Assignment 1 is out!

Design and implement an interactive tool for
creating the layout of comic strips

UI Programming

(part of this content is based on previous classes from Anastasia, S. Huot, M.

Beaudouin-Lafon, N.Roussel, O.Chapuis) https://www.Iri.fr/~fanis/teaching/IS12014/assignments/ass1/
Graphical interfaces WIMP interfaces
WIMP: Window, Icons, Menus and Pointing
GUIs: input is specified w.r.t. output Presentation
= Windows, icons and other graphical objects
Input peripherals specify commands at specific Interaction

locations on the screen (pointing), where
specific objects are drown by the system.
Familiar behavior from physical world

= Menus, dialog boxes, text input fields, etc

Input
= pointing, selection, ink/path

Perception-action loop
= feedback

Software layers

Application

Interface Tools & Toolkits

Graphics Library

Windowing System

Input/Output

Operating System

Applications/Communication (MacApp)

Builders, Java Swing, JavaFX, Qt (C++),
GTK+, MFC, Cocoa

GDI+, Quartz, GTK+/Xlib, OpenGL

X Windows (+KDE or GNU)

Windows, Mac OS, Unix, Linux,
Android, i0S, WindowsCE

Input/output peripherals

Input: where we give commands

2 e
© & L

Output: where the system shows information & reveals its state

Software layers

Application
Interface Tools & Toolkits

Graphics Library

Windowing System

Input/Output

Operating System

Interactivity vs. computing

Closed systems (computation):
= read input, compute, produce result
= final state (end of computation)

Open systems (interaction):
= events/changes caused by environment
= infinite loop, non-deterministic

Problem Problem

We learn to program algorithms (computational) Treating input/output during computation

(interrupting computation) ...
Most languages (C/C++, Java, Lisp, Scheme, o _ _
Pascal. Fortran) designed for algorithmic = write instructions (print, put, send,..) to send data to
o e . output peripherals
computations, not interactive systems

= read instructions (read, get, receive,..) to read the
state or state changes of input peripherals

Problem Managing input
Querying Polling Events
. . . . Query & wait Active wait Wait queue
To program IS in algorithmic/computational form 1 device at a time Polling in sequence
CPU cost

two buttons Bl and B2
finish <- false
while not finish do

button <- waitClick () //interruption, blocked comp. 1 T lT lI
if button

Bl : print « Hello World »
B2 : finish <- true
end

end

Event based (driven)
programming

while active
if queue is not empty
Source: Mouse Click event <- queue.dequeue()
> source <- findSource(event)
source.processEvent (event)
end if

event (waiting) queue end vhile

(T T T—

queue.enqueue(event)

Example: Swing (and AWT)

[AWT Event Queue J

3 threads

= Initial thread: main () @

= EDT manages the events queue: ;
sends events to listeners (functions Event Dispacher Thread
dealing with events) and calls paint (EDT)
methods (drawing functions)

= Worker (or background) threads, where @ @
time-consuming tasks are executed [Listeners J [paint 0 J

Event based (driven)
programming

while active
if queue is not empty
Source: Mouse Click event <- queue.dequeue()
> source <- findSource(event)
source.processEvent (event)
end if

event (waiting) queue end vhile

(T T T—

queue.enqueue(event) processEvent (event)
target <- FindTarget (event)

/////7 if (target # NULL)
Target: Button target.processEvent (event)

« Cancel »

Software layers

Application

Interface Tools & Toolkits

Graphics Library

Windowing System

Input/Output

Operating System

Interface builders Interface builders

Can be used to

= create prototypes (but attention it looks real)
= get the « look » right

= be part of final product

= design is fast
= modest technical training needed
= can write user manuals from it

But: still need to program (and clean code ...)

Examples : MS Visual Studio (C++, C#, etc.), NetBeans (Java),
Interface Builder (ObjectiveC), Android Layout Editor

Interface toolkits Interface toolkits
Libraries of interactive objects (« widgets », e.g.,
buttons) that we use to construct interfaces Qt multiplatform C++
GTK+ multiplatform C
Functions to help programming of GUIs MFC later WTL Windows C++
WPF (subset of WTL) Windows (any .Net language)
...usually also handle input events (later) FLTK multiplatform C++
AWT / Swing multiplatform Java
Cocoa MacOs Objective C
Gnustep Linux, Windows Objective C
Motif Linux C
JQuery UI Web javascript

Problem with toolkits?

