UI Programming

(part of this content is based on previous classes from Anastasia, S. Huot, M.
Beaudouin-Lafon, N.Roussel, O.Chapuis)

Assignment 1 is out!

Design and implement an interactive tool for
creating the layout of comic strips

https://www.Iri.fr/~fanis/teaching/IS12014/assignments/ass1/

Graphical interfaces

GUIs: input is specified w.r.t. output

Input peripherals specify commands at specific
locations on the screen (pointing), where
specific objects are drown by the system.
Familiar behavior from physical world

WIMP interfaces

WIMP: Window, Icons, Menus and Pointing

Presentation
= Windows, icons and other graphical objects

Interaction
= Menus, dialog boxes, text input fields, etc

Input
= pointing, selection, ink/path

Perception-action loop
= feedback

Software layers

Application

Interface Tools & Toolkits

Graphics Library

Windowing System

Applications/Communication (MacApp)

Builders, Java Swing, JavaFX, Qt (C++),
GTK+, MFC, Cocoa

GDI+, Quartz, GTK+/Xlib, OpenGL

X Windows (+KDE or GNU)

Input/Output

Operating System

Windows, Mac OS, Unix, Linux,
Android, iOS, WindowsCE

Software layers

Application

Interface Tools & Toolkits

Graphics Library

Windowing System

Input/Output

Operating System

Input/output peripherals

<N
® & i

Output: where the system shows information & reveals its state

Input: where we give commands

ST -t

’ “m _:,"'1,7 15‘"’—# ""\

‘L‘ g @:“—/"\11“

Interactivity vs. computing

Closed systems (computation):
= read input, compute, produce result
= final state (end of computation)

Open systems (interaction):
= events/changes caused by environment
= infinite loop, non-deterministic

Problem

We learn to program algorithms (computational)

Most languages (C/C++, Java, Lisp, Scheme,
Pascal, Fortran, ...) designed for algorithmic
computations, not interactive systems

Problem

Treating input/output during computation
(interrupting computation) ...

= write instructions (print, put, send,..) to send data to
output peripherals

= read instructions (read, get, receive,..) to read the
state or state changes of input peripherals

Problem

To program IS in algorithmic/computational form

two buttons Bl and B2
finish <- false
while not finish do

button <- waitClick () //interruption, blocked comp.
if button

Bl : print « Hello World »
B2 : finish <- true
end

end

Managing input

Querying Polling

Query & wait Active wait

1 device at a time Polling in sequence
CPU cost

A

Events

Wait queue

EVCIIL DaSCQ (driveaen)
programming

while active
if queue is not empty
event <- queue.dequeue()
> source <- findSource(event)
source.processEvent (event)
end if

event (waiting) queue = end while

Source: Mouse Click

—

queue.enqueue(event)

VeIt Dasca (darivegeii)
programming

while active
if queue is not empty
event <- queue.dequeue()
> source <- findSource(event)
source.processEvent (event)
end if

event (waiting) queue = end while

Source: Mouse Click

—

queue.enqueue(event) processEvent (event)
target <- FindTarget (event)

/ if (target # NULL)
Target: Button target.processEvent (event)

« Cancel »

Example: Swing (and AWT)

[AWT Event Queue J

3 threads
= Initial thread: main () @
= EDT manages the events queue: {

sends events to listeners (functions Event Dispacher Thread
dealing with events) and calls paint (EDT)

methods (drawing functions) @ @
= Worker (or background) threads, where

time-consuming tasks are executed {Listeners J Lpaint ()J

Software layers

Application

Interface Tools & Toolkits

Graphics Library

Windowing System

Input/Output

Operating System

NetBeans 5.5

File Edit View Mavigate Source Refactor

CEEB +a@n

Build Run CY¥S Tools Window Help

AL B ODD

Interface builders

Projects 4 x IEFiIes

[5 Runtime

& @ AnagramGame
=03 Source Packages
= com.toy.anagrams.lib
(&) wordLibrary.java
=@ com.toy.anagrams.ui

Source ‘ Design |

Position/Direction

» Direction [°]:| 140,000

@ Antenna.java X @ Anagrams.java X I @ About.java X [@ Find.java % [E] ContactEditor.java X ‘Z‘ E‘ ‘Palette > x
BENSERTIED S R EiSwing a
e we JLabel = JButton

