
UI Programming

(part of this content is based on previous classes from Anastasia, S. Huot, M.
Beaudouin-Lafon, N.Roussel, O.Chapuis)

Design and implement an interactive tool for
creating the layout of comic strips

Assignment 1 is out!

https://www.lri.fr/~fanis/teaching/ISI2014/assignments/ass1/

Graphical interfaces

GUIs: input is specified w.r.t. output

Input peripherals specify commands at specific
locations on the screen (pointing), where
specific objects are drown by the system.
Familiar behavior from physical world

WIMP interfaces
WIMP: Window, Icons, Menus and Pointing

Presentation
!  Windows, icons and other graphical objects

Interaction
!  Menus, dialog boxes, text input fields, etc

Input
!  pointing, selection, ink/path

Perception-action loop
!  feedback

Software layers

Windows, Mac OS, Unix, Linux,
Android, iOS, WindowsCE

GDI+, Quartz, GTK+/Xlib, OpenGL

X Windows (+KDE or GNU)

Builders, Java Swing, JavaFX, Qt (C++),
GTK+, MFC, Cocoa

Applications/Communication (MacApp) Application

Operating System

Interface Tools & Toolkits

Input/Output

Graphics Library

Windowing System

Software layers

Application

Operating System

Interface Tools & Toolkits

Input/Output

Graphics Library

Windowing System

Input: where we give commands

Output: where the system shows information & reveals its state

Input/output peripherals

Interactivity vs. computing

Closed systems (computation):
!  read input, compute, produce result
!  final state (end of computation)

Open systems (interaction):
!  events/changes caused by environment
!  infinite loop, non-deterministic

Problem

We learn to program algorithms (computational)

Most languages (C/C++, Java, Lisp, Scheme,
Pascal, Fortran, ...) designed for algorithmic
computations, not interactive systems

Problem

Treating input/output during computation
(interrupting computation) …

!  write instructions (print, put, send,…) to send data to
output peripherals

!  read instructions (read, get, receive,…) to read the
state or state changes of input peripherals

Problem

To program IS in algorithmic/computational form

two buttons B1 and B2!
finish <- false!
while not finish do!
!!button <- waitClick () //interruption, blocked comp.!
!!if button!
!! !B1 : print « Hello World »!
!! !B2 : finish <- true!
!!end!

end

Querying Polling Events

Query & wait Active wait Wait queue
1 device at a time Polling in sequence

 CPU cost

Managing input

Event based (driven)
programming

event (waiting) queue

while active!
 if queue is not empty!
 event <- queue.dequeue()!
 source <- findSource(event)!
 source.processEvent(event)!
 end if!
end while!

queue.enqueue(event)

Source: Mouse Click

while active!
 if queue is not empty!
 event <- queue.dequeue()!
 source <- findSource(event)!
 source.processEvent(event)!
 end if!
end while!

processEvent(event)!
 target <- FindTarget (event)!
 if (target ≠ NULL)!

!target.processEvent(event)!

Event based (driven)
programming

event (waiting) queue

queue.enqueue(event)

Target: Button
« Cancel »

Source: Mouse Click

Example: Swing (and AWT)

3 threads
!  Initial thread: main ()
!  EDT manages the events queue:

sends events to listeners (functions
dealing with events) and calls paint
methods (drawing functions)

!  Worker (or background) threads, where
time-consuming tasks are executed

AWT Event Queue

Event Dispacher Thread
 (EDT)

Listeners paint ()

Software layers

Application

Operating System

Interface Tools & Toolkits

Input/Output

Graphics Library

Windowing System

Interface builders

Examples : MS Visual Studio (C++, C#, etc.), NetBeans (Java),
 Interface Builder (ObjectiveC), Android Layout Editor

Interface builders

Can be used to
!  create prototypes (but attention it looks real)
!  get the « look » right
!  be part of final product

!  design is fast
!  modest technical training needed
!  can write user manuals from it

But: still need to program (and clean code …)

Interface toolkits

Libraries of interactive objects (« widgets », e.g.,
buttons) that we use to construct interfaces

Functions to help programming of GUIs

...usually also handle input events (later)

Interface toolkits

Toolkit Platform Language
Qt multiplatform C++
GTK+ multiplatform C
MFC later WTL Windows C++
WPF (subset of WTL) Windows (any .Net language)
FLTK multiplatform C++
AWT / Swing multiplatform Java
Cocoa MacOs Objective C
Gnustep Linux, Windows Objective C
Motif Linux C
JQuery UI Web javascript

Problem with toolkits? ….

