
Lecture 4

Confidence intervals for non-normal distributions


Null Hypothesis testing 


Introduction to significance tests

Theophanis Tsandilas

1



Complex designs

Experimental designs can be more complex in different aspects:


Control for multiple factors (independent variables)


Study more than two levels per factor


Combine between-participants and repeated-measures designs
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Example
A research team is interested in assessing the effect of a Geometry 
course on students’ IQ performance. They randomly create two 
groups of students (Control vs. Geometry). Each student takes three 
IQ tests over three weeks.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
Week 1 102 94 90 104 95 100 97 96 96 96

Week 2 105 97 93 96 99 105 100 93 103 98

Week 3 101 100 93 106 98 105 102 98 104 93

Control Group

P11 P12 P13 P14 P15 P16 P17 P18 P19 P20
Week 1 105 98 100 97 103 104 103 103 100 99

Week 2 106 100 93 100 100 105 100 95 96 98

Week 3 103 101 98 106 98 100 101 95 104 97

Geometry Class Group
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Storing data on CSV files 
group, participant, week, score

"control", 1, 1, 102

"control", 1, 2, 105

"control", 1, 3, 101

"control", 2, 1, 94

"control", 2, 2, 97

"control", 2, 3, 100

"control", 3, 1, 90

"control", 3, 2, 93

…

"geometry", 11, 1, 105

"geometry", 11, 2, 106

"geometry", 11, 3, 103

"geometry", 12, 1, 98

"geometry", 12, 2, 100

"geometry", 12, 3, 101

"geometry", 13, 1, 100

"geometry", 13, 2, 93

"geometry", 13, 3, 98

"geometry", 14, 1, 97

"geometry", 14, 2, 100

"geometry", 14, 3, 106

…

header 

each raw represents a unique observation
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Working with data frames on R

#read the data from a csv file into a data frame

data <- read.csv(file="IQ-tests.csv", header=TRUE, sep=“,")


# aggregate the scores by group and participant
data.aggr <- aggregate(score~group+participant, data,  
   FUN = mean)


# split the aggregated data into two groups
data.control <- data.aggr[data.aggr$group==“control”,]
data.geometry <- data.aggr[data.aggr$group==“geometry”,]


# calculate the means
mean.control <- mean(data.control$score)
mean.geometry <- mean(data.geometry$score)
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Some bad practices

A bad practice is to construct and graph confidence intervals 
over the full set of data 


This approach is not appropriate as it treats all observations as 
independent, i.e., as observations from different participants.
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Recommendation: Be always clear about what 
reported CIs represent and how they were calculated. 



Example 
Question 2: How does student performance evolve 
over time, from Week 1 to Week 3? 
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
Week 1 102 94 90 104 95 100 97 96 96 96

Week 2 105 97 93 96 99 105 100 93 103 98

Week 3 101 100 93 106 98 105 102 98 104 93

Control Group

P11 P12 P13 P14 P15 P16 P17 P18 P19 P20
Week 1 105 98 100 97 103 104 103 103 100 99

Week 2 106 100 93 100 100 105 100 95 96 98

Week 3 103 101 98 106 98 100 101 95 104 97

Geometry Class Group



Example: Approach 

We examine how IQ scores evolve for all 20 students. 


We forget the student groups for now and focus on the 
repeated-measures variable, the Week.
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Example: Results
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10

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
Week 1 102 94 90 104 95 100 97 96 96 96
Week 2 105 97 93 96 99 105 100 93 103 98
Week 3 101 100 93 106 98 105 102 98 104 93
Week 3 -1 -1 6 3 2 3 5 5 2 8 -3

Control Group

P11 P12 P13 P14 P15 P16 P17 P18 P19 P20
Week 1 105 98 100 97 103 104 103 103 100 99
Week 2 106 100 93 100 100 105 100 95 96 98
Week 3 103 101 98 106 98 100 101 95 104 97
Week 3 -1 -2 3 -2 9 -5 -4 -2 -8 4 -2

Geometry Class Group



Non-normal distributions

How do we construct confidence intervals 
for non-normal distributions?
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CIs for binomial proportions

Example: A basketball player has attempted a total of 
n = 25 three point shots and has succeeded in x = 9. 
Can you estimate the player’s average success rate? 