] JToggleButton &~ JCheckBox

®— JRadioButton 57 ButtonGroup

w38 About.java ") % = JComboBox = aList
[E Anagrams.java B t[m]'; 110.000. r -] = JTextField [#] JTextarea
(@ Test Packages - Height is LowerﬂEdge (Mot Center)gl [] spanel F JTabbedpane
@ Libraries : : B
G Test Libraries pstem GET JScrollBar [_J] 35croliPane
=& GUIFormExamples - [File JMenuBar [Z] JPopupMenu
- Channels: ‘ 2 |Watts: [12.000 ‘ [Adjust]
=0 Source Packages O JSlider == JProgressBar
| . i .
= examples) Antenna Type: lKathreln 742151 “" 1 3splitPane = JFormattedTextField
[+ @ Antenna.java
@ ContactEditor.java Electrical Downtilt From [°]: l 0.000 | To: l 10.000] [Adjust] == JPasswordField @ JSpinner "
. @ Find.java BT [X 450 v} H JSeparator JTextPane
(& Libraries [=] JEditorPane ITree
Frequency From [MHz]: | 943.000 | To: [951,000 | [adust |
[mable [JToolBar
= [MK AD: v
:Inspector \Je. :jCheckBox1 [ICheckBox] - Propetties »x
B Form Antenna | Properties | Events Code
&3 Other Components -
& :I [Frame] (=Properties »~
5[] Panel [anel] action null (W]
JFane oo ane oo background O [236,233,216] @
[¥La elt [ILabel] buttonGroup <none> v
“wet - jLabel2 [JLabel] componentPopupMenu <none B0
= jTextField1 [ITextField] Font Tahoma 11 Plain =
- jTextField2 [ITextField] foreground W [0,0,0])
@~ jCheckBox1 [ICheckBox] mnemonic (|
[7] jPanel2 [IPanel] selected O @
[jButton3 [JButton] text Height is Lower Edge (... C]
= jButtond [JButton] toolTipText null (=
(=IOther Properties
UIClassID CheckBoxUI (W]
actionCommand Height is Lower Edge (...[.)
alignment 0.0 =
5 o7 nc]l

Examples : MS Visual Studio (C++, C#, etc.), NetBeans (Java),
Interface Builder (ObjectiveC), Android Layout Editor

Interface builders

Can be used to

= create prototypes (but attention it looks real)
= get the « look » right
= be part of final product

= design is fast
= modest technical training needed
= can write user manuals from it

But: still need to program (and clean code ...)

Interface toolkits

Libraries of interactive objects (« widgets », e.q.,
buttons) that we use to construct interfaces

Functions to help programming of GUIs

...usually also handle input events (later)

Interface toolkits

Toolkit Platform ______Llanguage

Qt multiplatform C++

GTK+ multiplatform C

MFC later WTL Windows C++

WPF (subset of WTL) Windows (any .Net language)
FLTK multiplatform C++

AWT / Swing multiplatform Java

Cocoa MacOs Objective C
Gnustep Linux, Windows Objective C

Motif Linux C

JQuery Ul Web javascript

Problem with toolkits?

Why Java Swing?

Based on Java (any platform, plenty of libraries)

A lot of online resources and examples

Why Java Swing?

Based on Java (any platform, plenty of libraries)

A lot of online resources and examples

Other alternatives for Java-?

=» JavaFX: soon becomes the new standard for
Java UI programming, supporting a variety of
different devices

« widgets » (window gadgets)

button menu window pallet

® Pages File it Insert Format Arrange View Window Share Help

®@n o w Untitled (Word Processing)

'S %) —
OO 000
=) — -
i=. = =, I
View Full Screen Outline Pages Text By
o T D | = | (Text List | Tabs | a
- M == L= Opacity:
- 5 |4 Lljg b Paragraph Indents
ages Ao [(e dlm Nl alalEallalle
0 0cm @ 0cm @ 0cm @
- First Line Left Right
: rab Settings. €— label
4__ This is an example---l Default Tabs 1.27 cm @
—: Decimal Tab Character]
7 text zone Tabstops Algomen: :
: 2. «— radio button
] (O Center
B () Right
T () Decimal
2
— Leader
3 None v) .
| 1 000 i I t
1
6 - — IS
: ¥
] Collection Family Typeface /ize I I
g_ All Fonts Gill Sans -~ Regular 12 Scro ba r
N English Gill Sans MT Light 9
] Favorites Gill Sans Ultra Bold Light Oblique 10
L Recently Used Gloucester MT Extr m Obligue 11
5_ Chinese Goudy Old Style Bold 12
_ Classic Haettenschweiler Bold Oblique 13 .
. Compatible Windov | Handwriting - Dak¢ I d
omeat | Hiandvriting - Dakeg 14 sliaer
7] Fixed Width 4 Harrington A A
8 Fun v Helvetica - .

Swing widgets

- Martha Washington ~
Pig v Abigail Adams

Bird Martha Randolph
Cat Dolley Madison =

. Dog Elizabeth Monroe

Hair :
ﬂ G Rabbit Louisa Adams =
pidde buton A Teeth N i Donskon
JButton JCheckBox JComboBox JList

Another Menu

A text-only menu item Alt+1
2‘:} Both text and icon

. & radio button menu item O Bird
Another one (O cat
& check box menu item O Dog Frames Per Second
Another one (O Rabbit A \)

i ||||||||||||||||||||||||||||||
A submenu » ©Fig 0 10 20 30
JMenu JRadioButton JSlider

Date: 07/2006 & City: ISanta Rosa ‘ Enter the password:

JSpinner JTextField JPasswordField

Swing widgets

B Open

ook I~ 3 (DS

N

| Click or drop to set image

- e Local Disk {C:) “ Removable Disk (E:)
' (=) Shared Documents
My Recent 2 DVD-RW Drive (D:)
Documents
4 File name: | | [Open]
Desktop Files of type: |image v | Cancel I
JFileChooser
.. } A
This is an editable JTextArea. =) Mia Familia
: 3 s Mt =
Host User Password Last Modified A text areais a "plain text = %_fgﬁ:ya
Biocca Games Freddy I#asf6Awmzb Mar 16, 2006 component, which means that T e Muffin
zabble ichabod Tazh!34¢fZ Mar 6, 2006 although it can display text in) Anya
Sun Developer fraz@hotmail.com |AasWS411fbZ Feb 22, 2006 ..)
L iy Wink:
Heirloom Seeds shams@agmail.com |bkz[ADF78! Jul 29, 2005 any f ont, all of the text isin the J # Bongo it
Pacific Zoo Shop |seal@hotmail.com |vbaf124%:2 Feb 22, 2006 same font. v
JTable JTextArea JTree
An Inane Question Image and Text
9 FrameDemo @. Text-Only Label
\.) Would you like green eggs and ham?
e w] W |
JLabel JProgressBar

JFrame

JSeparator

JToolTip

Widget complexity

Simple widgets
= buttons, scroll bars, labels, ...

Composite/complex widgets
= contain other widgets (simple or complex)
= dialog boxes, menus, color pickers, ...

Widget tree

Hierarchical representation of the widget structure
= a widget can belong to only one « container »

Root (complex)

application window ——> | Window

JFrame
ToolBarDemo I
(£~ Nodes (complex) Ul Components
Ifthis were a real app, it would have taken you to the previous =something=. Visual or functional > J Panel
If this were a real app, it would have taken you up one level to <something=. grouping of widgets
Ifthis were a real app, it would have taken you to the next =<something=. / —_—
Tool b Text zone
ool bar JTextArea
JToolBar
X
/ T~ r
Bution 2 Button 3
ution
Leaf (simple) Button 1 JBUtton JButton

user can interact >
with these \ JButton

Swing widget classes

A GUI application has a top-level (container) widget that includes
all others
In Swing there are 3 types: JFrame, JDialog and JApplet

They all contain other widgets (simple or complex), that are
declared in the field content pane

Frama

Menu Bar

Contant Fana with
Yallow Labsl

Swing widget classes

object | Partial object hierarchy of Swing widgets

~ - - Base class for all
awt Component .
Swing components
(exept for top-level
Container Button | ... Containers)
I } | 4 [
Window || Panel JComponent Box
| | I l I
[Frame ’ Dialog JWindow AbstractButton | | JColorChooser| ...| JLabel JPanel
i i , 2 .
JFrame JDialog JButton | |JToggleButton, | JMenultem

T

| |
JRadioButton JCheckBox JMenu

http://docs.oracle.com/javase/tutorial/ui/features/components.htm!

Swing JFrame

a window with a basic bar
public static void main(String[] args) {
JFrame jf = new JFrame(”Ta ta!");
jf.setVisible(true);
jf.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
System.out.println(”finished 2?2 ! 2");

System.out.println(”no, still running ..");

Useful functions
public JFrame();
public JFrame(String name);
public Container getContentPane();
public void setJMenuBar(JMenuBar menu);
public void setTitle(String title);
public void setlconiImage(Image image);

This program does not terminate
after “no, still running ..”

Swing JDialog

a message window (dialog) can be "modal” (blocks
interaction)

usually attached to another window (when that closes,
so does the dialog)

public static void main(String[] args) {
JFrame Jjf = new JFrame(”ta ta!");
jf.setVisible(true);
jf.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

JDialog jd = new JDialog(jf,”A dialog", true);
jd.setVisible(true); / <—— modal

attached to e S

[Simple Modal Dialogs I More Dialogs] Dialog Icons |

Some simple message dialogs:
Message @
® OK(in the L&F's words)

) YesiNo (in the L&F's words)

@ EggS al’en‘t Supposed tU be gl’een) YesiNo (in the programmer's words)

) YesiNoiCancel {in the programmer's words)

Y O Undialogue

>

‘ ’ I OK | | Show it!

Widget placement

UI toolkits control widget placement:

= should be independent of widget size

(menu at least as big as its largest item,
change of scrollbar size with document size,

adjusting text flow) s-ofilce—F

= done in layout managers that can be

added to container widgets

¢ *file®¢

1mport javax.swing.™;
import java.awt.*;

public class SwingDemo2 extends JFrame {

public void init()

{

h

public static void main(String[] args)

{

this.setTitle("example 2");
getContentPane().add(new JLabel("Swing Demo 2"));

Container contentPane = this.getContentPane();
contentPane.setlLayout(new FlowlLayout());

this.setDefaultCloseOperation(EXIT_ON_CLOSE);

contentPane.add(new JButton("clique ici™)); M O O example 2

contentPane.add(new JButton("clique 1a")); Swing Demo 2

(clique ici)

(_ clique la \

SwingDemo2 frame = new SwingDemoZ2();

frame.in1t(Q);

frame.setSize(200,200);
frame.setVisible(true);

Widget placement

General guides

= embed geometry of a «child» widget to its parent
= parent controls the placement of its children

Layout algorithm

= natural size for each child (to fit content) 7°fle*®

= size and position imposed by parent
= constraints: grid, form, etc.

i Canfel $-¢ (%K -4

¢ *file®¢

[Cancel}—f OK }—'

! !

