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Course information 
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Lecture overview

Part I
1. Basic concepts: data, populations & samples
2. Why learning statistics?
3. Course overview & teaching approach

Part II
4. Types of data
5. Basic descriptive statistics

Part III
6. Introduction to R
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Part I. Basic concepts
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Data vs. numbers

Numbers are abstract tokens or symbols used for counting 
or measuring1

Data can be numbers but represent « real world » entities

1Several definitions in these slides are borrowed from Baguley’s book on Serious Stats 



Example
Take a look at this set of numbers:

8   10   8   12   14   13   12    13

Context is important in understanding what they represent
! The age in years of 8 children
! The grades (out of 20) of 8 students
! The number of errors made by 8 participants in an experiment from 

a series of 100 experimental trials
! A memorization score of the same individual over repeated tests 
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Sampling

The context depends on the process that generated the data
! collecting a subset (sample) of observations from a larger set 

(population) of observations of interest

The idea of taking a sample from a population is central to 
understanding statistics and the heart of most statistical 
procedures.  
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Statistics

A sample, being a subset of the whole population, won’t 
necessarily resemble it.  

Thus, the information the sample provides about the 
population is uncertain.

The role of statistics is to find ways to deal with this 
uncertainty.
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Probabilities

Uncertainty is commonly quantified and expressed in terms of 
probabilities

The probability of an event x can be written as P(x) or Pr(x)
! It ranges from 0 (certain not to occur) to 1 (certain to occur)

A reasonable (but not the only) interpretation of a probability:
! as the relative frequency with which an event x occurs in the long run
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Example: heads & tails

Consider a coin-tossing experiment with a fair coin.
! In the long run (e.g., after 1,000,000 trials), an (approximately) equal 

number of Head and Tail events are expected to be observed. 

! Thus, Pr(Head) = Pr(Tail) = 0.5
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Population & sampling procedure

The concept of a population is an abstraction
! rarely does it refer to a particular set of things, e.g., people
! a common assumption is that samples are drawn from an infinitely 

large, hypothetical population through a sampling procedure

 A well-designed study will use a sampling procedure that 
draws from a population that is relevant to the aims of 
the research

The sampling procedure is usually imperfect, e.g., due to 
bias into the sample
! a good study will minimize the impact of such problems
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Example: heads & tails

A research team aims to estimate the probability of heads 
Pr(Heads) of real-world coins
! What is the population of interest?
! What are possible sources of bias in a sample?
! Describe a sampling procedure that minimizes the effect of such 

biases
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Sample size

The sample size n is the number of observations (data 
points) in a sample

The larger the size N of a population, the less information 
(proportionately) a sample of size n provides
! Notice that if N is treated as infinite, then the size n of a sample is 

negligible. 

How conclusions drawn from a sample generalize to the 
population of interest depend on the adequacy of the 
sampling procedure in relation to the research goals 
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Example

A researcher collects data from a volunteer or opportunity 
sample of 100 healthy people in Paris. 
! Is this sample adequate? 

Understanding the research domain is important!
! might be adequate if the goal is to assess the impact of caffeine on 

reaction time
! is inadequate if the goal is to assess the side-effects of a new 

substance 
! or assess the average French family income
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Independent vs. dependent observations

Observations in a sample can be assumed as independent 
if information about each observation provides no 
information about other observations.

Two observations are dependent (also related) if they are 
somehow connected
! nutrition habits of members of the same family
! repeated memory tests taken by the same individual
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Example: heads & tails

Are observations on the occurrence of Heads or Tails 
independent and under which assumptions? 
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Statistical modeling

Samples are somehow related to the population from which 
their are drawn

The goal of statistical modeling is to understand the 
process that generated the observed data and predict 
new observations
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Example: Fitts’ law experiments

A researcher is interested in creating a model that predicts 
how fast (MT) on average humans hit targets of varying 
widths W from varying distances (amplitudes) A

Creating a statistical model

ID = log(
A

W
+ 1)

Experimental setup
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Statistical inference

Statistical inference is a special case of statistical 
modeling, where the primary (or only) purpose of the 
model is to test a specific hypothesis.

Example hypotheses:
! Men are taller than women.
! Access to higher education positively affects income.
! Reading on paper leads to better memorization than reading 

on a tablet.  
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Example: Fitts’ law experiments
The researcher is interested in testing whether wider targets are 

faster to hit.