Why Java Swing?

Based on Java (any platform, plenty of libraries)

A lot of online resources and examples

Why Java Swing?

Based on Java (any platform, plenty of libraries)

A lot of online resources and examples

Other alternatives for Java?

""JavaFX: soon becomes the new standard for
Java UI programming, supporting a variety of
different devices

« widgets » (window gadgets)

menu window pallet button

text zone

list

slider

tab

radio button

scroll bar

label

Swing widgets

Swing widgets

Widget complexity

Simple widgets
!  buttons, scroll bars, labels, …

Composite/complex widgets
!  contain other widgets (simple or complex)
!  dialog boxes, menus, color pickers, …

Widget tree

Hierarchical representation of the widget structure
!  a widget can belong to only one « container »

Root (complex)
 application window

Nodes (complex)
 Visual or functional
 grouping of widgets

Leaf (simple)
 user can interact
 with these

Window
 JFrame

UI Components
 JPanel

Tool bar
 JToolBar

Text zone
 JTextArea

Button 1
 JButton

Button 2
 JButton

Button 3
 JButton

Swing widget classes

A GUI application has a top-level (container) widget that includes
all others

In Swing there are 3 types: JFrame, JDialog and JApplet

They all contain other widgets (simple or complex), that are
declared in the field content pane

Swing widget classes

http://docs.oracle.com/javase/tutorial/ui/features/components.html

Base class for all
Swing components
(exept for top-level
containers)

Partial object hierarchy of Swing widgets

a window with a basic bar
public static void main(String[] args) {!
 JFrame jf = new JFrame(”Ta ta!");!
 jf.setVisible(true);!
 jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);!

 System.out.println(”finished ? ! ?");!
 System.out.println(”no, still running …");!
}!

Useful functions
public JFrame();
public JFrame(String name);
public Container getContentPane();
public void setJMenuBar(JMenuBar menu);
public void setTitle(String title);
public void setIconImage(Image image);

This program does not terminate
after “no, still running …”!

Swing JFrame

a message window (dialog) can be “modal” (blocks
interaction)

usually attached to another window (when that closes,
so does the dialog)

public static void main(String[] args) {!
 JFrame jf = new JFrame(”ta ta!");!
 jf.setVisible(true);!
 jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);!
! JDialog jd = new JDialog(jf,”A dialog",true);!

! ! jd.setVisible(true);!
}!

modal

attached to

Swing JDialog

Widget placement

UI toolkits control widget placement:

!  should be independent of widget size
 (menu at least as big as its largest item,
 change of scrollbar size with document size,
 adjusting text flow)

!  done in layout managers that can be
 added to container widgets

import javax.swing.*;	
import java.awt.*;	

public class SwingDemo2 extends JFrame {	

	public void init() 	
	{	

 	 this.setTitle("example 2"); 	 		
	 		
	 getContentPane().add(new JLabel("Swing Demo 2"));	
	 		
	 Container contentPane = this.getContentPane();	
	 contentPane.setLayout(new FlowLayout());	

	 this.setDefaultCloseOperation(EXIT_ON_CLOSE);	

	 contentPane.add(new JButton("clique ici"));	
	 contentPane.add(new JButton("clique là"));	
	}	

	public static void main(String[] args) 	
	{	
	 	SwingDemo2 frame = new SwingDemo2();	

	 	frame.init();	
	 		
	 	frame.setSize(200,200);	
	 	frame.setVisible(true);	
	}	

}	

Widget placement

General guides
!  embed geometry of a «child» widget to its parent
!  parent controls the placement of its children

Layout algorithm
!  natural size for each child (to fit content)
!  size and position imposed by parent
!  constraints: grid, form, etc.