Layout managers (in Swing)

BorderLayoutDemo

Button 1 (PAGE_START)

Button 3 (LINE_START)

Button 2 (CENTER)

FlowLayoutDemo

Long-Named Button 4 (PAGE_END)

BorderLayout

Button 1

Button 2

Button 3

Long-Named Button 4

BoxLayout

5 (LINE_END)
Button 1 Button 2 Button 3 Long-Named Button 4 5
FlowLayout
GridLayoutDemo
Button 1 Button 2
Button 3 Long-Named Button 4
5

Horizontal gap: Vertical gap:

0 v |0 v | Applygaps

GridLayout

Find What: |]

[]Match Case [_] Wrap Around
[_] whole Words [_| Search Backwards

GroupLayout

import javax.swing.*;
import java.awt.*;

public class SwingDemo4 extends JFrame {

public void init()
{

Container cp = getContentPane();

this.setTitle("example 4");
this.setDefaultCloseOperation(EXIT_ON_CLOSE);

cp.setlLayout(new FlowlLayout());
for(int 1 = 0; 1 < 20; i++)
cp.add(new JButton("Button " + 1));

}

public static void main(String[] args)
{

SwingDemo4 frame = new SwingDemo4();
frame.init(Q);

frame.setS1ze(200,700);
frame.setVisible(true);

}

000 example 4

(Button 0) (Button 1) (Button 2) (Button 3) (Button 4)

(Button 5) (Button 6) (Button 7) (Button 8) (Button 9)

(Button 10) (Button 11) (Button 12) (Button 13) (Button 14)

(Button 15) (Button 16) (Button 17) (Button 18) (Button 19)

N.YeoXe) example 4
(Button 0) (Button 1 \

(" Button 2 \ (Button 3 \

{" Button 4 \ (Button 5 \

(" Button 6 \ (Button 7 \

(" Button 8 \ (Button 9 \

(" Button 10) (Button 11)

,(Button 12 \ (Button 13 \

(" Button 14) (Button 15)

(Button 16) (Button 17)

,(Button 18 \ (Button 19 \

Layout managers (in Swing)

GridLayout: grid LIStz

Button 1

GridBaglLayout: sophisticated grid

Button 2

Button 3

Long-Named Button 4

g

Harizontal gap:

Vertical gap:

0

w [

. ARply gaps

GridBaglayoutDemo Q@@

Long-Named Button 4

Layout managers (in Swing)

GridLayout gridLayout = new GridLayout(0,2);

JPanel gridPanel

new JPanel();

gridPanel.setLayout (gridLayout);

gridPanel.add(new
gridPanel.add(new
gridPanel.add(new
gridPanel.add(new
gridPanel.add(new

JButton("Button 1"))
JButton("Button 2"))
JButton("Button 3"))
JButton("Long-Named Button 4"));
JButton("5"));

we we we

GridLayoutDemo

Button 1 Button 2

Button 3 Long-Named Button 4

5

Horizontal gap: Vertical gap:

0 v |0 ‘v | apply gaps

Placement guides (Mac OS X)

General Editing:) Select existing image
(O Add a margin around image

Size: points

W Reposition windows after change
M Remember recent items

Clipboard Settings: @) Copy selection from image only

() Erase selection from image
_ Dither content of clipboard

Color Optimization: ™ Calculate best color table
™ Verify color table integrity
M Notify on loss of color information
Notify before CMYK to RGB conversion

@

Placement guides (Mac OS X)

Center balance: visual balance of a container’s content
between the left and right parts

Placement guides (Mac OS X)

Alignement

Column of labels with right alignement
Column of controls with left alignment

Select existing image
O Add a margin around image

: '_ points

v Rnposltlon windows after change
Remember recent items

General Editing;

Copy selection from image only
Erase selection from image

Dither content of clipboard

Clipboard Settings: £)

| Calculate best color table
Verify color table integrity
W Notify on loss of color information
Notify before CMYK to RGB conversion

®

Color Optimization:

Placement guides (Mac OS X)

Spacing

Ceneral Editing: 8 Select existing image
Add a margin around image

Size: - points

Reposition windows after change

Remember recent items Same space between
Copy selection from image onl _ ContrOIS

Erase selection from image

Same space before S

and after separator

| m.l Dither content of clipboard
Color Optimization: Wl Calculate best color table

Verify color table integrity

Notify on loss of color information
Notify before CMYK to RGB conversion

Same space on every side

Placement guides (Mac OS X)

Alignement and consistency
Column with labels with right alignement
— Column of controls with left alignment

@&Q—L—.W&—.

{

'| General |Calendar Notification Labeling

Show: EE hours at a time

Start at: | 9:00 AM O Endat: 6:00 PM)
Font: | Lucida Grande W] Size: [13 j#]

b_Split overlapped items E

Weekly i

Start on: | Monday w4 Days§ per week: -
Font: uudda Grande B Size:| z]
|
Show: |V Holidays
! Event times

- T s Bl Bt
Consistency between controls of the same type

CRAP

contrast, repetition, alignment, proximity

Major sources: Designing Visual Interfaces, Mullet & Sano, Prentice Hall / Robin Williams Non-Designers Design Book, Peachpit Press

ey . 1 . . -~ . - . B o o . L. o L

Good Design Is As Easy
as 1-2-3

1. Learn the principles.
They re simpler than you might think.

2. Recognize when you're not using them.

Put it into words -- name the problem.
3. Apply the principles.
You'll be amazed.