Experimental setup Observed data

21
How informative is this result?

Based on the statistical evidence, the researcher concludes that 
the hypothesis is true (with some level of quantified uncertainty): 
wider targets are faster to hit.



Why learning statistics?
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 Le Monde, 21/4/2020

Comments by readers



Why learning statistics?

Many claims and beliefs but also prejudices and stereotypes 
are founded on informal inferential statistics

…often based on inadequate or biased sampling 

…based on incomplete or incorrect models

…that often fail to distinguish between correlation and 
causality
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Why learning statistics?

Decision making and politics often rely or are justified based 
on true (or false) statistical evidence
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Why learning statistics?
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Why learning statistics?
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https://www.theguardian.com/politics/2017/jan/19/crisis-of-statistics-big-data-democracy



Why learning statistics?

Statistics is a fundamental research tool for many scientific 
disciplines 

…but even in research, statistics are very often misused
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Ioannidis's 2005 paper has been the most 
downloaded paper in the PLoS Medicine journal.  

28

https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0020124
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https://doi.org/10.1136/bmj.323.7327.1450



31 How could they arrive to such conclusions?  

https://doi.org/10.1136/bmj.323.7327.1450



Statistics in Computer Science

Machine learning, data mining, computer networks, 
information visualization, human-computer 
interaction, etc.

The course focuses on experimental design and the 
analysis of experimental data 
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Course overview
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Goals

Understand core concepts and methods of statistical 
reasoning

Understand a range of statistical methods of practical 
interest

Learn how to work with real-world (and « messy ») data 

Familiarize with the R statistical software 
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Approach

Focus on the scope, assumptions, uses, and limitations of 
each statistical method.

Avoid complex mathematical models. It is important to 
understand the intuition behind the mathematics. 

Computers are very helpful! We will rely on computational 
methods when analytical methods cannot help. 
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Approach
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Approach

« Statistical modeling is not a set of recipes or 
instructions. It is the search for a model or set of models 
that capture the regularities and uncertainties in data, and 
help us to understand what is going on. » 

[Baguley]
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Types of data
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Discrete vs. continuous data

Discrete data are restricted in the values that can 
legitimately occur. Examples:
! Binary data can take on only two possible values (e.g., 0 or 1)
! Frequency or count data are used to count things  

(e.g., 5 heads vs. 7 tails)

Continuous data can take on intermediate values within  a 
range. Examples:
! Physical measures such as time and distance can take on any 

value from 0 to ∞
! The difference between two times or two distances can range 

between –∞ to ∞ 
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Scales of measurement (Stevens 1946;1951)

Nominal or categorical. They can be represented by numbers but their 
assignment is arbitrary
! Color, participant identifier, profession

Ordinal. Preserve information about the relative (not absolute) magnitude 
of what is measured
! Ranking of a collection of items, age group (child, teenager, adult)

Interval. Preserve continuous, linear relationships between what is 
measured. Distances between subsequent points on the scale 
are equal. But the presence of zero is arbitrary.
! Temperature in degrees Celsius

Ratio. Interval that have a ‘true’ zero
! Temperature in degrees Kelvin, weight in kilograms, 
! Response time in seconds  
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Scales of measurement (Stevens 1946;1951)

Athens: 20 degrees Celsius
Paris: 10 degrees Celsius

Can we say that it is twice as hot in Athens than in Paris?

Notice: 
Athens: 68 degrees Fahrenheit 
Paris: 50 degrees Fahrenheit

Other interval data examples: 
IQ scores, time in 12-hour format, dates (2019)
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Scales of measurement (Stevens 1946;1951)

Examples of ordinal scales
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Scales of measurement (Stevens 1946;1951)
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One may decide to assign numerical values:

 2 for strongly agree
 1 for agree
 0 for neutral 
-1 for disagree
-2 for strongly disagree  

…then treat the data as ratio or interval. 

Problem:  
Intervals between subsequent values may 
not be perceived as equal. For example, the 
perceived difference between agree and 
strongly agree may be much larger than the 
difference between agree and neutral.



Scales of measurement (Stevens 1946;1951)

Scales limit the mathematical operations that are permitted 
on data of a given type:
! Nominal data are limited to operations such as counting
! Ordinal data are limited to operations such as ranking
! Interval data also permit addition and subtraction (but not 

multiplication or division)
! Ratio scales permit the full range of arithmetic operation and allow 

for ratios between numbers (10/5 = 2 implies than 10 is twice as 
large than five)

Scales of measurement are widely used.  
However, they are controversial.
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https://chi2018.acm.org/blog/
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Critiques of scales of measurements

Understanding the context of the data is important
! Classification schemes (such as scales of measurements) inevitably loose 

information about the context. 

