
Design principles
Usability
Evaluation

The design of everyday things
(Norman, 1990)

The ordinary objects reflect the problems of user
interface design
!  Door handles
!  Washing machines
!  Telephones
!  etc.

Introduces the notion of affordance, metaphores,
and conceptual models

Provides design rules

Conceptual model vs. mental model

designer user

conceptual
model

mental
model

informal
incomplete

sometimes erroneous

formal
structured

logical

image
of the system

Metaphor

Transfer of a relationship between a set of objects to
another set of objects in a different domain

office/desktop

folders
electronic desktop

Affordances Affordances

Quality of an object, which allows a user to
perform an action

The form, the size, the view of the object
suggest what we can do with it

« Much of everyday knowledge resides in the
world, not in the head » (Norman, 1988)

Dials for turning

Sliders
for
sliding

Affordances
Button for pressing
but action unknown

These
buttons?

Affordances

Affordances

 The concept of affordance was first introduced
by psychologist James J. Gibson in 1977.

 Gibson’s affordances are independent of the
individual’s ability to recognize them. They
depend on their physical capabilities.

 Norman’s affordances also depend on the
individual’s perception. Norman explained that
he would rather replace his term by the term
« perceived affordances ».

Perceived Affordances in this UI?

Our mental models of the mechanics and physics
help us predict and simulate the operation of
an object

Constraints

Are these user interfaces effective?

Constraints

Mappings

Example: Find the correspondance between the stove
burners and the controls

Mappings

Example: Find the correspondance between the stove
burners and the controls

...and now?

Example: designing a watch

Conceptual model?

Affordances?

Mappings?

Conceptual model?

Affordances?

Mappings?

...and user feedback?

Example: designing a watch

Norman’s principles (1990)

1.  Make things visible
We can know the state of a system by observing the

user interface

2.  Principle of mapping

3.  Principle of feedback
Inform the users about the state & result of their

actions

Usability

« The extent to which a product can be used by specified
users to achieve specified goals with effectiveness,
efficiency, and satisfaction in a specified context of use »

 (ISO 9241)

A usable system is: easy to learn, easy to memorize,
efficient, visually appealing and fast to recover from errors

Utility vs. Usability

 A B

C D
usability

low high

low

high

ut
ili

ty

Is D better than A? What do you think?

Usability principles (Nielsen 2001)

Visibility of system status

Match between system and the real world

User control and freedom

Consistency and standards

Help users recognize, diagnose and recover from errors

Error prevention

Recognition rather than recall

Flexibility and efficiency of use

Aesthetic and minimalist design

Help and documentation

Nielsen and Norman

Objective: aid the use and learning of a system

Feed-back and feed-forward mechanisms to

reduce memory load
prevent errors (more later)
reassure (e.g., progression of an operation)

helps user understand
 what actions are available
 what the system is doing
 how it is interpreting the user’s input

… users should always be aware of what is going on

Visibility & feedback

Recommendations: feed-forward
gray out non-available commands
make input possibilities clear
give list of possible inputs instead of typing
give example of expected input
give intelligent default values

Recommendations: feed-back
each user action should be followed by a changed

representation in the interface
inform users of long operations
indicate currently used modes
show status of system operations in progress

Visibility & feedback

System Response time (time to give feedback)

how users perceive delays

< 0.1s perceived as “instantaneous”

 1s user’s flow of thought stays uninterrupted, but
 delay noticed

 10s limit for keeping user’s attention focused on the dialog

> 10s user will want to perform other tasks while waiting

Visibility & feedback

Dealing with long delays

Cursors
for short transactions

Percent done dialogs
time/work left
estimated time

Random
for unknown times

Visibility & feedback

Currently used modes

What did I
select?

What mode
am I in now?

How is the
system

interpreting
my actions?