Why Java Swing?

Based on Java (any platform, plenty of libraries)

A lot of online resources and examples

« widgets » (window gadgets)

button menu window / pallet
® Pages File 'Edit Insert Format Arrange View Window Share Help /
®00 W untitied Word Processing)
g3 B 1]

This is an example..| Default Tabs 127em ()

Decimal Tab Character

text zone S domm

list

& scroll bar

slider

Why Java Swing?

Based on Java (any platform, plenty of libraries)

A lot of online resources and examples

Other alternatives for Java?
=» JavaFX: soon becomes the new standard for

Java UI programming, supporting a variety of
different devices

Swing widgets

P] * u
i | Abigail Adams
i
B,] Martha Randolph
Glasses - = lcat Dolley Madisor
[Poa Elizabeth Monr
Hair
B / . oo
Middle button Teeth Enmily Donelsor v
IButton ICheckBox IComboBox IList

st

Atextonly menuitem A+l
3 Bothtext andcon
S
. . OBird {DF,— ,I
Ocat e BN
ched , Obeg oy
inother ane O Rabbit o "g
submenu el \J B! v
IMenu JRadioButton ISlider
Date: Ciy: Enter the password: [eeeeees]
ISpinner ITextField JPasswordField

Swing widgets

Desktop Flesoftype: [image v

JFileChooser

This is an editable JTextdrea.
A text area is a “plain® text
component, which means that
although it can display textin
any fot, all of the text isin the
same font. |

ITable ITextArea ITree

An Inane Question, Image and Text

&= N
"2 ok youlkegeen s anc e B Framedemo [S][E)X] Text-Only Label

@ T

[Clckor drop to set mage.

ILabel IProgressBar ISeparator IToolTip
IDialog IFrame

Widget tree

Hierarchical representation of the widget structure
= a widget can belong to only one « container »

Root (complex)

application window > | Window

JFrame
ToolBarDemo .
Nodes (complex) Ul Components
rthis were a real app, it would have taken you 1o the previous <something>= Visual or functional ———> JPanel
if this were a real app, itwould have taken you up one level to <something> grouping of widgets
i this were a real app, it would have taken youto the next <something> / —
Tool b Text zone
ool bar JTextArea
JToolBar
B
T~ 7
Button 3
) Button 2 JButton
Leaf (simple) Button 1 JButton
user can interact ————————> JButton
with these \

Widget complexity

Simple widgets
= buttons, scroll bars, labels, ...

Composite/complex widgets
= contain other widgets (simple or complex)
= dialog boxes, menus, color pickers, ...

Swing widget classes

A GUI application has a top-level (container) widget that includes
all others
In Swing there are 3 types: JFrame, JDialog and JApplet

They all contain other widgets (simple or complex), that are
declared in the field content pane

Frama

Menu Bar

Contant Pane with
Yallow Labal

Swing widget classes Swing JFrame

Partial object hierarchy of Swing widgets

Object

a window with a basic bar

awt Component | Base class for all public static void main(String[] args) {
[AY (SWIngt (f:ont]por:em'ls JFrame jf = new JFrame(”Ta ta!");
exept for top-level . C i
Container ||Button | ... containers) jf.setVisible(true);
5 jf.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

[| 4 System.out.println(”finished 2 ! 2");
M Iﬂl m System.out.println(”no, still running ..");
) A
I
[[

}
[
‘ Frame ‘ Dialog |JWIndow| [AbsrracrsummHJCoIorChoosor‘ [JLabel | I JPanel]
JAY
[pialog | [JButton | [sTogg | | l Useful functions
i 2 ! ‘% public JFrame();
[uRadioButton][JcheckBox || uMenu | ... public JFrame(String name);

public Container getContentPane();

. . . public void setJMenuBar(JMenuBar menu);
http://docs.oracle.com/javase/tutorial/ui/features/components.html public void setTitle(String title);

public void setIconImage(Image image);

This program does not terminate
after “no, still running ..”

