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Statistical inference

The process of deducing the parameters of an 
underlying probability distribution from a sample


Four broad types:

point estimation

interval estimation

hypothesis testing

prediction



Point estimates
How much informative is the following graph? 
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Point estimates

A point estimate can be thought of as a  
« best guess » of the true population parameter


Descriptive statistics such a the sample mean or 
the median are examples of point estimates 


Question: What are the point estimates of a 
population’s variance and standard deviation?



Point estimates
How much informative is the following graph? 


A point estimate communicates no information about 
the uncertainty or quality of the estimate it provides
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Interval estimate

An interval estimate does not provide an exact 
value, but rather a range of values that the 
parameter might plausibly take.


Most common method: constructing a  
confidence interval (CI)



Confidence interval (CI)
It specifies a range of values that is expected to 
contain the true parameter value (but it may not)


    


true value



Confidence interval (CI)
It specifies a range of values that is expected to 
contain the true parameter value (but it may not)


It is associated with a confidence level, usually 
expressed as a percentage


e.g., 95% CI or 99% CI 

true value



Interpreting a confidence interval (CI)

What do 95% confidence intervals represent here? 



Formal interpretation of CIs
Classical frequentists statistics view a probability 
as a statement about the frequency with which 
events occur in the long run.


Of the many 95% CIs that might be constructed, 
95% are expected to contain the true population 
parameter. The other 5% may completely fail! 



Understanding probabilities

Suppose you know that if one opens a large number 
of cookie boxes, approximately 95% of the boxes 
will contain a surprise gift.   


Question 1: What is the probability that a randomly 
selected cookie box will contain a surprise gift? 


We can write this probability as Pr(Gift) = .95
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Understanding probabilities

Suppose you know that if one opens a large number 
of cookie boxes, approximately 95% of the boxes 
will contain a surprise gift.   


Suppose you randomly choose to open box A.  


Question 2: Given that you opened box A, what is 
the probability the box contains a surprise gift? 


Pr(Gift | A) = ?
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Understanding probabilities

Question 2: Given an experiment (e.g., the one in red), what is 
the probability that its range includes the true population value?
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Suppose that many research teams run independent 
experiments and construct a 95% CI to estimate a mean.

Question 1: What is the probability that the CI of a 
random experiment will include the true population value?



CIs and probabilities

Formally speaking, a given CI does not specify a 
probability range. The true parameter is considered as 
fixed and the CI may or may not contain it.


We cannot claim that a 95% CI contains the true 
population parameter with a 95% probability or with 
95% confidence  

Classical frequentists statistics do not allow for such 
probabilistic reasoning.



Informal interpretation of CIs

However, it is often reasonable to treat a CI as an 
expression of confidence or belief that it does contain 
the true value.  
	 	 See [Baguley] and [Cumming and Finch, 2005]


Attention: This view has its critics. 



Interpreting a confidence interval (CI)
What do 95% confidence intervals represent here? 



Interpreting a confidence interval (CI)

What do 95% confidence intervals represent here? 
Conservatives will gain between 35% and 45% of the 
votes with 95% probability.

There is a 95% probability that between 35% and 45% 
of the voters intend to vote for Conservatives. 

We are 95% confident that 35% and 45% of the voters 
intend to vote for Conservatives.

We expect that the true voting intention for Conservative 
will be included by the CI of 95% of the polls.



Confidence level

A 100% CI will include the whole range of possible 
values


A 0% CI reduces to a point estimate


A 95% CI is the most common choice (by tradition)



alpha level

If C is the confidence level of a confidence 
interval, then: 


C = 100 (1 - α)

where α (or alpha) represents the number of 
times that a C% CI is expected to fail:


If  C = 95, then α = .05



Structure of a confidence interval

It is defined by two points that form its limits,  
i.e., its lower and upper bounds


It can be symmetrical, where the point estimate 
lies in the center of the CI


...or asymmetrical, where the point estimate is 
not at the center of the CI



Symmetrical CIs
The intervals can be described by the point 
estimate plus or minus half of the interval, e.g., 
165 ± 6 cm 


This half width of the interval is known as the  
margin of error (MOE) 



Width of a CI

Depends on the confidence level:

99% CIs are wider than 95% CIs 


It also depends on the size of the sample: 

small samples produce wide CIs



Sampling distributions and CIs

To derive the C%  CI of a statistic (e.g., the mean), 
we first need to approximate the sampling 
distribution of this statistic.  