« the single unifying argument against proscribing statistics based on scale 
type is that it does not work » [Velleman and Wilkinson, 1993]

Alternative approach advocated by Baguley: 
Consider a range of factors of data that impact on the statistical model.  

For example:
! Are data continuous or discrete?  
! What is the probability distribution being assumed?
! What is the sample size? 
! etc.
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Descriptive statistics
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Descriptive (or summary) statistics

Common descriptive statistics: minimum (min), maximum (max), 
mean, median, standard deviation, etc.  

Excellent starting point of most statistical analyses
! A good way to summarize and communicate information about 

a dataset
! « Get a feel » for a data set
! Sometimes confirm some clear patterns in the data
! Identify irregularities and problems in the data collection 

process
! Guide the selection of an appropriate statistical model 
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Measures of central tendency

How to describe a data set with a single number?
! e.g., by means of a « typical », the « most common » or an 

« average »

Common measures of central tendency:  
! mode (the most common value)
! median (the central or middle value)
! mean (or average)

The mode, median or mean of a sample will most often 
differ from those of the population being sampled
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Parameters vs. statistics

A parameter is a property of the population

A statistic is a property of a sample. It provides a way to estimate a 
population parameter.
! As the size n of the sample approaches the size N of the population, sample 

statistics tend to resemble population parameters 

One convention is to use a Greek letter for the population parameter and 
a Latin letter for the sample statistic
! e.g., μ designates the population mean and M designates the sample mean 
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Parameters vs. statistics

A parameter is a property of the population

A statistic is a property of a sample. It provides a way to estimate a 
population parameter.
! As the size n of the sample approaches the size N of the population, sample 

statistics tend to resemble population parameters 

One convention is to use a Greek letter for the population parameter and 
a Latin letter for the sample statistic
! e.g., μ designates the population mean and M designates the sample mean 

Another convention is to use the same symbol but differentiate a sample 
estimate by the « hat » symbol (ˆ), e.g.,    designates the mean 
estimate given from the sample

µ̂
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Mode
The most common value

! The mode of the following data set is 10: 
16 10 12 10 9 14 13

! A data set may have a single (unimodal) or multiple modes 
(multimodal)

The mode could be the best value to guess
! This works best for discrete rather than continuous data, where the 

mode may be far from typical
! Especially appropriate for categorical data, where there is no order 

relationship
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Example
Consider the following plot that shows the responses of 14 students 

to the question: What color eyes do you have?

What’s the mode of the sample? 
What’s the best color guess when picking a random student?

Color
GreenBrownBlue

C
ou
nt

8

6

4

2

0
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Median
The central value in a set of numbers 

! If numbers are placed in order, the median is the middle value:
12 20 24 34 35 80 83  

If the sample size is even, the convention is to take the mid-
point between the two central values as the median
! Consider the following ordered set of values:

5 6 8 9 12 15
Its median is (8+9)/2 = 8.5  

The median is insensitive to extreme values
! Pros:  Eliminates the effect of extremes
! Cons: Ignores vital information about non-central values
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Arithmetic mean
It is the most widely used measure of central tendency. It is 

well-known as mean or average
! The mean of the following data set:

16 10 12 10 9 14 13
    is (16+10+12+10+9+14+13) / 7 =  12

Generic formulation of the mean of a set of numbers xi, 
where i=1,2..n:

Unlike the mode or the median, the mean uses all the n 
numbers in its calculation 
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M =

nP
i=1

xi

n



Example

What’s the best measure of central tendency for each of the 
following?
1. Weight of 50 randomly sampled individuals
2. Income of French families 
3. Housing expenses for 100 university students, where expenses 

are classified into three ranges:  
(a) lower than $300  
(b) between $300 and $600  
(c) higher than $600  
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Trimmed mean
A trimmed mean is a measure of central tendency designed 

to reduce the influence of extreme values
! This is achieved by discarding the smallest and largest k 

numbers:

 
where the notation x(i) indicates that values have been ordered 
from highest to lowest

A trimmed mean is a compromise between the mean and 
the median!
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Mtrim =

n�kP
i=k+1

x(i)

n� 2k



Example

Consider the following sample:
12   10   8 12 13 18 5 37 15

Let’s reorder it:
5   8 10 12 12 13 15 18 37

Median = 12
Mean = 14.4
Trimmed Mean(k = 2) = 12.4
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Measures of dispersion

Compare these two datasets:
D1:  12  13 13 14 15 14
D2:    5    9        12 15  20  20   

They have identical means and medians but are very different  
! The numbers in D2 are more spread out. They have greater 

dispersion.