Swing JDialog Widget placement

a message window (dialog) can be “modal” (blocks

) - UI toolkits control widget placement:
interaction)

usually attached to another window (when that closes, = should be independent of widget size
so does the dialog) (menu at least as big as its largest item,
public static void main(String[] args) { change of scrollbar size with document size,

JFrame jf = new JFrame(”ta tal"); adjusting text flow) Hﬁ|eo—?—1——f—<
jf.setVisible(true);

jftsetDef.aultCloseOI.)eratio.n(JFrarf\e.EXIT_ON_CLOSE); - done in /ayout managers that can be
Jhialog jd = new JDialog(jf,”A dialog",true); . -
jd.setVisible(true); «—— modal added to container widgets »
} r—ofile®¢ 99
attached to e —

@ Eggs aren't supposed to be green.

O O O undi o

Clickthe "Show " butan to bring up the selected aialog

import javax.swing.*;
import java.awt.*;

public class SwingDemo2 extends JFrame {
public void initQ)
{ this.setTitle("example 2");
getContentPane().add(new JLabel("Swing Demo 2"));

Container contentPane = this.getContentPane();

contentPane.setlLayout(new FlowLayout());
this.setDefaultCloseOperation(EXIT_ON_CLOSE);

contentPane.add(new JButton("clique ici")); O OO example2

contentPane.add(new JButton("clique 1a")); Swing Demo 2
:
public static void main(String[] args)
{

SwingDemo2 frame = new SwingDemo2();
frame.init(Q);

frame.setSize(200,200);
frame.setVisible(true);

Bruce Eckel, Thinking in Java, 2" edition

Layout managers (in Swing)

Buton 1 PAGE START)

FlowLayoutDemo

Suton3 UNE STARD Suton 2 CENTER) sune_eno)
| Button 1 H Button 2 ‘ | Button 3 ‘ | Long-Named Button 4 ‘ \II
Long Namea Buton ¢ PAOE_END)
BorderLayout FlowLayout
GridLayoutDemo. EEX
Button 1 Button 2
BoxLayoutDemo |,
Button 1 Button 3 Long-Named Button 4
Button 2
5
Button 3
Long-Named Button 4 Horizontal gap: Vertical gap: Lot N |
Clmatcncase (] Wrap Around —
5 0 |v IU |vl Apply gaps] Whole Words [] SearchBackwards
BoxLayout GridLayout GrouplLayout

http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html

Widget placement

General guides
= embed geometry of a «child» widget to its parent
= parent controls the placement of its children

Layout algorithm

= natural size for each child (to fit content) ”ﬁ'e*?—l——?*
= size and position imposed by parent Cancel
= constraints: grid, form, etc.

tefilee¢
T
BOO
import javax.swing.*;
import java.awt.*;
. . (Gatton15) (Baton16) (Bumon17) ((Button18) (Buton19)
public class SwingDemo4 extends JFrame { 4
BO0O0 eamples

Button 1

public void initQ)
{
Container cp = getContentPane();

this.setTitle("example 4");
this.setDefaultCloseOperation(EXIT_ON_CLOSE);

cp.setLayout(new FlowLayout());
for(int 1 = 0; i < 20; i++)
cp.add(new JButton("Button " + i));

EHIREIREIRE

Button 18 Button 19

public static void main(String[] args)
{
SwingDemo4 frame = new SwingDemo4();
frame.initQ;

frame.setSize(200,700);
frame.setVisible(true);

Bruce Eckel, Thinking in Java, 2" edition

Layout managers (in Swing) Layout managers (in Swing)

GridLayout: grid GridLayout gridLayout = new GridLayout(0,2);
Button 1 Button 2
Button 3 Long-Narned Button 4 JPanel gridPanel = new JPanel();

’ gridPanel.setLayout (gridLayout);

Horizontal gap: Vertical gap:

. - s gridPanel.add(new JButton("Button 1"));
gridPanel.add(new JButton("Button 2"));
gridPanel.add(new JButton("Button 3"));
. o] gridPanel.add(new JButton("Long-Named Button 4"));
GridBagLayout: sophisticated grid GridBaglayoutDemo [|[B][X] gridPanel.add(new JButton("5")); _
Button 1 Button2 | Bution3 SckiLavpuiens I
Button 2
Long-Named Button 4 Button 3 Long-Named Button 4
5
5 Horizontal gap: Vertical gap:
0 |v|[| |vl Apply gaps