There are several alternatives for constructing CIs for 
binomial proportions, where some of them work well 
only for large samples (Control Limit Theorem) or 
proportions in the region of .5. 


Baguley recommends the exact Blaker CI under 
most circumstances.

12



R Code

install.packages("exactci")
library(exactci)


ci <- binom.exact(9, 25, tsmethod=‘blaker', 
                  conf.level=.95)$conf.int


cat(ci[1]*100, ci[2]*100, “\n”)


The success rate of the player is: 36%, 95% CI [19%, 56%]
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CI for a difference in proportions

Example: A second basketball player has 
attempted a total of 20 three-point shots and has 
succeeded in 10. Estimate the difference between 
the success rate of the two players 


Baguley recommends the continuity corrected 
version of the Wilson CI.
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R Code

prop.test(c(25, 20), c(9, 8))$conf.int


The success rate of the 2nd player is higher by a 

      14%, 95% CI [-19%, 47%]  
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Lognormal distributions
Remember this example
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R program
# Parameters of the log-normal distribution
m <- 4.6   # Mean of log-transformed values (normal distribution)
sd <- 1    # SD of log-transformed values (normal distribution)

# True population mean (mean of the original skewed distribution)
M <- exp(m + sd^2/2) 

n <- 12  # Size of the samples

N <- 10000 # Number of sampling repetitions
count <- 0 # Counter of how many times the CI fails

for(i in 1:N){
    sample <- rlnorm(n, meanlog = m, sdlog = sd)
    ci <- t.test(sample)$conf.int
    
    if(ci[2] < M || ci[1] > M) count <- count + 1
}

cat("Average number of failures = ", count/N, "\n")
cat("Coverage probability = ", (1 - count/N)*100, "%\n")
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Lognormal distributions

1.Data values are first transformed to a logarithmic scale


2.CIs are computed over log-transformed values 


3.CIs are then transformed back to the original scale

Careful: The interpretation of a back-transformed 95% 
CIs of the mean is not the same. Those are not 95% CIs 
of the mean any more!!! 
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Simple math with logarithms

logb(x) + logb(y) = logb(xy)

logb(x) = a () ba = x

logb(1) = 0 () b0 = 1

logb(b) = 1 () b1 = b

logb(x)� logb(y) = logb
x

y
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Means under logarithmic transforms

> sample <- c(4, 8, 3, 4, 6, 5, 15, 9, 5)


> mean(log(sample))


[1] 1.76295


> log(mean(sample))


[1] 1.880313

20

Means are not preserved under 
such non-linear transformations



What about medians?
The median is the middle value of a sample. 


As long as the transformation function is “monotonic” 
(either increasing or decreasing), the order of values in a 
sample is preserved. Thus, the order of the middle value 
(the median) is also preserved.

21



What about medians?
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> sample <- c(4,8,3,4,6,5,15,9,5)


> median(log(sample))


[1] 1.609438


> log(median(sample))


[1] 1.609438

Results would be slightly different if the sample had an 
even number of items as the median would be the 
mean of the two middle values.




Example

The following data show mean task completion times (in ms) 
of 10 participants for two selection techniques A and B. This 
is a repeated-measures (within-participants) design.


The research team wants to compare their performance but 
suspects that task-completion times follow a skewed log-
normal distribution.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Tech A 530 600 556 480 578 532 740 590 612 679
Tech B 511 552 430 455 610 520 731 483 610 539
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Example
1. We log-transform the data, using natural logarithms.