Why? 


Because the sampling distribution provides the 
probability distribution of all possible values of the 
statistic. Our goal is to identify the C% of these 
possible values.
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Example
Consider the sampling distribution of the mean for a 
normally distributed population (M = 100, SD = 10)


The sampling distribution becomes narrower as more 
samples are added. Thus, CIs should also become narrower.
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Intuition of how CIs work  
explained for means

Consider the sampling distribution of the mean (n = 20). 
Let’s take the range between its 10th and its 90th percentile.


Question 1: How many of the distribution’s values does 
this range contain?  


Imagine that we repeat an experiment by drawing random 
samples (n = 20) a large number of times. Every time, we 
calculate the mean of the sample.


Question 2: On average, how many of these sample 
means does the above range contain?  
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Mean of a random sample 

On average, how many sample means will be included in this range? 

true mean 

Intuition of how CIs work  
explained for means
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Mean of a random sample 

On average, how many 80% CIs will include the true mean? 

true mean 

80% CI

Intuition of how CIs work  
explained for means



Standard error (CE) of a statistic

Standard deviation of the sampling distribution


=


Standard error (SE) of the statistic

There is a clear connection between the standard deviation 
of the sampling distribution of a statistic and a CI  



Remember (normal distributions)…
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Suppose this represents the sampling distribution of the mean.

How could we derive the 95% confidence interval of the 
mean given the standard error?



Example
Standard error of the mean (SEM) for a normal population  
(M = 100, SD =10), when n = 10, 30, and 100
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The standard error of the mean (     ) derives 
from the standard deviation (   ) of the original 
population and the sample size n:


SEM calculation
�µ̂

�

�2
µ̂ =

�2

n
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From standard errors to CIs

The generic form of a symmetric CI is: 


where           is the α/2 x 100 percentile of a 
symmetric standardized distribution.    
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�a/2

CI = µ̂± �a/2 ⇥ �µ̂



Normal sampling distribution
If the sampling distribution is normal. Then, 
the CI can be constructed as follows: 

α/2 x 100 percentile  
of the standard normal distribution 

standard normal (z) distribution

For a 95% CI, we take the 2.5th percentile 

CI = µ̂± za/2 ⇥ �µ̂



Normal sampling distribution
standard normal (z) distribution non-standardized normal distribution
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Calculate the 2.5 percentile of the z distribution: 


Calculate the 97.5 percentile of the z distribution


Calculate the 2.5 and 97.5 percentiles of the normal 
distribution with M = 100 and SD = 4


R code
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Example
Imagine that a researcher takes a random sample of 30 
people and keeps them awake for 24 hours prior to 
taking awn IQ test. The researcher finds an IQ score 
equal to M = 94.6. 


A common assumption is that the standard deviation of 
IQ scores in populations is SD = 15. Based on this 
assumption, construct a 95% CI of the mean. 
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CI = µ̂± za/2 ⇥ �µ̂

±1.96 15p
30

= 2.74
94.6

=) CI = 94.6± 5.4



Problem

We rarely know the standard deviation of the 
original population
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When the population standard deviation is 
unknown, we need to estimate it from the 
sample:

SEM estimation

�̂µ̂ =
�̂p
n
=

s
nP

i=1
(xi�µ̂)2

n�1p
n

unbiased estimate  
of population stand. deviation



When the standard error is estimated from 
the sample, then the resulting standardized 
sampling distribution is not a z distribution.
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It is a t distribution

z distribution
t distribution

 n = 5

But…



The t distribution (Student’s t)
	 When the population standard deviation σ is 

unknown and is estimated from the unbiased 
variance estimate:


	 then, the resulting standardized sample mean has 
a t distribution with ν = n - 1  degrees of freedom.