Placement guides (Mac OS X) Placement guides (Mac OS X)

Center balance: visual balance of a container’s content
between the left and right parts

General Editing: @ Select existing image
Add a margin around image

size:| points

™ Reposition windows after change
¥ Remember recent items

Clipboard Settings: @ Copy selection from image only
O Erase selection from image
) Dither content of clipboard

Color Optimization: [Calculate best color table
[Verify color table integrity
™ Notify on loss of color information
Notify before CMYK to RGB conversion

Placement guides (Mac OS X) Placement guides (Mac OS X)

Alignement Spacing
Column of labels with right alignement
Column of controls with left alignment

General Editing] existing image General Editing: @ Select existing image
i margin around image Add a margin around image
| points.

Size: points
on windows after change

Reposition windows after chan:
mber recent items

Remember recent items

| | Same space between
selecti im; nl Clipboard|Settings: @ Co; lection from i l
e Same space before | cerpersRuisinamne controls
ther content of clipboard

and after separator

L Dither content of clipboard
te best color table

color table integrity
on loss of color information
before CMYK to RGB conversion

Color Optimization:

Notify on loss of color information
Notify before CMYK to RGB conversion

Same space on every side

Placement guides (Mac OS X)

Alignement and consistency
— Column with labels with right alignement

Column of controls with left alignment

General | Labeling '

contrast, repetition, alignment, proximity

Consistency between controls of the same type

Major sources: Designing Visual Interfaces, Mullet & Sano, Prentice Hall / Robin Williams Non-Designers Design Book, Peachpit Press

Slide deck by Saul Greenberg. Permission is granted to use this for non-commercial purposes as long as general credit to Saul Greenberg s clearly maintained.
Warning: some material in this deck is used from other sources without permission. Credit to the original source is given if it is known.

Good Design Is As Easy
as 1-2-3

1. Learn the principles.
They re simpler than you might think.
2. Recognize when you're not using them.
Put it into words -- name the problem.
3. Apply the principles.

You’ll be amazed.

Good design

isaseasyas...
Learn the principles.

They're simpler than you might think.

Recognize when you're not using them.
Put it inte wovds — name the prodlem,

Apply the principles.
You Wl be anazed.

World
File Edit View Favorites Tools Help

le Web Info for Saul Greenberg osoft Internet Explorer

Address @] C:\Documents and Documents\My Web: i\hci_topi 3l

A First Lesson in
Graphical Design

Contrast
Repetition
Aliqnment
Proximity

Examples
This page

Saul's Home Page

le Web Info for Saul Greenberg
Fle Edit View Favorites Tools Help

osoft Internet Explorer

&) c1pocuments and

Documents\My

i_topi

A first lesson in Graphical Design
Contrast

Repetition

Alignment

Proximity

Example: this page,

‘home page

Original

Proximity 2

Alignment 3

Contrast 4
epetition 5

CRAP

Contrast

Repetition
Alignment
Proximity

Robin Williams Non-Designers Design Book, Peachpit Press

CRAP CRAP

Contrast Contrast
make different things different Repetition

brings out dominant elements
mutes lesser elements repeat design throughout the interface
consistency

creates dynamism
creates unity 1 R

Repetition
Alignment
Proximity

e Alignment ﬁﬁ?w‘i.',._‘?'e*"ig"

’—\ -
., Good design
3 ’7\ Learn the principles.
4
5 [

- - 2 — Learn the principles. —
They're simpler than you might think. I ro X I I I l I ty They're simpler than you might think,

" Recognize when you're not using them.

/&d i inter words —name the prodlem,

Apply the principles.
5 Youll be amazed.

Robin Williams Non-Designers Design Book, Peachpit Press Robin Williams Non-Designers Design Book, Peachpit Press

CRAP CRAP

Contrast Contrast
Repetition 1 Repetition

Alignment — Alignment 1
creates a visual flow GOOd deS|gn

visually connects el. is as easy as... PI‘OXi m ity i OOd des'Qn

H H n the principles. g rou ps rel ated Learn the principles.
roximi ty 3 | Wbey e dimpler than you might thiak. separates unrelated They'oe aimpler than you might thiak
Recognize when you're not using them. 3 ’7 Recognize when you're not using them.
Put it inte weds —name the prodlem, Put it inte woeds —nanie the prodlem,
Apply the principles. y Apply the principles.
oot Ul e amazed. o Youllde amazed.

a2

Robin Williams Non-Designers Design Book, Peachpit Press Robin Williams Non-Designers Design Book, Peachpit Press

Where does your eye go?