Visibility & feedback

The system should be integrated in user activities

Recommendations :

speak the user’s language
 e.g., informative messages

information coherent with respect to other tools the user uses
 e.g., electronic version of a paper form

access to commands compatible to user’s task
 e.g., frequent commands more visible, order of windows

Need to study and analyze user work practices

Match between system and real world

Use meaningful mnemonics, icons & abbreviations
e.g. File / Save

Ctrl + S (abbreviation)
Alt FS (mnemonic for menu action)
 (tooltip icon)

Match between system and real world

Be as specific as possible about operations,
 based on user’s input

Best within the context of the action

Match between system and real world

Good use of metaphors and transfers

From Microsoft applications

Match between system and real world

Users don’t like to feel trapped by the computer!
should offer an easy way out of as often as possible

Strategies:
Cancel button (for dialogs waiting for user input)
Universal Undo and Redo (can get back to previous state)
Interrupt (especially for lengthy operations)
Quit (for leaving the program at any time)
Defaults (for restoring a partially filled form)
… consider autosaving

User control and freedom

Global coherence of interface
internal: inside the application
external: between applications (e.g., icons, shortcuts),

 w.r.t. the metaphor of the system (e.g., desktop)

Principle: a system that seems familiar is seen as easy
to use by users

Goal: help learning and use

Risk: block system evolution (rigidity of standards)

Consistency & standards

Recommendations
windows should look similar

 e.g., search box at top right

 consistent graphics
 e.g., information/controls in same location on all windows

same vocabulary used for commands as other systems
 e.g., open / copy-paste / preferences / …

syntax of commands coherent across all the interface
 e.g., similar actions have similar effects

Consistency is not only visual consistency
Other examples: syntax, interaction, command result

Consistency & standards

Style guides:
published by system designers
describe the look and feel of a platform
are often too strict: help those who follow them and make life

difficult for anyone who wants to deviate …

Examples:
!  Apple Human Interface Guidelines
!  iOS Human Interface Guidlines
!  MS Windows Design Guidelines
!  Android Design Principles

In principle good, but can be hard to follow
Implemented (in part) in interface toolkits

Consistency & standards Error prevention

 Even better than good error messages is a careful design
which prevents a problem from occurring in the first place.

 Either eliminate error-prone conditions or check for them
and present users with a confirmation option before they
commit to the action.

Prevent errors: try to make errors impossible

Provide reasonable checks on input data
e.g., if entering order for office supplies

500000 pencils is an unusually large order. Do you really
want to order that many?

Error prevention

Mode errors
do actions in a mode thinking you are in another

refer to file that’s in a different directory
look for commands / menu options that are not relevant

minimize by
have as few modes as possible (or none)
make modes highly visible

Error prevention

Error recovery

 Help users recognize, diagnose, and recover
from errors

 Error messages should be expressed in plain
language (no codes)

 Precisely indicate the problem, and
constructively suggest a solution.

Prevent/mitigate continuation of wrongful action:

Gag
deals with errors by preventing the user from continuing
e.g., cannot get past login screen until correct password entered

Warn
warn people that an unusual situation is occurring
… when overused, becomes an irritant
e.g., audible bell, alert box

Error recovery

Do nothing
illegal action just doesn’t do anything
user must infer what happened

e.g., enter letter in numeric-only field (key clicks ignored)
e.g., put a file icon on top of another file icon (returns it to

original position)

Self-correct
system guesses legal action and does it instead
but leads to a problem of trust

e.g., spelling corrector

Error recovery

Lets talk about it
system initiates dialog with user to come up with

solution to the problem
e.g., compile error brings up line in source code

Teach me
system asks user what the action was supposed

to have meant
action then becomes a legal one

e.g., adding a word in the spelling dictionary

Error recovery

If all else fails provide meaningful error messages
error messages should be in the user’s task language
don’t make people feel stupid

Try again, bonehead!
Error 25
Cannot open this document
Cannot open “chapter 5” because the application “Microsoft

Word” is not on your system
Cannot open “chapter 5” because the application “Microsoft

Word” is not on your system. Open it with “OpenOffice”
instead?

Error recovery

Adobe's ImageReady

AutoCAD Mechanical

Windows Notepad
Microsoft's NT Operating System

Problematic error messages

Computers good at remembering, people not!
Promote recognition over recall

menus, icons vs text commands, field formats
promote visibility of objects (but less is more!)

From Microsoft applications

Recognition rathen than recall

Give input format, example and default

Recognition rathen than recall

Small number of rules applied universally

Generic commands
Same command can be applied to many objects
Interpreted in context of interface object: copy, cut,

paste, drag ’n’ drop, etc. for characters, words,
paragraphs, circles, files

Contextual menus

Reducing memory load

Accelerators -- unseen by the novice user -- may
often speed up the interaction for the expert user
such that the system can cater to both
inexperienced and experienced users.