Measures of dispersion:  
range, quartiles & quantiles, variance, standard deviation, etc.
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Range
It is the difference between the maximum and the minimum values of 

the sample 

D1:  12  13 13 14 15 14
D2:    5    9        12 15          20        20   

The range of D1 is: 15 - 12 = 3
The range of D2 is: 20 - 5 = 15

The measure is very vulnerable to extreme values
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Quartiles
What about computing the range on a trimmed sample?

! This will better describe the spread of less extreme, more central values

Quartiles are the three points that separate a set of n ordered 
numbers into four equal subsets
! The first (lower) quartile separates the lowest 25% numbers
! The second (middle) quartile is the median
! The third (upper) quartile separates the highest 25% numbers
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Quartiles
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Example: quartiles of small samples

12      14      15      20      20      23      29       33      36       36        56

IQR (Interquartile range) = 34.5 – 17.5 = 17

The above calculations (from R) may seem awkward. Other statistical 
software (e.g., SPSS) may give a different result. 
! There are different approaches for calculating quartiles of small samples

17.5 (lower) 23 (middle) 34.5 (upper)

63



Boxplots
An example of multiple boxplots comparing measured 

speed of light for five different experiments (source: Wikipedia)
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Boxplot

Ra
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IQ
R

Median

Potential outlier

Whisker

The maximum size of a whisker is usually 1.5 x IQR (it depends on the software) 
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Quantiles

The points that divide a set of numbers into q subsets of 
equal size
! Quartiles are a special case of quantiles, where q = 4

Another common choice is the centile (or percentile) 
where q = 100
! The 25th percentile is the first (lower) quartile
! The 50th percentile is the median
! The 75th percentile is the third (upper) quartile

66



Variance and standard deviation
Variance sum of squares

sample size

67

SD is possibly the most common measure of dispersion

V ar =

nP
i=1

(xi �M)2

n

Standard deviation (scaled to use the same units as the 
original data)

SD =
p
V ar =

vuut
nP

i=1
(xi �M)2

n



Example

Consider the following dataset that gives the weight of six 
15-month old babies (in kilograms):

8  10 10 12 9 11

V ar = (8–10)2+(10�10)2+(10�10)2+(12�10)2+(9�10)2+(11�10)2

6 = 1.667

M = (8+10+10+12+9+11)
6 = 10

SD =
p
1.667 = 1.29
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Example

Consider the following dataset that gives the weight of six 
15-month old babies (in kilograms):

8  10 10 12 9 11

One can expect that the typical weight of a 15-month old 
baby is roughly 10 ± 1.29 kilograms 

V ar = (8–10)2+(10�10)2+(10�10)2+(12�10)2+(9�10)2+(11�10)2

6 = 1.667

M = (8+10+10+12+9+11)
6 = 10

SD =
p
1.667 = 1.29
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Residuals
The raw deviations from the mean                are called 

residuals

For the following dataset (M = 10) 
8  10 10 12 9 11

The residuals are as follows:
-2   0  0 2 -1 1
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Exercise
Consider an experiment measuring the reaction time (in ms) of  

6 participants over 5 repeated trials.

T1 T2 T3 T4 T5
P1: 137 180 156 130 126
P2: 130 122 110 124 122  
P3: 140 128 124 110 112 
P4: 133 144 123 121 130
P5: 122 118 117 115 116
P6: 155 148 128 142 137

How would you proceed to calculate and report the mean, the 
median, and the standard deviation of this sample? 
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Estimators of population parameters

How do we estimate a population’s mean, variance or 
standard deviation from a sample?