CRAP give you cues about how to read the graphic

title

subtext

three points

main point
sub point

Good design

isaseasyas...

Learn the principles.
They're simpler than you might think.

Recognize when you're not using them.
Put it inter words —name the problem,

Apply the principles.
You W be amazed.

Robin Williams Non-Designers Design Book, Peachpit Press

Where does your eye go?

Some contrast and weak proximity

= ambiguous structure
= interleaved items

Robin Williams Non-Designers Design Book, Peachpit Press

9 Image Preferences

Image Type:
[Monochrome] Gray Scale | Color |

EPSF Quality:
[Use Preview Image | use Postscript |

Greeking Text Limit:
7.0 pt.

Options:

[0 Auto Backup on Save
[Auto Save Every Minutes

Where does your eye go?

Boxes do not create a strong structure

= CRAP fixes it

Robin Williams Non-Designers Design Book, Peachpit Press

i

Where does your eye go?

Strong proximity (left/right split)

= unambiguous

Robin Williams Non-Designers Design Book, Peachpit Press

0

Image Preferences

Image Type: [Monochrome] Gray Scals |

Color

J

EPSF Quallty: [Use Preview Image | Use Postscript |

Greeking: 7.0 pt.

Options: [J AutoBackup on Save
[0 Auto Save Every Minutes

-.,m ply) (Cancel) .-ueset

Where does your eye go?

The strength of proximity
= alignment
= white (negative) space
= explicit structure a poor replacement

Mmmm: [] Momm: L Mmmm: [|
|:| Mmmm: |:| Mmmm: |:|
L]

Mmmm: |:|

Mmmm:

Mmmm:

Mmmm: |:|
Mmmm: |:| Mmmm: |:|

1
Mmmm: [] Mrmmm:] Mmmm: []

Mmmm:

A World Wide Web Info for Saul Greenberg - Microsoft Internet Explorer =113

File Edit View Favorites Tools Help
Address @c:\Dowmensand Documents My Webs\~saul\hci_topi 3l V%

A First Lesson in
Graphical Design

C Examples
ontrast This page
Saul's Home Page
Proximity
Repetition
R
Aliqnment

Proximity

X

3 World Wide Web Info for Saul Green Microsoft Internet Explorer =](=]
Fie Edt Vew Favorites Tools Help >

daress |B] c:\pocuments and Documents\My I\hci_topi 3l b "‘ Go

A first lesson in Graphical Design

Contrast
Repetition
Alignment
Proximity
Example: this page,
‘home page
Original
Proximity 2

Alignment
Contrast 4

A World Wide Web Info for Saul Greenberg - Microsoft Internet Explorer
File Edit View Favorites Tools Help
Address (8] Copocuments and Documents\My Webs\saul\hci_topi

Saul Greenberg GroupLab Dept Computer Science University of Calgary

Saul Greenberg, Professor
Human-Computer Interaction &
Computer Supported Cooperative Work
Dept. of Computer Science
University of Calgary
Calgary, Alberta
CANADA TON IN4
Phone: +1 403 220-6087
Fax: +1 403 284-4707
Email: saul@cpsc.ucaleary.ca

Research
GroupLab project describes research by my group
Publications by our group; most available in HTML, PDF, and postscript
Project snapshos describes select projects done in Grouplab
Grouplab software repository
Grouplab people

Graduate Students

Thave a few openings for MSc and PhD students who are interested in Human Computer Interaction and / or Computer Supported Cooperative Work. Some
research and project ideas honors and graduate students

Courses offered this year

Original

CPSC 481: Foundations and Principles of Human Computer Interg

A World Wide Web Info for Saul Greenberg - Microsoft Internet Explorer =113

Fle Edt Vew Favorites Tooks Help w

B

Address (8] Copocuments and Documents\My Webs\~saul\hci_topi al

(Groupliab’ R
Saul Greenberg GroupLab Dept Computer Science University of Calgary