Allow users to tailor frequent actions.

Flexibility & efficiency of use

Capability to adapt to different contexts of use

Recommendations:
permit command activations from keyboard or mouse
allow frequently used operations to be activated by every location
allow users to parameterize their software based on their preferences
give quick access to frequent commands in menus

Can contradict minimalist design (later)

Flexibility & efficiency of use

Expert users - want to perform frequent operations quickly

Strategies:
keyboard and mouse accelerators/shortcuts

abbreviations
command completion
context menus
function keys
double clicking vs menu selection
type-ahead (entering input before the system is ready for it)

navigation jumps and search
e.g., going to window/location directly, avoiding intermediate nodes

history systems
WWW: ~60% of pages are revisits

Flexibility & efficiency of use

Keyboard
shortcuts for

menus

Customizable
toolbars and
palettes for

frequent actions

Split menu, with
recently used
fonts on top

Scrolling controls for page-
sized increments

Double-click
raises object-
specific menu

Double-click
raises toolbar

dialog box

Microsoft Powerpoint

Flexibility & efficiency of use

 Dialogues (windows) should not contain information which is
irrelevant or rarely needed.

 Every extra unit of information in a dialogue competes with
the relevant units of information and diminishes their
relative visibility.

Aesthetic and minimalist design

Ways to reduce visual clutter and focus user attention

Recommendations (be concise):
 only display important information (for what the user needs)

 reduce number of actions needed to perform an objective

 minimize input and reading instructions

 avoid too much text

 don’t ask for input that you can infer automatically

 avoid users having to remember information

 don’t ask users to perform calculations

Aesthetic and minimalist design Aesthetic and minimalist design

 Even though it is better if the system can be
used without documentation, it may be
necessary to provide help and documentation.

 Any such information should be easy to
search, focused on the user's task, list
concrete steps to be carried out, and not be
too large.

Provide help and documentation

Help is not a replacement for bad design!

Simple systems:
walk up and use; minimal instructions

Most other systems:
feature rich
simple things should be simple
learning path for advanced features

Volume 37:
A user's
guide to...

Provide help and documentation

Many users do not read manuals
prefer to spend their time pursuing their task

Usually used when users are in some kind of panic
online documentation better
good search/lookup tools
online help specific to current context

Sometimes used for quick reference
syntax of actions, possibilities...
list of shortcuts ...

Provide help and documentation

Tutorial and/or getting started manuals

short guides that people are likely to read when
first obtaining their systems
encourages exploration & getting to know the system
tries to get across essential conceptual material

on-line “tours”, exercises, and demos
demonstrates basic principles through working examples

Provide help and documentation

Reference manuals
used mostly for detailed lookup by experts

rarely introduces concepts
thematically arranged

on-line hypertext
search / find
table of contents
index
cross-index

Microsoft Help

Provide help and documentation

Reminders
short reference cards

expert user who just wants to check facts
novice who wants overview of system’s capabilities

keyboard templates & icons
shortcuts/syntactic meanings of keys
recognition vs. recall

tooltips and other context-sensitive help
text over graphical items indicates meaning or purpose

Microsoft Word

Provide help and documentation

Wizards
walks user through typical tasks
… but dangerous if user gets stuck

What’s my
computer’s

name?
Fred?
Intel?
AST?

Microsoft Powerpoint

Provide help and documentation

Tips
migration path to learning system features
context-specific tips on being more efficient

must be “smart”, otherwise boring and tedious

Microsoft Word

Provide help and documentation

Contextual Video Clips

Provide help and documentation

Mac OS configuration for the trackpad

Evaluating the user interface

Why bother about evaluation?

Pre-design
!  investing in new expensive systems requires

proof of viability

Initial design stages
!  develop and evaluate initial design ideas with

the user

Iterative design
!  does system behavior match the user’s task

requirements?
!  are there specific problems with the design?
!  what solutions work?

Acceptance testing
!  verify that system meets expected user

performance criteria

Why bother about evaluation?