Good design

is as easy as...

Learn the principles.
They re compler than you might think.

Recognize when you're not using them.
Puct tt inter wovds — name the prodilem,

Apply the principles.
Your W be anvazed,

File Edit View Favorites Tools Help

Address @ C:\Documents and Settings\Saul Greenberg\My Documents\My Webs\~saul\hci_topics\powerpoint_presentations2003\graphical_design\index.r ¥

=Y Go

A first lesson in Graphical Design
Contrast

Repetition

Alignment

Proximity

Example: this page,

home page

Original

Proximity 2

Alignment 3
Contrast 4

Repetition 5

File Edit View Favorites Tools Help 2]

Address @ C:\Documents and Settings\Saul Greenberg\My Documents\My Webs\~saul\hci_topics\powerpoint_presentations2003\graphical_design\exampl ¥ | 4 Go

A First Lesson in
Graphical Design

C Examples
ontrast This pat

Saul's Home Page

Proximity

epetition Contrast

) anatitia
Repetition

Alignment
Proximity

CRAP

Contrast

Repetition
Alignment
Proximity

CRAP

Contrast

make different things different .
brings out dominant elements
mutes lesser elements

creates dynamism

| Good demgn

IS as easy as.

Repetition
AI I g n m e nt 3 Learn the principles.
Theyre sompler than you might think.

P ro X I m I ty 4 Recognize when you're not using them.
/ o 1 inte wovds — name e prodilem,

5 Apply the principles.
O Youll e amazed,

CRAP

Contrast
Repetition

repeat design throughout the interface

consistency

creates unity 1 K

\ m
Alignment \ggggglemgn
Proximity 2 L

~ Recognize when you're not u4ing them.
Puct g inter wonds — name 1he prodilem,

3

7

CRAP

Contrast
Repetition
Alignment

creates a visual flow
visually connects el.

Proximity

Good Design Is As Easy
1 as 1-2-3

1. Learn the principles.

They "re simpler than you might think.
2. Recognize when you're not using them.

Put it into words -- name the problem.

3. Apply the principles.

You'll be amazed

Good desngn

is as easy as.

n the principles.
beyre aimpler than you might 1hink.

3 |

nize when you're not using them.
ok tf it words — name the prodlem,

ly the principles.
o U be anvazed,

CRAP

Contrast
Repetition

11 be amazed.

Alignment 1 .
Proximity Good design

isas easy as...

g rou pS re I ated | Learn the principles.
separates unrelated L They're simpler than you mi - 7,‘

3 I—\ | Recognize when you're not using them.
| Pt it inte words —name the prodlem,

Apply the principles.
- . You W be anmvazed

Where does your eye go?

CRAP give you cues about how to read the graphic

title =
Good design

subtext [T—is as easy as.

Learn the principles.
/ Theyre compler than you might think.

three points I—

Recognize when you're not using them.
Puct tt inter wovds — name the prodilem,

main point Apply the principles.
/)%v: U be anazed,

sub point

Where does your eye go?

Boxes do not create a strong structure
= CRAP fixes it

Where does your eye go-?

Some contrast and weak proximity

= ambiguous structure
= interleaved items

9

Image Preferences

Image Type:

Monochrome| Cray Scale

Color

EPSF Quality:

lUse Preview Image | Use Postscript

Greeking Text Limit:
7.0 pt.

Options:
[J Auto Backup on Save

[] Auto Save Evary Minutes

(Cancel) (" Reset)

Where does your eye go?

Strong proximity (left/right split)

= unambiguous

-~

Image Preferences

Image Type:

EPSF Quality:

Greeking:

Monochromea

Gray Scale

Color

7.0 pt.

Use Praview Image | Use Postscript

Options: [] AutoBackup on Save
[] Auto Save Every Minutes

(Caneer) (Resat)

Where does your eye go?

The strength of proximity

= alignment

= white (negative) space

= explicit structure a poor replacement

Mmmm:

Mmmm:

Mmmm:

Mmmm:;

Mmmm:

Mmmm:

Mmmm:

Mmmm:

Mmmm:;

Mmmm:

Mmmm:

Mmmm:;

Mmmm:
Mmmm:

Mmmm:

File Edit View Favorites Tools Help

Address @ C:\Documents and Settings\Saul Greenberg\My Documents\My Webs\~saul\hci_topics\powerpoint_presentations2003\graphical_design\index.r ¥

=Y Go

A first lesson in Graphical Design
Contrast

Repetition

Alignment

Proximity

Example: this page,

home page

Original

Proximity 2

Alignment 3
Contrast 4

Repetition 5

File Edit View Favorites Tools Help 2]

Address @ C:\Documents and Settings\Saul Greenberg\My Documents\My Webs\~saul\hci_topics\powerpoint_presentations2003\graphical_design\exampl ¥ | 4 Go

A First Lesson in
Graphical Design

C Examples
ontrast This pat

Saul's Home Page

Proximity

epetition Contrast

) anatitia
Repetition

Alignment
Proximity

File Edit

Address

Help

@ C:\Documents and Settings\Saul Greenberg\My Documents\My Webs\~saul\hd_topics\powerpoint_presentations2003\graphical_design\versior ¥ £ Go