Saul Greenberg, Professor
Euman-Computer Interaction &
Computer Supported Cooperative Work

Dept. of Computer Science
University of Calgary
Calgary, Alberta
CANADATON IN4

Phone: +1 403 220-6087
Fax: +1 403 284.4707
Email: saul@cpsc.ucalgary.ca

Research
GroupLab project describes research by my group
ons by our group; most available in HTML, PDF, and postscript
Project snapshots describes select projects done in Grouplab
Grouplab software repository
Grouplab people g

Graduate Students
Thave a fexw openings for MSc and PAD students who are interested in Human Computer Interaction nd / or Computer Supported Cooperative Work. Some
research and project ideas honors and graduate students|

Courses offered this year
CPSC 481: Foundations 2nd Principles of Human Computer Interd

CPSC 581: Human Computer Interaction II: Interaction Desig] H H
CPSC 601.13: Computer Supported Cooperative Work rox l m I y

‘A World Wide Web Info for Saul Greenberg - Microsoft Internet Explorer
Fle Edit View Favorites Tools Help

Address @] C:\Documents and Documents\My Web: i\hci_topi 3l

(Groupliab!

. SR 1T University of

Soeve Uniers y

Saul Gree berb
Professor

Human-Computer Interaction &
Computer Supported Cooperative Work

SoGrewery Gl D

Dept. of Computer Scence iy

. Aizets
CANADA T2N 1N4
Ehane: +1 403 220-6057

Fax: +1 403 284-4707

Emsi: zsuZcee <

Graduate Students Research Ideas. I have a few openings for MSc and PhD students who are interested in Human
Computer Interaction and / or Computer Supported Cooperative Work.

Courses offered this CPSC 481: Foundations and Principles of Human Computer Interaction
year CPSC 581: Human Computer Interaction II: Interaction Design
CPSC 601.13: Computer Supported Cooperative Work

Previous Years CPSC 681: Research Methodologies in Human Computer Interaction
CPSC 699: Research Methodology for Computer Science (old!)
CPSC 601.48: Special Topics: Heuristic Evaluation
6: Advanced Topics in HCI: Media Spaces and Casual Interaction
SENG 609.05: Graphical User Interfaces: Design and Usability
SENG 609.06: Special Topics in Human Computer Interaction
Ego alert: My entry on U Calgary's ‘Great Teachers" Web Site

Administration Ethics Committee for research with human subjects; I am the chair

Contrast

Last updated: March 20, 1867

World Wide Web Info for Saul Greenberg - Microsoft Internet Expl E] E]

fle Edt Vew Favorites Took Help

Adiress (B8] C:\pocuments and Documents\My I\hci_topi al ¢

Groupliab!

Saul Greenberg GroupLab Dept Computer Science University of Calgary

Saul Greenberg, Professor
‘Human-Computer Interaction &
Computer Supported Cooperative Work

Dept. of Computer Science
University of Calgary
Calgary, Alberta
CANADA T2N IN4

Phone: +1 403 220-6087
Fax: +1 403 284-4707
Email: saul@cpsc.ucalgary.ca

Research GroupLab project describes research by my group
Publications by our group; most available in HTML, PDF, and postscript
Project snapshots describes select projects done in Grouplab
Grouplab software repository.
Grouplab people

Graduate Students I have a fow openings for MSc and PhD students who are interested in Human Computer Interaction and / or Computer Supported
Cooperative Work. Some research and project ideas honors and graduate students|

Courses offered this CPSC 481 Foundations and Principles of Human Computer Interaction
year CPSC 531 Human Computer Interaction II: Interaction Design
CPSC 601.13: Computer Supported Cooperative Work

-
Previous Years: CPSC 681 Research Methodologies in Human Computer Interaction A I e t
B oo om o ignmen

CPSC 601.48: Special Topics: Heuristic Evaluation

‘A World Wide Web Info for Saul Greenberg - Microsoft Internet Explorer
File Edit View Favorites Tools Help

Address @] C:\Documents and Documents\My Webs: I\hci_topi al v

Groupliab’
Saul Greenberg Grouplad De; I e Univarsity of Calgary

Saul Greenberg®
Professor

Human-Computer Interaction &
Computer Supported Cooperative Work

Graduate Students Research Ideas 1 have a few openings for MSc and PhD students who are interested in
Human Computer Interaction and / or Computer Supported Cooperative Work.