 
2. We compute 95% CIs by assuming that the sampling 
distribution of the means follow t distributions:


Tech A: 95% CI = [6.29, 6.46]  


Tech B: 95% CI = [6.18, 6.40]  

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Tech A 6.27 6.39 6.32 6.17 6.36 6.28 6.61 6.38 6.42 6.52
Tech B 6.23 6.31 6.06 6.12 6.41 6.25 6.59 6.18 6.41 6.29
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Since t-distributions are symmetric, means and 
medians coincide. Thus, we can also treat these 
intervals as 95% CIs of the median.




Example

3. We then transform the CIs back to their original scale 
(ms) by using the inverse transformation f(x) = ex :


Tech A: 95% CI = [535 ms, 640 ms]  


Tech B: 95% CI = [481 ms, 602 ms] 


 

Those intervals should now be interpreted as 95% CIs 
of the median (NOT of the mean).
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Example

What about the time difference between the two 
techniques? 


In logarithmic scale: 95% CI = [0.008, 0.161]


But if we now know apply the inverse transform f(x) = ex,  
we get the following: 


95% CI = [1.008, 1.175]


Clearly, these values do not represent milliseconds!
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Remember: Differences in logarithmic scales 
correspond to ratios in the original scale.

logb(x)� logb(y) = logb
x

y

27

=) b(logb(x)�logb(y)) =
x
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e(ln(x)�ln(y)) =
x

y
if b = e:



Example

We interpret the results as follows: 


The median selection time of Technique A is  
109.4%, 95% CI [100.8%, 117.5%] the median 
selection time of Technique B.


Or: 


The median selection time of Technique A is  
9.4%, 95% CI [0.8%, 17.5%] higher than the 
median selection time of Technique B.
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Example
Graphing the results: choose your axes carefully!

Error bars: 95% CIs
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Attention: If the parameters of interest are the means 
rather than the median, this approach is not appropriate.

-



Working with ratios

Interpreting results in terms of ratios (rather than differences) 
has several advantages: there are no units, and comparisons 
are based on relative values. 


However, interpretation depends on the specific application 
context. Unfortunately, many people are not familiar with this 
approach. You may need to further justify it. Provide a clear 
interpretation of your results.
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Log-normal distributions and means

There are several methods (Cox, modified Cox, etc.) that 
allow for constructing CIs for log-normal distributions 
when the parameter of interest is the mean:


http://ww2.amstat.org/publications/jse/v13n1/olsson.html


But they are out of the scope of this course.
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Note
If distributions are not too skewed and the size of the sample 
is not to small, assuming normality may still provide satisfying 
results. This is particularly the case for CIs of differences, 
since distributions of differences tend to be symmetric.


Exercise:  Assess the coverage probability (percentage of 
times that the CI includes the true mean) of 95% CIs of the 
mean difference of samples drawn from skewed log-normal 
distributions, when we assume normality (i.e., if we do not 
apply any data transformation). 
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Quantile-Quantile (Q-Q) plots
A useful type of plot for graphically inspecting how 
close the distribution of a sample is to normal. 

33
See: https://www.lri.fr/~fanis/courses/Stats2019/lectures/distributions.html



Quantile-Quantile (Q-Q) plots

34

Try the above code several times and check the results. Also try with smaller and 
with larger samples. How stable is the trend you observe in each case?  



Rank transformations
We replace observations by their ranks. For example, the values 
(12.5, 6.8, 8.0, 11.2) become (4, 1, 2, 3)


They are often used when assumptions are violated  
(common choice for the analysis of questionnaire data).


Their interpretation can be tricky. They are not appropriate if the 
goal is to obtain confidence intervals or build a predictive model.


But they can be useful if the only goal is to construct a 
significance test.
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From confidence intervals to 
significance tests
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Uses of confidence intervals

1.To provide an estimate of plausible values that a 
population parameter may take.


2.To support formal inference about a parameter

37



Example
Let’s see these results:

Error bars: 95% CIs
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Provide a range of plausible values   
for the two means 

It allows to conclude that  
“Technique A is slower than Technique 

B”




Significance testing

Formal inference with a confidence interval is a form of 
significance testing.