Gr'OpLab Saul Greenberg GroupLab Dept Computer Science University of Calgary
The University of Calgary -

Saul Greenberg, Professor
Human-Computer Interaction &
Computer Supported Cooperative Work
Dept. of Computer Science
University of Calgary
Calgary, Alberta
CANADA T2N IN4
Phone: +1 403 220-6087
Fax: +1 403 2844707
Email: saul@cpsc.ucalgary.ca

Research
GroupLab project describes research by my group
Publications by our group; most available in HTML, PDF, and postscript
Project snapshots describes select projects done in Grouplab

Grouplab software repository

Grouplab people

Graduate Students

I have a few openings for MSc and PhD students who are interested in Human Computer Interaction and / or Computer Supported Cooperative Work. Some

research and project ideas honors and graduate students

Couvrses offered this year ‘

(aY 1T -1

File Edit View Favorites Tools Help :'.',.

Address @ C:\Documents and Settings\Saul Greenberg\My Documents\My Webs\~saul\hci_topics\powerpoint_presentations2003\graphical_design\versior ¥] Go

Gr_opLab Saul Greenberg GroupLab Dept Computer Science University of Calgary
The University of Calgary

Saul Greenberg, Professor
Human-Computer Interaction &
Computer Supported Cooperative Work

Dept. of Computer Science
University of Calgary
Calgary, Alberta
CANADA T2N IN4

Phone: +1 403 220-6087
Fax: +1 403 284-4707
Email: saul@cpsc.ucalgary.ca

Research
GroupLab project describes research by my group
Publications by our group; most available in HTML, PDF, and postscript
Project snapshots describes select projects done in Grouplab

Grouplab software repository
Grouplab people —

Graduate Students
I have a few openings for MSc and PhD students who are interested in Human Computer Interaction and / or Computer Supported Cooperative Work. Some

research and project ideas honors and graduate students

Courses offered this year

CPSC 481: Foundations and Principles of Human Computer Int
CPSC 381: Human Computer Interaction II: Interactwn De51 D g 'i e i+"

File Edit View Favorites Tools Help

N/
aw

Address @ C:\Documents and Settings\Saul Greenberg\My Documents\My Webs\~saul\hdi_topics\powerpoint_presentations2003\graphical_design\versior ¥ £ Go

Research

Graduate Students

Courses offered this
year

Previous Years:

'S |

Saul Greenberg GroupLab Dept Computer Science University of Calgary

Saul Greenberg, Professor
Human-Computer Interaction &
Computer Supported Cooperative Work

Dept. of Computer Science Sk :

University of Calgary
Calgary, Alberta
CANADA T2N IN4

Phone: +1 403 220-6087
Fax: +1 403 284-4707
Email: saul@cpsc.ucalgary.ca

GroupLab project describes research by my group
Publications by our group; most available in HTML, PDF, and postscript
Project snapshots describes select projects done in Grouplab

Grouplab software repository
Grouplab people

T'have a few openings for MSc and PhD students who are interested in Human Computer Interaction and / or Computer Supported

Cooperative Work. Some research and project ideas honors and graduate students

CPSC 481: Foundations and Principles of Human Computer Interaction
CPSC 581: Human Computer Interaction II: Interaction Design
CPSC 601.13: Computer Supported Cooperative Work

CPSC 681: Research Methodologies in Human Computer Interaction

Thc Umverslty of Calgary

‘ Alirsrmn s

File Edit View Favorites Tools Help "l'

Address @ C:\Documents and Settings\Saul Greenberg\My Documents\My Webs\~saul\hci_topics\powerpoint_presentations2003\graphical_design\versior ¥ | 4 Go

Saul Greenberg Grouplad Dept Computer Sclence Unhersky of Calgary

Saul Greenberg®
Professor

Human-Computer Interaction &
Computer Supported Cooperative Work

Dept. of Computer Science
University of Calgary
Calgary, Alb=rta
CANADA T2N 1N4

Phone: +1 403 220-6087
Fax: +1 403 284-4707

Email: saul@fcpsc.ucalgary.cs

Graduate Students Research Ideas. I have a few openings for MSc and PhD students who are interested in Human
Computer Interaction and / or Computer Supported Cooperative Work.

Courses offered this CPSC 481: Foundations and Principles of Human Computer Interaction
year CPSC 581: Human Computer Interaction II: Interaction Design
CPSC 601.13: Computer Supported Cooperative Work

Previous Years CPSC 681: Research Methodologies in Human Computer Interaction
CPSC 699: Research Methodology for Computer Science (old!)
CPSC 601.48: Special Topics: Heuristic Evaluation
CPSC 601.56: Advanced Topics in HCI: Media Spaces and Casual Interaction
SENG 609.05: Graphical User Interfaces: Design and Usability
SENG 609.06: Special Topics in Human Computer Interaction
Ego alert: My entry on U Calgary's 'Great Teachers" Web Site

Administration Ethics Committee for research with human subjects; I am the chair

CarmtFeemcat

File Edit View Favorites Tools Help "l'

Address @ C:\Documents and Settings\Saul Greenberg\My Documents\My Webs\~saul\hci_topics\powerpoint_presentations2003\graphical_design\versior ¥ | 4 Go

-

Dept puter Scien of Calgary

Saul Greenberg Grouplad

Saul G eenbeI;g _
Professor

Human-Computer Interaction &
Computer Supported Cooperative Work

Dept. of Computer Science
University of Calgary
Calgary, Alb=rta
CANADA T2N 1N4

Phone: +1 403 220-6087
Fax: +1 403 284-4707

Email: saul@fcpsc.ucalgary.cs

Graduate Students Research Ideas 1 have a few openings for MSc and PhD students who are interested in
Human Computer Interaction and / or Computer Supported Cooperative Work.