Courses offered CPSC 481 roundations and Principles of Human Computer Interaction
this year CPSC 581 Human Computer Interaction II: Interaction Design
CPSC 601.13 computer Supported Cooperative Work

Previous Years CPSC 681 research Methodologies in Human Computer Interaction
CPSC 699 Rresearch Methodology for Computer Science (old!)
CPSC 601.48 special Topics: Heuristic Evaluation
CPSC 601.56 Advanced Topics in HCI: Media Spaces and Casual Interaction
SENG 609.05 Graphical User Interfaces: Design and Usability
SENG 609.06 special Topics in Human Computer Interaction
Ego alert my entry on U Calgary's 'Great Teachers" Web Site

Repetition

Administration Ethics Committee for research with human subjec|

Lest updated: March 20, 1867

Example of bad design

IBM's Aptiva Communication Center

Wait [457[7] seconds for connection
Reuy alter[60 [3] seconds Number of retiies [3[3]

‘ @ Fine () Standard

Maximum transmit tate: 14400 bps = |

Paper size: [Letter (8% x 11 in) =l

IZ Uzp custom aditor [xe C:\Phoenix\fax_instwii” Browse...

[save]| [comce | [mew |

Reparing the layout

(Mullet & Sano, 1995)

= 8ugtool

Bug 1D: B
Categary:

@
Subcategory: [B) itbrary

@

=]

Xview

Release:

Submitred

Type:
prtoney: [z 2= 5]
1o severiy: [T]2]3]2]5]

sSee also:

Interest List:

Description | work Around | Suggested Flx | Commants

Evalvation |

N

;
|

Root Cause: [T documentation-confusing

same as: -
Resp Mgr: &) none Houk 1:
Resp Engr: (B none Hook 2:

Flags: (] Fix Affacts Documentation
O Gereric svaa Problem

Example of bad design

(Mullet & Sano, 1995)

Submit <

xbugtool 2.0 Beta 2 Server: elmer-bb.Corp

2

Evaluation

Comnit to Fix in rel.,
Fixed in reizases...
Integrated In releases...
Ver(fied In ralaasas,.
Closed becase
Incomplote Because

i affects docs

Patch i
History:

Submitter
Generic SVR4 problem?:

Dispatch operstar

Evaluator

Commit operator
£l

bl Moda : [Edle] creats |
Gy e prierits T[z2[:]4]5 5l
sevarits [+] ﬁ
Gesnbor.) . Bug/Rfe: Trte
O Responslbls Engineer:

Synopsis:

Keywords:

(Cgester i)

State triggers:

|

interest list:
See alsa (bugids):

1]

-

Reparing the layout

Dlractery: fhoma2/heynow/mullet/work/Desksets

Flle: Snapshotrs

_ LR I
|
(Ttoad.,) Save) (Saveas.) (Peint v)

Timee [0 nnnm s0ON05

Flls Name:

i:..:;-. I.4II|

[Hids Snapsher Buring Caplure |

(Snap Region)

(Snap Scaaen)

L SELECT - Select Window. ADJUST or MENU — Cancel.

|

(Mullet & Sano, 1995)

Snag Type: m Ragion f Sarean

[0 #eep Duxing Countdown
[J Hide window During Cuptue

Facets of a widget

Facets of a widget

Presentation
appearance

Behavior
reaction to user actions

Interface with the application
notification of state changes

Example: Button
border with text inside

« pressing » or « releasing » animation when clicked
call function when the button is clicked

« widgets » (window gadgets)

button menu window / pallet

W untitied Word Processing)

m
Fd

T 000 Te
ODEEHEP < BHad 0@

View FullScreen Outine Pages Textbay Shapes Table J(a_-] | Creveiea 3] [Reguar][z -

B. & B ® B. B

£ tab

: - ;
ﬂ : e e———_|abel
|- e This is an example...|

Defalc Tabs 127l

Decimal Tab Character

text zone T —

list

scroll bar

Variable wrappers (active variables)

two-way link between a state variable of a widget
and another application variable
(in Tcl/Tk referred to as tracing)

problems

= limited to simple types

= return link can be costly if automatic

= errors when links are updated by programmers

Event dispatching Event dispatching

widgets act as input peripherals and send

saveDialog { string filename }

Save File

events when their state changes saveDialog EditField(event)
. { this.filename := ... }
a while loop reads and treats events CLBE = saveDialog.OK(event)