�̂2 =

nP
i=1

(xi � µ̂)

n� 1

published by William Gosset (1908) under 
the pseudonym  « Student »



The t distribution (Student’s t)

	 A random variable X following a t distribution is denoted as:  

 X ⇠ t(⌫)
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R code



In most cases, the population SD is unknown,  
so we use the t distribution as the standardized 
sampling distribution of the mean:


where tν,α/2 is the α/2 x 100 percentile of the t 
distribution with ν = n -1 degrees of freedom


CIs using the t distribution

µ̂± t⌫,↵/2 ⇥ �̂µ̂



CIs using the t distribution
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R code

Calculate the 2.5 and 97.5 percentiles of the t 
distribution for different degrees of freedom ν




Example

Consider the following IQ scores from a sample of 10 healthy people:


96   112    103    89    105    112    96    118     102     107 

Construct a CI to estimate its mean, assuming that the population is 
normally distributed.



96   112    103    89    105    112    96    118     102     107

Example

µ̂ = 104.0 �̂ = 8.8
First estimate the mean and SD of the population:

�̂µ̂ =
�̂p
n
=

8.8p
10

= 2.77

Then estimate the standard error of the mean:

MOE = t9,.975 ⇥ �̂µ̂ ' 2.262⇥ 2.77 = 6.27

The margin of error (MOE) for the 95%CI is:



Reporting confidence intervals

The American Psychological Association (APA) suggests 
reporting the full CI next to the point estimate:


M = 165 cm, 95% CI [160 cm, 172 cm]


Recommended: It allows to report both symmetrical and 
asymmetrical CIs in the same way.



96   112    103    89    105    112    96    118     102     107 

Our estimate for the mean IQ score of the population  
(based on our sample) is:


M = 104.0, 95% CI  [97.7, 110.3]

Example



R code



t.test function
Alternatively, you can use the t.test function:

> t.test(scores) 

 One Sample t-test 

data:  scores 
t = 37.506, df = 9, p-value = 3.378e-11 
alternative hypothesis: true mean is not equal to 0 
95 percent confidence interval: 
  97.7273 110.2727 
sample estimates: 
mean of x  
      104  



t.test function
Alternatively, you can use the t.test function:

> t.test(scores)$conf.int 
[1]  97.7273 110.2727 
attr(,"conf.level") 
[1] 0.95 

The t.test function returns a list.  
The list member “conf.int” gives  
the 95% CI as calculated by the t.test function.



Let’s play with R code!

Let’s repeatedly take samples (n = 12) from a normally 
distributed population (M = 100, SD = 10), and construct 
95% CIs to estimate the mean, based on the t distribution. 


Then, check how often the 95% CIs include the true mean 
value M = 100. What do you expect?   



R program
M <- 100 # True population mean
SD <- 10 # True population standard deviation
n <- 12  # Size of the samples

N <- 10000 # Number of sampling repetitions
count <- 0 # Counter of how many times the CI fails

for(i in 1:N){
    sample <- rnorm(n, mean = M, sd = SD)
    ci <- t.test(sample)$conf.int
    
    if(ci[2] < M || ci[1] > M) count <- count + 1
}

cat("Average number of failures = ", count/N, "\n")
cat("Coverage probability = ", (1 - count/N)*100, "%\n")
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Let’s try a different population
Let’s repeat the experiment by sampling (n = 12) 
from a population that follows a highly skewed log-
normal distribution.


0 100 200 300 400 500

0.
00
0

0.
00
1

0.
00
2

0.
00
3

0.
00
4

0.
00
5

0.
00
6

x

dl
no

rm
(x

, m
ea

n 
= 

4.
6,

 s
d 

= 
1)

Mean = 164.0, Median = 99.5  



R program
# Parameters of the log-normal distribution
m <- 4.6   # Mean of log-transformed values (normal distribution)
sd <- 1    # SD of log-transformed values (normal distribution)

# True population mean (mean of the original skewed distribution)
M <- exp(m + sd^2/2) 

n <- 12  # Size of the samples

N <- 10000 # Number of sampling repetitions
count <- 0 # Counter of how many times the CI fails

for(i in 1:N){
    sample <- rlnorm(n, meanlog = m, sdlog = sd)
    ci <- t.test(sample)$conf.int
    
    if(ci[2] < M || ci[1] > M) count <- count + 1
}

cat("Average number of failures = ", count/N, "\n")
cat("Coverage probability = ", (1 - count/N)*100, "%\n")