Layout managers (in Swing)

BorderLayout FlowLayout

BoxLayout GridLayout GroupLayout

import javax.swing.*;	
import java.awt.*;	

public class SwingDemo4 extends JFrame {	

 public void init() 	
 {	
 Container cp = getContentPane();	

 this.setTitle("example 4");	
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);	

 cp.setLayout(new FlowLayout());	
 for(int i = 0; i < 20; i++)	
 cp.add(new JButton("Button " + i));	
 }	

 public static void main(String[] args) 	
 {	
 SwingDemo4 frame = new SwingDemo4();	

 frame.init();	
	 		

 frame.setSize(200,700); 	
 frame.setVisible(true);	
 }	
}	

GridLayout: grid

GridBagLayout: sophisticated grid

Layout managers (in Swing)

Layout managers (in Swing)

GridLayout gridLayout = new GridLayout(0,2);!

JPanel gridPanel = new JPanel();!
gridPanel.setLayout(gridLayout);!

gridPanel.add(new JButton("Button 1"));!
gridPanel.add(new JButton("Button 2"));!
gridPanel.add(new JButton("Button 3"));!
gridPanel.add(new JButton("Long-Named Button 4"));!
gridPanel.add(new JButton("5"));!

Placement guides (Mac OS X)

Placement guides (Mac OS X)

Center balance: visual balance of a container’s content
between the left and right parts

Placement guides (Mac OS X)

Column of labels with right alignement
Column of controls with left alignment

Alignement

Placement guides (Mac OS X)

Same space between
controls

Spacing

Same space on every side

Same space before
and after separator

Placement guides (Mac OS X)

Alignement and consistency

Consistency between controls of the same type

Column with labels with right alignement
Column of controls with left alignment

CRAP
contrast, repetition, alignment, proximity

Slide deck by Saul Greenberg. Permission is granted to use this for non-commercial purposes as long as general credit to Saul Greenberg is clearly maintained.

Major sources: Designing Visual Interfaces, Mullet & Sano, Prentice Hall / Robin Williams Non-Designers Design Book, Peachpit Press

CRAP

Contrast

Repetition
Alignment

Proximity

CRAP

Contrast
make different things different
brings out dominant elements
mutes lesser elements
creates dynamism

Repetition
Alignment

Proximity

1

2

3

4

5

CRAP

Contrast

Repetition
repeat design throughout the interface
consistency
creates unity

Alignment

Proximity

1

2 3

4

CRAP

Contrast

Repetition
Alignment

creates a visual flow
visually connects el.

Proximity

1

2

3

4

CRAP

Contrast

Repetition
Alignment
Proximity

groups related
separates unrelated

1

2
3

Where does your eye go?

CRAP give you cues about how to read the graphic

title

subtext

three points

main point
sub point

Where does your eye go?

Boxes do not create a strong structure
!  CRAP fixes it

Where does your eye go?

Some contrast and weak proximity
!  ambiguous structure
!  interleaved items

#  !

Where does your eye go?

Strong proximity (left/right split)
!  unambiguous

$  !

Where does your eye go?

The strength of proximity
!  alignment
!  white (negative) space
!  explicit structure a poor replacement

Mmmm:

Mmmm:

Mmmm:

Mmmm:

Mmmm:

Mmmm:

Mmmm:

Mmmm:

Mmmm:

Mmmm:

Mmmm:

Mmmm:

Mmmm:

Mmmm:

Mmmm:

Original

Proximity

Alignment

Contrast

Repetition

IBM's Aptiva Communication Center

Example of bad design

(Mullet & Sano, 1995)

Example of bad design

(Mullet & Sano, 1995)

Reparing the layout

(Mullet & Sano, 1995)

Reparing the layout

Facets of a widget

« widgets » (window gadgets)

menu window pallet button

text zone

list

slider

tab

radio button

scroll bar

label

Facets of a widget

Presentation
 appearance

Behavior
 reaction to user actions

Interface with the application
notification of state changes

Example: Button
 border with text inside
 « pressing » or « releasing » animation when clicked
 call function when the button is clicked

Variable wrappers (active variables)

two-way link between a state variable of a widget
and another application variable
(in Tcl/Tk referred to as tracing)

problems
!  limited to simple types
!  return link can be costly if automatic
!  errors when links are updated by programmers