Courses offered CPSC 481 roundations and Principles of Human Computer Interaction
this year CPSC 581 Human Computer Interaction II: Interaction Design
CPSC 601.13 Computer Supported Cooperative Work

Previous Years CPSC 681 research Methodologies in Human Computer Interaction
CPSC 699 research Methodology for Computer Science (old!)
CPSC 601.48 special Topics: Heuristic Evaluation
CPSC 601.56 Advanced Topics in HCI: Media Spaces and Casual Interaction
SENG 609.05 Graphical User Interfaces: Design and Usability
SENG 609.06 Special Topics in Human Computer Interaction
Ego alert My entry on U Calgary's 'Great Teachers" Web Site

Administration Ethics Committee for research with human subje:| - =
DeamnarikF-iam

Example of bad design

Lot s iio) 5]
. T

Example of bad design

.r'@ xbugtool 2.0 Beta 2 Server: e/mer-bb.Corp

l1

(load v) (Stere) (Bub

mit o) (Miew) (Printv) (Resetw) (Props) (Gen Help v
Bugid: c: - 0000 Made :

Updata Hsts

—_——

{Category >) s Priority: 1(z]z2]4
Severity: 11z2]3]a]s
(Resp Mor..) Bug/Rfe: bug | rfe
(_Smtg D) Responsible Enginaer:
Synopsis:

Keywonds:

(Description) (Workaround) (Suagested flx) (Comments) (Public summary)

State triggers:

Evzluation

(Committo fixinrel..)
il (Fixed in reieases..)
(Intearated in releases...)
(verlfied In ralsasss,..)
(Closed because)
{(Incompliate because)
11 Root cause...)]
{ Flx affects docs e}
Duplicate of: interast list:
patch id; See alsa (hugids)
History:
Submitter Data:
Generic SYR4 problem?:
Dispatch operator Pate:
Evaleatar Date:
Commlt operator Date;
Elv an nata:

]

Reparing the layout

=

B ugtool

(_Report v) (view ¢)(Props w)((Help)

Mode: | Create | Edit |

Bug ID: (7]
Categary: (3]
Subcategory: [¥)
Release: (7]
status: (o)

Synepsis:

KView
iibrary
1.0

Submitted

Type: | Bua | RFE |

Prioviey: [1 2 |2]a 5]

severity: [1f2|2[a 5]

Keywards:

Pub Surmmary:

See also:

Interest List:

| Descrlption | work Around | Suggested Flx

Commants I i-:valuation |

*

Rodt Cause: V)
Same as:

documentatich—confusing

Resp Mgr: &)
Resp Engy: [¥]

-

Aone

nong

Flags: [] Fix Affects Documentation
[0 ceneric SWRa problem

Houk 1:
Haok 2:

—_—

=3
-

| 4

Reparing the layout

SRR

Dlractery. fhoma2/heynow/mullev/work/Desksets,

(Load..)(

Sive) (Siv;as...) (_Peint v)]

Flle: Snapshotrs

Timer: [0 2[4 8|15 | Fecond

i Ball Hids Snaps hot During Caplure |

{ Snap Region) (Snap Sa ?gt:\) l

(visw snap) (Prini Snep @)

SELECT - Select Win#ow. ADJUST or MENU - Cancel. 1

Fl)s Name:

Snag Type.

Saap Delay:

F s an an

| Window | Region | Sman-]

AN ERERL 1s_incs

[] feep Dwring Countdown
[Hide window Dusing Cuptuce

(“Snap) { View)

Facets of a widget

« widgets » (window gadgets)

button menu window pallet

® Pages File it Insert Format Arrange View Window Share Help

®@n o w Untitled (Word Processing)

'S %) —
OO 000
=) — -
i=. = =, I
View Full Screen Outline Pages Text By
o T D | = | (Text List | Tabs | a
- M == L= Opacity:
- 5 |4 Lljg b Paragraph Indents
ages Ao [(e dlm Nl alalEallalle
0 0cm @ 0cm @ 0cm @
- First Line Left Right
: rab Settings. €— label
4__ This is an example---l Default Tabs 1.27 cm @
—: Decimal Tab Character]
7 text zone Tabstops Algomen: :
: 2. «— radio button
] (O Center
B () Right
T () Decimal
2
— Leader
3 None v) .
| 1 000 i I t
1
6 - — IS
: ¥
] Collection Family Typeface /ize I I
g_ All Fonts Gill Sans -~ Regular 12 Scro ba r
N English Gill Sans MT Light 9
] Favorites Gill Sans Ultra Bold Light Oblique 10
L Recently Used Gloucester MT Extr m Obligue 11
5_ Chinese Goudy Old Style Bold 12
_ Classic Haettenschweiler Bold Oblique 13 .
. Compatible Windov | Handwriting - Dak¢ I d
omeat | Hiandvriting - Dakeg 14 sliaer
7] Fixed Width 4 Harrington A A
8 Fun v Helvetica - .