56



R program
# Parameters of the log-normal distribution
m <- 4.6   # Mean of log-transformed values (normal distribution)
sd <- 1    # SD of log-transformed values (normal distribution)

# True population mean (mean of the original skewed distribution)
M <- exp(m + sd^2/2) 

n <- 12  # Size of the samples

N <- 10000 # Number of sampling repetitions
count <- 0 # Counter of how many times the CI fails

for(i in 1:N){
    sample <- rlnorm(n, meanlog = m, sdlog = sd)
    ci <- t.test(sample)$conf.int
    
    if(ci[2] < M || ci[1] > M) count <- count + 1
}

cat("Average number of failures = ", count/N, "\n")
cat("Coverage probability = ", (1 - count/N)*100, "%\n")
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Proof: https://www.statlect.com/probability-distributions/log-normal-distribution

https://www.statlect.com/probability-distributions/log-normal-distribution


The result…



What about larger samples…

n = 30, Coverage probability = 88%


n = 100, Coverage probability = 92%


n = 500, Coverage probability = 94%


However, notice that my distribution is extremely skewed. 



Monte Carlo methods

All these experiments are Monte Carlo simulations.


They are very useful for assessing the performance 
of statistical models and procedures. 


Very often used to explore what happens when the 
assumptions of a statistical procedure are violated. 



Estimating differences

We are often interested in estimating a difference 
between two populations:


What is the difference in the mean 
temperature between June and July?


What is the difference in math 
performance between women and men?


How much slower (or faster) is human’s 
reaction time under alcohol use?
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Confidence intervals for a difference

Given two independent sample statistics, we could 
construct the confidence interval of their difference.


Example: The mean difference in speed between 
techniques A and B is: 1.22s, 95% CI [1.12s, 1.34s] 
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Confidence intervals for a difference

How do we go from the CI of individual parameters 
to the CI of their difference?
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Difference between normal distributions

The difference between two normal distributions is itself normal.


64

60 80 100 120 140 160 180

0.
00

0.
01

0.
02

0.
03

0.
04

Difference Distribution

Fr
eq
ue
nc
y

-40 -20 0 20 40 60 80

0
50
0

10
00

15
00

20
00



Difference between normal distributions

Given two independent samples (1 and 2) from two 
normal populations, their difference in means can be 
estimated as:


estimated difference in means estimated standard error of the difference

µ̂1 � µ̂2 ± t⌫,↵/2 ⇥ �̂µ̂1�µ̂2
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Degrees of freedom

If the size of the two samples is n1 and n2, then the 
degrees of freedom of the t distribution are:


µ̂1 � µ̂2 ± t⌫,↵/2 ⇥ �̂µ̂1�µ̂2

⌫ = (n1 � 1) + (n2 � 1) = (n1 + n2)� 2
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Standard error of the difference

How do we calculate the standard deviation of a 
difference?


µ̂1 � µ̂2 ± t⌫,↵/2 ⇥ �̂µ̂1�µ̂2
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The variance sum law

If the two variables are independent, they are 
uncorrelated, and their covariance is zero. Thus:

�2
X1±X2 = �2

X1
+ �2

X2
± 2�X1,X2

Covariance (shared variance) between X1 and X2 

�2
X1±X2 = �2

X1
+ �2

X2
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Applying the law to the distributions of means:


�2
µ̂1�µ̂2

= �2
µ̂1

+ �2
µ̂2

=
�2
1

n1
+

�2
2

n2

�µ̂ =
�p
n

Population SD
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If we further assume equal variances (              ), then: 


�µ̂1�µ̂2 = �1

r
1

n1
+

1

n2
= �2

r
1

n1
+

1

n2



Unknown population variances

When the common variance is not known, it is better to 
estimate it by taking into account all available data, 
from both samples:


 
where the pooled estimate is calculated as follows:

�̂µ̂1�µ̂2 = �̂pooled

r
1

n1
+

1

n2

�̂pooled =

vuuut
n1P
i=1

(xi � µ̂1)2 +
n2P
i=1

(xi � µ̂2)2

n1 + n2 � 2
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Summary of assumptions

1. Both samples are drawn from population with 
normal distributions


2. The two samples are independent


3. Their populations have equal variances  
(homogeneity of variance assumption)
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Homogeneity of variance

This assumption makes calculation easier. 


