Lesezeichen Eptras Enstelungen Eenster

0.000/00/=8 8N ~=a -

Hife

B Adgesse: [imnt/dataiBider

4 4 J ad o

2002 2003 2005 2006
art deskiop

mantener [&
| soltar
“"' > 1

direct manipulation

Ben Shneiderman (1983)

Persistent representation of objects of interest
Use of physical actions instead of complex syntax
Operations are quick, incremental, reversible, and
their effect on objects is immediately visible
(feedback)

Incremental learning, to permit use of the interface
with little prior knowledge

direct manipulation?

Edit View Format Arrange Inspectors Stencils Window Scripts Edit View JJZIEE Arrange Inspectors Stencils Window Scripts
®00 Untitled ®00 o Show Fonts
T L = =y ol Text > Bold *B
- L = Italic]
Copy Style ~3%C
[Jraver1 | paste Style ~38V Underline 38U
Size > Smallé ®-
Connection Magnets >
::> Guides » | Kem »
Ligature >
Baseline >
Copy Font X 3C
— <
®Bonjour | @ ®Bonjour ! @ Paste Font 38V

direct manipulation problems

Identifying objects of interest
= example: styles in Word

Immediate feedback difficult when there is a
delay between action and result

Direct or indirect manipulation?
= menus, dialog boxes, scroll-bars, etc.

example: dragging windows

Click inside the window Drag / Move the window

Click on the bar of the window /
Pick the window

Click outside the window Release / Release the window

describing interactions:
state machines

Finite Automata transition state

State = interaction state
Transition = input events
guard / action
State Machine

= boolean expressions of events associated to transitions
(guard)

= actions associated to transitions (not always present)

Down / Record (P1
Example: ®n

Move / Draw (P1,current)

Up / Done(P1,current)

example: dragging windows

mouseDown(e) & 'window.getBar().contains(e.getPoint()) mouseMove(e) / action2(e)

mouseDown(e)
& window.getBar().contains(e.getPoint())
/ action1(e)

actioni(e) { mouseUp(e)
X0 = e.getX();
y0 = e.getY();

action2(e) {
translateWindow(e.getX() - x0, e.getY() - y0);
action1(e);

state machines & MVC

"\ update a View

View éontroller

~/ notification
/ @ of input e N
ser input
user inpu refresh

oN
()
N

common problems

Getting trapped to states with no transitions (deadlocks)

Maintening the code to capture new or unforeseen
states is usually hard

An interaction can involve several Ul components. Not
always clear how to divide interaction between
multiple sontrollers and state machines.

representing states

Common approach: use of global variables
within a controller

public enum State {S1, S2, S3, S4}
private State state = State.S1;

or (use of multiple variables)

private boolean buttonPressed = false, mouseMoved = false;

In the following lecture, we’ll introduce SwingStates, a Java

library for modeling interaction through states, state
transitions, and state machines

drag & drop

Which UI objects are involved?
Which controller handles this interaction?

BT T
| (8]
| |)

__/ L\

Press and drag Release

interaction modes

Mode: distinct state of the UI where the same user
input has a different interpretation

= text vs. drawing mode in an editing tool

= typing capital or small characters

Mode switching
= e.g., Caps lock key, specialized button

Quasimode: mode being active through some constant
action from the user

= e.g., use of modifier keys such as Shift, Alt, Control while
typing or pointing

making modes visible

Marquee Tools
Lasso Tools

crop Tool

Healing & Patch Tools
Cloning Tools

Eraser Tools

Blur, Sharpen, Smudge
Path Selection Tools

Pen Tools

Default B/W Colors
Edit in standard mode

standard, Full ve/Menu,
‘and Full screen modes

oo

< Move Tool
< Magic wand

< Image Slice

< Paintbrush & Pencil

< History brush

< Gradient & Paint Bucket
< Dodge, Burn, Spunge

AR §
LN E XA 4

|

< Type tool

o>
C]

< Shape Drawing
£ r & Measuring

fan

< Background Color

G@
&
’\

< Edit in quick mask mode

iy

|< 3ump to Imageready

|2

interaction modes: problems

« modes are a significant source of errors, confusion,

unnecessary restrictions, and complexity in interfaces »

Ruskin advocated for modeless interfaces. He also

Jef Ruskin

recommended the use of quasimodes instead of explicit

modes.

Other points of view (Jacob Nielsen)

« users cannot cope with everything at once »
«...need the interface to narrow their attention »

« Real life is highly moded »

eliminating modes

Special mode for changing time

No modes, direct editing

What are the trade-offs in these designs?

(credits to Niall Murphy)

e