Facets of a widget

Presentation
appearance

Behavior
reaction to user actions

Interface with the application
notification of state changes

Example: Button
border with text inside

« pressing » or « releasing » animation when clicked
call function when the button is clicked

Variable wrappers (active variables)

two-way link between a state variable of a widget
and another application variable
(in Tcl/Tk referred to as tracing)

o 0 |

e » 26 |

=12 .

=g < 12 i
problems

= |imited to simple types
= return link can be costly if automatic
= errors when links are updated by programmers

Event dispatching

widgets act as input peripherals and send
events when their state changes

a while loop reads and treats events

associate an object to a widget, and its methods
to changes in the widget state

saveDialog

_OKy » saveDialog.Clicked(event)

Event dispatching

Save File

File | myFile

Cancel

I

saveDialog { string filename }

saveDialog.EditField(event)

{ this.filename := ... }
saveDialog.OK(event)

{ DoSave (this.filename) }

divide event sending and treatment

better encapsulation (inside widget class)

Callback functions

Registration at widget creation

DoSave (...){ ... }

Call at widget activation

_OKy

Save File

File | myFile

» DoSave (...){ ...}

global string filename;
DoSetFile () {flename = ...}

Cancel

e

DoSave () { SaveTo(filename) }

Callback functions

Problem: spaghetti of callbacks

Sharing a state between multiple callbacks by

= global variables that widgets check:
too many in real applications

= widget trees: callback functions are called with a reference
to the widget that called it (visible in the same tree)

Fragile if we change the structure of the UI, does not deal with
other data not associated to widgets (e.g. filename)

= token passing: data passed with the callback function call

Callback functions

/* callback function */
void DoSave (Widget w, void* data) {

}

/* retrieve file name */
filename = (char**) data;
/* call an application function */
SaveTo (filename);
/* close the dialog */
CloseWindow (getParent(getParent(w)));

/* main program */
main () {

/* variable with file name */
char* filename = “";

/* create a widget and assosiate a callback */
ok = CreateButton (....);
RegisterCallback (ok, DoSave, (void*) &filename);

/* event manager loop */
MainLoop ();

Event listeners (Java)

a variation of callbacks in Java:

methods of type AddListener that do not
specify a callback function but an object (the
listener)

when a widget changes state, it triggers a
predefined method of the listener object (e.q.
actionPerformed)

Event listeners (Java)

public class ClickListener implements ActionListener

{

public void actionPerformed(ActionEvent e){

JButton button = (JButton)e.getSource();

ClickListener listener = new ClickListener();
JButton button = new JButton(’’'Click me’’);

button.addActionListener(listener);

Event listeners (Java)

Anonymous Inner classes

button.addActionListener (new ActionListener(){

public void actionPerformed(ActionEvent e){

)i

panel.addMouseListener (new MouseAdapter () {

public void mouseClicked(MouseEvent e){

1) i
Methods and events are predefined

Event listeners (Java)

Anonymous Inner classes
“new <class-name> () { <body> }”

this construction does 2 things:

= creates a new class without name, that is a
subclass of <class-name> defined by <body>

= creates a (unique) instance of this new class
and returns its value

this (inner) class has access to variables and
methods of the class inside which it is defined

Events (Java)

java.lang.Objec —» java.util. EventObject:

l Selection from a list
l l l orlradio button grou
_ActionEvent | || AdjustmentEvent | :
Click on a button Cursor moving
Select item in a menu in a scrollbar

Cursor inside text zone

ContainerEve . FocusEvent ! . PaintEvent

Events and listeners (Java)

Each has a source (e.g. JButton, JRadioButton, JCheckBox,
JToggleButton,JMenu, JRadioButtonMenultem, JTextField)

Can get it with the function getSource()

(Listeners) need to implement the interface that corresponds to event
e.g. ActionEvent => ActionListener :

public interface ActionListener extends EventListener {
/** Invoked when an action occurs.*/
public void actionPerformed(ActionEvent e)

Events and listeners (Java)

all events inherit from the class EventObject

all listeners correspond to an interface that inherits
from EventListener

a class receiving notification events of some type needs to
iImplement the corresponding interface:
= ActionEvent ActionListener
= MouseEvent MouseL.istener
= KeyEvent KeyListener

Events and listeners (Java)

listeners need to be registered (added) to widgets

a listener can be added to multiple widgets
= e.g. one listener handles events from multiple buttons

a widget can have many listeners
= e.g. one for “click” events and for “enter” on button events

« darag-and-drop > to tnink
about

What are the affected « widgets »?
What are the events?

I

[

|_,, {“‘\ j

Press and drag Release

How to describe this interaction with a « event
listener » ?

Interface toolkits

Event-action model
= can lead to errors (e.g. forgotten events)

= difficult to extend (e.g. add hover events)
= complex code

Hard to do things the toolkit was not designed for

e.g., multi-device input, multi-screen applications,
advanced interaction techniques (CrossY)