If variances are not equal, then the sampling 
distribution of the standardized mean is no 
longer a t distribution! 
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Unequal variances

We can use the same formula:


with “corrected” degrees of freedom:


and: 


µ̂1 � µ̂2 ± t⌫0,↵/2 ⇥ �̂µ̂1�µ̂2

⌫0 =
( �̂

2
1

n1
+ �̂2

2
n2

)2

�̂4
1

n2
1(n1�1)

+ �̂4
2

n2
2(n2�1)

�̂µ̂1�µ̂2 =

s
�̂2
1

n1
+

�̂2
2

n2

(Welch-Satterthwaite correction)
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Unequal variances
We can use the same formula:


with “corrected” degrees of freedom:


and: 


µ̂1 � µ̂2 ± t⌫0,↵/2 ⇥ �̂µ̂1�µ̂2

⌫0 =
( �̂

2
1

n1
+ �̂2

2
n2

)2

�̂4
1

n2
1(n1�1)

+ �̂4
2

n2
2(n2�1)

�̂µ̂1�µ̂2 =

s
�̂2
1

n1
+

�̂2
2

n2

(Welch-Satterthwaite correction)
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Please, don’t panic! You don’t have to remember all 
these equations. Software can do these corrections for 
you. 

However, you need to be aware of the underlying 
assumptions, their problems, and their corrections.  
And you need to be aware of which methods you use.



Unequal variances

Experts recommend adopting the Welch-Satterthwaite 
correction by default.


Even if the assumption of the homogeneity of variance 
is true, the loss of accuracy when applying the 
correction is considered negligible.


(see discussion and references provided by Baguley)

75



Example
A research team is interested in comparing the 
performance in an IQ test between two groups: 

G1: adults who have, and 
G2: adults who have not completed any graduate studies 


From each group, they test 15 participants. 


SG1: 102, 104, 103, 106, 95, 108, 101, 108, 113, 96, 112, 
106, 105, 109, 105


SG2: 96, 108, 90, 104, 97, 103, 95, 102, 93, 107, 101, 88, 
99, 104, 97
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R code
We are going to use the t.test R function:

CIs of the mean of individual samples

CI of the mean difference 
(corrected for unequal variances)

CI of the mean difference
(equal variances assumed)
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Plots
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R code

Plotting (plotrix package)
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Example’s conclusions

The mean IQ score of group G1 is:

M = 104.9, 95% CI [102.1, 107.7] 

The mean IQ score of group G2 is:

M = 98.9, 95% CI [95.6, 102.2] 

The mean score difference between group G1 and 
group G2 is: 


M = 5.9, 95% CI [1.8, 10.1]
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Exercise

Write a Monte Carlo simulation in R to evaluate the 
effect of unequal variances to the accuracy of CIs for 
mean differences. 


Test whether and how results change if the size of 
the samples are not equal: n1 6= n2
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Example

A research team is interested in assessing the effect of 
taking a Geometry course on students’ performance in 
an IQ test.


20 students are randomly split into two groups: 

Gcontrol.  This is the control group.

Ggometry. The group that follows the Geometry course.


Results are as follows: 

 Gcontrol:     102,  94, 90, 104,   95, 100, 101, 96, 100, 96

 Ggeometry:  106, 108, 93, 103, 100, 100, 105, 98, 103, 96
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Example
The two groups can be assumed as independent:
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Example (variation of the previous)

A research team is interested in comparing the 
performance in an IQ test before and after attending 
a Geometry course:


10 participants are tested before and after the 
completion of the course. 


SBefore:  102,  94, 90, 104,   95, 100, 101, 96, 100, 96


  SAfter: 106, 108, 93, 103, 100, 100, 105, 98, 103, 96

The two samples are no longer independent!
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Repeated-measures designs

Such experimental designs, where repeated observations are 
made over the same individuals are known as repeated 
measures (or within-participants designs). 

Observations are related (paired), and thus, they are not 
independent. 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
Before 102 94 90 104 95 100 101 96 100 96
After 106 108 93 103 100 100 105 98 103 96
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CIs for related samples

The solution is trivial. We calculate the difference 
in performance for each participant.