For example:
! Is a sample’s mean a good estimator of the population’s 

mean?
! Is a sample’s standard deviation a good estimator of the 

population’s standard deviation?
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Efficient & unbiased estimators

A good statistic should be an efficient and unbiased 
estimator of the relevant population parameter

An efficient statistic has less error
! tends to be close to the population parameter
! fluctuates less from sample to sample

An unbiased statistic has no bias
! in the long run, it does not (consistently) overestimate 

neither underestimate the true population parameter
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Unbiased vs. biased estimators

Sample statistics of central tendency such as means, 
medians, and trimmed means are unbiased estimators

Thus, we will often use     to designate the mean of the 
sample (M ), as well as the sample’s estimate of the 
population mean (   )  

...but statistics of dispersion are biased
! They tend to underestimate the true population parameter
! A small sample is unlikely to capture the extremes of a 

population
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Estimation of population variance & SD

The population variance is usually represented as 
and its unbiased estimator is:

The unbiased estimator of the population standard 
deviation       is:

�2

�̂ =
p
�̂2 =

r
⌃n

i=1(xi � µ̂)2

n� 1

�̂2 =
⌃n

i=1(xi � µ̂)2

n� 1

�

degrees of freedom

degrees of freedom
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Degrees of freedom

degrees of freedom = the number of parameters in the 
calculation of a statistic that are free to vary 

n-1 are the degrees of freedom of the residuals 
(or the degrees of freedom of the parameter estimates)

xi � µ̂

Given      we only need n-1 independent observations to 
calculate the variance (or the standard deviation)

xn = µ̂� (x1 + x2 + ...+ xn�1)

µ̂
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Descriptive vs. inferential statistics 

The unbiased estimates of a population variance (or 
standard deviation) are known as inferential variance or 
inferential standard deviation 

Descriptive statistics simply describe the sample.

With inferential statistics, we try to infer the population 
parameters from a sample. 
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Comment on measures of dispersion

Why do common measures of dispersion (variance 
and standard deviation) use sums of squares


instead of sums of absolute residuals?
nX

i=1

|xi � µ̂|

nX

i=1

(xi � µ̂)2



Working with absolute values can be difficult, but this is 
not the main reason.


The measure of central tendency that minimizes the 
sums of absolute differences is the median, not the 
mean. 


And since the mean is the prevalent measure of central 
tendency, we commonly use sums of squares. 


However, for statistical methods that rely on medians, 
sums of absolute differences can be more appropriate. 

Comment on measures of dispersion



Introduction to R
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Why R?

R is an open source programming language and software 
environment for statistical computing and graphics

It is available for most computing platforms (Windows, Mac 
OS, Linux)

There is a wide range of statistical packages written in R. 
They cover nearly everything you may need for your 
statistical analyses. 

R is widely used by the research community 
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Drawbacks
Challenging to learn for many, when compared to 

commercial statistical software with rich user interfaces, 
such as SPSS, Statistica, and JMP

 R supports several related data types (lists, vectors, 
matrixes, frames). It is easy to forget how to pass from 
one data type to another.

Generating a good graph can be quite laborious, e.g., 
figuring out which parameters to specify
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R vs. Python

Python is a general-purpose language that is well-supported 
with libraries for statistical analysis. 

For a detailed comparison:
https://www.datacamp.com/community/tutorials/r-or-python-for-data-analysis
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Getting help
 Fortunately, there are plenty of online resources that can 

help you find quick solutions
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Getting started
Go to https://cran.r-project.org/ and download R for your 

platform

RStudio (not required)
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Vectors
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Arithmetic
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Measures of central tendency
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Measures of dispersion

Unbiased estimator
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Measures of dispersion

Biased estimator
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Minimizing the sum of absolute residuals 



Plotting
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Plotting
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Creating larger programs - version 1

population <- 1:10000

samplesNum <- 10 # Number of samples
sampleSize <- 20 # Size of each sample

# Create a matrix of samplesNum x sampleSize
samples <- matrix(, nrow = samplesNum, ncol = sampleSize)

# Repetitively create samples
for(i in 1:samplesNum){
    samples[i,] <- sample(population, sampleSize)
}

# Transpose the samples matrix
samplesTrans <- t(samples)

# And plot it
boxplot(samplesTrans)
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Creating larger programs - version 2

population <- 1:10000

samplesNum <- 10 # Number of samples
sampleSize <- 20 # Size of each sample

# Produce a matrix of samples
samples <- replicate(samplesNum, sample(population, sampleSize))

# And plot it
boxplot(samples)
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Creating larger programs - version 3

population <- 1:10000

# Define a function that creates a matrix of random samples
createRandomSamples <- function(pop, num = 10, size = 10){
    replicate(num, sample(population, size))
}

boxplot(createRandomSamples(population, size = 20))
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