{ DoSave (this.filename) }

associate an object to a widget, and its methods

to changes in the widget state o)
divide event sending and treatment

6 saveDialog better encapsulation (inside widget class)

ﬁ —— > saveDialog.Clicked(event)

Callback functions Callback functions
Registration at widget creation Problem: spaghetti of callbacks
) DoSave (...){ ... } Sharing a state between multiple callbacks by
Call at widget activation = global variables that widgets check:

too many in real applications
(LQKy) — Dosave (...){...}
= widget trees: callback functions are called with a reference
to the widget that called it (visible in the same tree)

Fragile if we change the structure of the UI, does not deal with
other data not associated to widgets (e.g. filename)

= token passing: data passed with the callback function call

SeveHi global string filename;
File DoSetFile () {filename = ...}

cnce | (R

DoSave () { SaveTo(filename) }

Callback functions

/* callback function */
void DoSave (Widget w, void* data) {

/* retrieve file name */

filename = (char**) data;

/* call an application function */

SaveTo (filename);

/* close the dialog */

CloseWindow (getParent(getParent(w)));
}

/* main program */

main () {
/* variable with file name */
char* filename = “";

/* create a widget and assosiate a callback */
ok = CreateButton (....);
RegisterCallback (ok, DoSave, (void*) &filename);

/* event manager loop */
MainLoop ();

Event listeners (Java)

public class ClickListener implements ActionListener
{

public void actionPerformed(ActionEvent e){
JButton button = (JButton)e.getSource();

ClickListener listener = new ClickListener();
JButton button = new JButton(’’Click me’’);

button.addActionListener(listener);

Event listeners (Java)

a variation of callbacks in Java:

methods of type AddListener that do not
specify a callback function but an object (the
listener)

when a widget changes state, it triggers a
predefined method of the listener object (e.g.
actionPerformed)

Event listeners (Java)

Anonymous Inner classes

button.addActionListener (new ActionListener(){

public void actionPerformed(ActionEvent e){

)i

panel.addMouseListener (new MouseAdapter(){

public void mouseClicked(MouseEvent e){

)i
Methods and events are predefined

Event listeners (Java)

Anonymous Inner classes
“new <class-name> () { <body> }”

this construction does 2 things:

= creates a new class without name, that is a
subclass of <class-name> defined by <body>

= creates a (unique) instance of this new class
and returns its value

this (inner) class has access to variables and
methods of the class inside which it is defined

Events and listeners (Java)

Each has a source (e.g. JButton, JRadioButton, JCheckBox,
JToggleButton,JMenu, JRadioButtonMenultem, JTextField)

Can get it with the function getSource()

(Listeners) need to implement the interface that corresponds to event
e.g. ActionEvent => ActionListener :

public interface ActionListener extends EventListener {
/** Invoked when an action occurs.*/
public void actionPerformed(ActionEvent e)

v Selection from a list
l l onlradio button group

i

Click on a button Cursor moving
Select item in a menu in a scrollbar
Cursor inside text zone

! !

Events and listeners (Java)

all events inherit from the class EventObject

all listeners correspond to an interface that inherits
from EventListener

a class receiving notification events of some type needs to
implement the corresponding interface:
= ActionEvent ActionListener
= MouseEvent MouseListener
= KeyEvent KeyListener

Events and listeners (Java)

listeners need to be registered (added) to widgets

a listener can be added to multiple widgets
= e.g. one listener handles events from multiple buttons

a widget can have many listeners
= e.g. one for “click” events and for “enter” on button events

Interface toolkits

Event-action model
= can lead to errors (e.g. forgotten events)
= difficult to extend (e.g. add hover events)
= complex code

Hard to do things the toolkit was not designed for

e.g., multi-device input, multi-screen applications,
advanced interaction techniques (CrossY)

« drag-and-drop » to think
about

What are the affected « widgets »?
What are the events?

/';T\\
o .
] |

— = =4 }
\ \)

o __4

Press and drag Release

How to describe this interaction with a « event
listener » ?

ok