 
We then construct the CI that estimates the 
mean of these differences.  

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
Before 102 94 90 104 95 100 101 96 100 96
After 106 108 93 103 100 100 105 98 103 96
Diff. 4 14 3 -1 5 0 4 2 3 0
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R Code

Alternative
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Results

The CI of the mean difference is now narrower.
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In general, repeated measures (within-participants) designs 
produce more precise estimations than experimental designs with 
independent participant groups (between-participants designs).
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Pros and cons of repeated measures

Pros: 
Require a smaller number of participants

More powerful in estimating differences


Cons: 
Participation is longer for each participant

Can introduce undesirable carryover effects 
(e.g., fatigue or learning)
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Example

Consider the previous example, where students took the 
IQ test before and after following the Geometry course.


The mean IQ score improved, but what caused this 
improvement? 

   Was it the the Geometry course?


Or was it the fact that students were now more 
familiar with IQ tests?
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Complex designs

Experimental designs can be more complex in different 
aspects:


Control for multiple factors (independent variables)


Study more than two levels per factor


Combine between-participants and repeated-
measures designs
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Example
A research team is interested in assessing the effect of a 
Geometry course on students’ IQ performance. They randomly 
create two groups of students (Control vs. Geometry). 


Each student takes three IQ tests over three weeks.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
Week 1 102 94 90 104 95 100 97 96 96 96
Week 2 105 97 93 96 99 105 100 93 103 98
Week 3 101 100 93 106 98 105 102 98 104 93

Control Group

P11 P12 P13 P14 P15 P16 P17 P18 P19 P20
Week 1 105 98 100 97 103 104 103 103 100 99
Week 2 106 100 93 100 100 105 100 95 96 98
Week 3 103 101 98 106 98 100 101 95 104 97

Geometry Class Group

92



Example
This is a mixed design that combines: 


a between-participants factor (Geometry Course) with 
two levels: No (Control) and Yes (Geometry) 

a within-participants (repeated-measures) factor 
(Week) with three levels: Week 1, Week 2, Week 3
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Example
Question 1:  What’s the mean difference in IQ scores between 
students who took and students who did not take the 
geometry course?  

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
Week 
1

102 94 90 104 95 100 97 96 96 96
Week 
2

105 97 93 96 99 105 100 93 103 98
Week 
3

101 100 93 106 98 105 102 98 104 93
Mean: 102.7 97.0 92.0 102.0 97.3 103.3 99.7 95.7 101.0 95.7

Control Group

P11 P12 P13 P14 P15 P16 P17 P18 P19 P20
Week 
1

105 98 100 97 103 104 103 103 100 99
Week 
2

106 100 93 100 100 105 100 95 96 98
Week 
3

103 101 98 106 98 100 101 95 104 97
Mean: 104.7 99.7 97.0 101.0 100.3 103.0 101.3 97.7 100.0 98.0

Geometry Class Group
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Example
Question 1:  What’s the mean difference in IQ scores between 
students who took and students who did not take the 
geometry course?  

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
Week 
1

102 94 90 104 95 100 97 96 96 96
Week 
2

105 97 93 96 99 105 100 93 103 98
Week 
3

101 100 93 106 98 105 102 98 104 93
Mean: 102.

7
97.0 92.0 102.0 97.3 103.3 99.7 95.7 101.0 95.7

Control Group

P11 P12 P13 P14 P15 P16 P17 P18 P19 P20
Week 
1

105 98 100 97 103 104 103 103 100 99
Week 
2

106 100 93 100 100 105 100 95 96 98
Week 
3

103 101 98 106 98 100 101 95 104 97
Mean: 104.7 99.7 97.0 101.0 100.3 103.0 101.3 97.7 100.0 98.0

Geometry Class Group
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Taking the mean is the most common way of aggregating 
data over an independent variable. 

However, it is not the only way. Depending on their research 
goals, the researchers may, for example, decide to use the 
median to reduce the influence of extreme values. Or they 
may decide to take the maximum score, or just the final score 



Results
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Next lecture

We will show how to deal with non-normal 
distributions...
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