Event dispatching

widgets act as input peripherals and send
events when their state changes

a while loop reads and treats events

associate an object to a widget, and its methods
to changes in the widget state

Event dispatching

 divide event sending and treatment

 better encapsulation (inside widget class)

Callback functions

Registration at widget creation

Call at widget activation

Callback functions

Problem: spaghetti of callbacks

Sharing a state between multiple callbacks by
!  global variables that widgets check:

too many in real applications

!  widget trees: callback functions are called with a reference
to the widget that called it (visible in the same tree)

Fragile if we change the structure of the UI, does not deal with
other data not associated to widgets (e.g. filename)

!  token passing: data passed with the callback function call

Callback functions

/* callback function */ !
void DoSave (Widget w, void* data) {!

!/* retrieve file name */!
! filename = (char**) data; !
!/* call an application function */ !
!SaveTo (filename); !
!/* close the dialog */ !
!CloseWindow (getParent(getParent(w)));!

}!

/* main program */ !
main () {!

!/* variable with file name */ !
!char* filename = “”; !
!… !
!/* create a widget and assosiate a callback */ !
!ok = CreateButton (....);!
!RegisterCallback (ok, DoSave, (void*) &filename); !
!…!
!/* event manager loop */ !
!MainLoop ();!

}!

Event listeners (Java)

a variation of callbacks in Java:

methods of type AddListener that do not
specify a callback function but an object (the
listener)

when a widget changes state, it triggers a
predefined method of the listener object (e.g.
actionPerformed)

Event listeners (Java)

public class ClickListener implements ActionListener
{!

!public void actionPerformed(ActionEvent e){!

! !JButton button = (JButton)e.getSource();!

! !…!

!}!

}!

…!

ClickListener listener = new ClickListener();!

JButton button = new JButton(’’Click me’’); !

button.addActionListener(listener);!

…!

Event listeners (Java)

Anonymous Inner classes
…!

button.addActionListener(new ActionListener(){!

! !public void actionPerformed(ActionEvent e){!

! ! !…!

! !}!

});!

…!

panel.addMouseListener(new MouseAdapter(){!

! !public void mouseClicked(MouseEvent e){!

! ! !… !

! !}!

});!

Methods and events are predefined

Event listeners (Java)

Anonymous Inner classes
“new <class-name> () { <body> }”

this construction does 2 things:
!  creates a new class without name, that is a
subclass of <class-name> defined by <body>
!  creates a (unique) instance of this new class
and returns its value

this (inner) class has access to variables and
methods of the class inside which it is defined!

Low level events

Selection from a list
or radio button group

Cursor moving
in a scrollbar

Click on a button
Select item in a menu
Cursor inside text zone

Events (Java)

Each has a source (e.g. JButton, JRadioButton, JCheckBox,
JToggleButton,JMenu, JRadioButtonMenuItem, JTextField)

Can get it with the function getSource()

(Listeners) need to implement the interface that corresponds to event
e.g. ActionEvent => ActionListener :

public interface ActionListener extends EventListener {!
/** Invoked when an action occurs.*/ !
public void actionPerformed(ActionEvent e)!

}!

Events and listeners (Java)

all events inherit from the class EventObject

all listeners correspond to an interface that inherits
from EventListener

a class receiving notification events of some type needs to
implement the corresponding interface: "
!  ActionEvent " " " "ActionListener"
!  MouseEvent " " " "MouseListener"
!  KeyEvent " " " "KeyListener"
!  ..."

Events and listeners (Java)

listeners need to be registered (added) to widgets

a listener can be added to multiple widgets
!  e.g. one listener handles events from multiple buttons

a widget can have many listeners
!  e.g. one for “click” events and for “enter” on button events

Events and listeners (Java)

« drag-and-drop » to think
about

What are the affected « widgets »?
What are the events?

How to describe this interaction with a « event
listener » ?

Interface toolkits

Event-action model
!  can lead to errors (e.g. forgotten events)
!  difficult to extend (e.g. add hover events)
!  complex code

Hard to do things the toolkit was not designed for
 e.g., multi-device input, multi-screen applications,
 advanced interaction techniques (CrossY)