Observation occurs in a realistic setting

Problems
!  hard to arrange and perform
!  time consuming
!  may not generalize

Naturalistic approach

The experimenter controls all environmental
factors
!  study relations by manipulating independent

variables
!  observe effect on one or more dependent

variables
!  Nothing else changes

 Example: Testing whether the is a difference in user
performance (time & error rate) between typing or writing
text with a pen.

Experimental approach

Experimental results
Example of results for the movement time required to point to targets
on the screen by using two different devices (Device A and B).

Here, the experimenter controls the difficulty of the tasks (computed as
a function of the distance and size of the targets)

Natural vs. Experimental
!  precision and direct control over experimental design

vs.
!  desire for studying the use of the system in real life

situations

Trade-offs

Informal and quick:

 Heuristics

 Heuristic Evaluation

 Design Walkthrough

 Others …

Formal and targeted:

 Alternatives User Studies

 Controlled Experiments

 Quasi-experiments

 Others (Interviews, Questionnaires, Observations)

Evaluation techniques

Goal:
 Aid to informally and quickly identify problems, using evaluation
criteria (to be defined by you in advance)

Procedure
Choose a small group with different expertise and roles
Fix the duration to 1h max
A presenter describes a scenario (storyboard, video prototype, system)
Choose levels of critiques
The group identifies as many problems as possible
Use rules to aid in problem finding

 (e.g., design principles, specifications, usability criteria, task sequence)

Design (cognitive) walkthrough

Specific
 e.g., “it needs 3 steps to do a simple search”

Missing Functions
 e.g., “no help provided, need search widget”

Bugs
 e.g., “the import functionality does not work”

Suggestions
 e.g., “provide an overview of the data generated”

General (the least useful)
 e.g., “difficult to use, too many icons”

Design walkthrough Usability principles (Nielsen 2001)
- Again

Visibility of system status

Match between system and the real world

User control and freedom

Consistency and standards

Help users recognize, diagnose and recover from errors

Error prevention

Recognition rather than recall

Flexibility and efficiency of use

Aesthetic and minimalist design

Help and documentation

Heuristic evaluation
Systematic inspection to see if an interface complies

to a set of usability principles

Method
!  3-5 inspectors
!  usability engineers, end-users, double experts…
!  inspect interface in isolation (~1–2 hours for simple

interfaces)
!  compare notes afterwards

single evaluator only catches ~35% of usability problems
5 evaluators catch 75%

Works for paper prototypes, interactive prototypes,
working systems

Self-guided
!  open-ended exploration
!  Not necessarily task-directed
!  good for exploring diverse aspects of the interface, and to

follow potential pitfalls

Scenarios-based
!  step through the interface using representative end-user

tasks
!  ensures problems identified in relevant portions of the

interface
!  ensures that specific features of interest are evaluated
!  but limits the scope of the evaluation - problems can be

missed

Forms of inspection

3-5 evaluators find 66-75% of usability problems
!  different people find different usability problems
!  only modest overlap between the sets of problems

found

Is heuristic evaluation effective?

Observe people with systems in simulated settings
!  people brought into an artificial setting that simulates

aspects of real world settings
!  people given specific tasks to carry out
!  compare alternative designs
!  observations / measures made as people do their tasks
!  look for problems / areas of success
!  good for uncovering ‘big effects’

Usability study (or alternatives)

Observing many users is expensive

...but individual differences matter
!  best user 10x faster than slowest
!  best 25% of users ~2x faster than slowest 25%

Partial solution
!  reasonable number of users tested
!  reasonable range of users
!  big problems usually detected with a handful of users
!  small problems / fine measures need many users

Number of users Ethics

Testing can be a distressing experience
!  pressure to perform, errors inevitable
!  feelings of inadequacy
!  competition with other subjects

Golden rules
!  subjects should always be treated with respect
!  always explain you are testing the system, not the user
!  explain how comments and criticisms are good

Ethics

Don’t waste the user’s time
!  use pilot tests to debug experiments, questionnaires, etc.
!  have everything ready before the user shows up

Make users feel comfortable
!  emphasize that it is the system that is being tested, not

the user
!  acknowledge that the software may have problems
!  let users know they can stop at any time

Maintain privacy
!  tell user that individual test results will be completely

confidential

Inform the user
!  explain any monitoring that is being used
!  answer all user’s questions (but avoid bias)

Only use volunteers
!  user must sign an informed consent form