A significance test involves explicitly or implicitly setting up a 
hypothesis about the value of a population parameter:


Hypothesis example: 

“Median selection time of Technique A is equal to the 
median selection time of Technique B.” 

or

“The ratio of the median selection times of Technique A and 
Technique B is 1”  
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Null hypothesis

Such hypotheses that make a statement about a hypothetical 
value of a population parameter (a mean or median, a mean 
difference, etc.) are known as null hypotheses. 

The goal of an experiment is commonly to provide evidence 
against a null hypothesis. 
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Examples of null hypotheses

"The mean height of men is equal to the mean height of 
women." 

“The mean IQ score of adults lacking enough sleep is 100.” 

“Mean selection time with a mouse is equally fast to mean 
selection time with a trackpad.”
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Rejecting a null hypothesis

If the C% confidence interval excludes the hypothesized 
population value, then the hypothesis is rejected  
(C% confidence level).  

42



Example
Here, we reject the null hypothesis (95% confidence level) 
because the 95% CI does not include the value 1.

95% CIs
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Example
What about here? Can we reject the null hypothesis concerning 
the mean difference (in IQ scores) between the two groups? 
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We cannot reject the null hypothesis. 

But this does not necessarily mean that the difference is zero!


We just do not have enough evidence to say anything more.




Example
And if we reduce the confidence level? 


90% CI 80% CI
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For this level, we can reject the null hypothesis!

But is a 80% confidence level high enough?



95% confidence level

It is commonly used as the threshold for rejecting a 
null hypothesis. 


It is not a magic number and there is no reason why 
a different level (e.g., 92% or 97%) is not used. 


But its use reflects a long tradition in science. 
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Null vs. Alternative hypothesis

Our goal is usually to find enough statistical evidence to 
reject the null hypothesis (H0) in order to establish an 
alternative hypothesis (H1). 

The alternative hypothesis is the hypothesis of interest, 
i.e., what the researcher actually seeks to show by 
rejecting the null hypothesis.    
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Example
An HCI researcher studies whether visual grouping in 
menus help users locate menu items faster.

48
(Brumby & Zhuang, 2015)

Control Visual Grouping



Example

Null Hypothesis: 

H0: “Mean selection time is the same for Control and 
Visual Grouping.”  

Alternative Hypothesis:

H1: “Mean selection is faster with Visual Grouping than 
with Control.” 
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Significance tests

Null Hypothesis Significance Testing (NHST) can be supported by 
confidence intervals and significance tests. 


Significance tests is a very common research tool. However, they have 
many limitations. They are also very frequently overused or misused.   


Note that significance tests rely on similar assumptions as the ones 
that we have already discussed for constructing confidence intervals. 
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p value

The result of a significance test is a probability value p, 
which is commonly known as the p value. 

Given an observed value of a statistic (e.g., the mean) 
of a sample, the p value gives the probability that:


if the null hypothesis H0 was true, then a random 
sample of the same size would result in a value 
for the statistic that is equal or more extreme 
than the observed value.  
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Example

An experiment studies the IQ scores of people lacking enough 
sleep. 


H1: The mean IQ score of people lacking sleep is lower than 100.


H0: The mean IQ score of people lacking sleep is equal to 100.
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Example
Results from a sample of 15 participants are as follows:


94, 91, 96, 100, 103, 88, 98, 103, 87, 93, 97, 105, 99, 91, 92


The mean IQ score of the above sample is M = 95.8 


The researchers conduct a significance test and find that p = .006 


Interpretation: If the null hypothesis was true (M = 100), then the 
probability to draw a random sample of 15 people and find that the 
mean IQ score is equal to or lower than 95.8 is 0.6%. 
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Interpreting the p value

Interpretation: If the null hypothesis was true (M = 100), 
then the probability to draw a random sample of 15 
people and find that the mean IQ score is equal to or 
lower than 95.8 is 0.6%. 


Notice that this is NOT the probability that the 
researcher’s hypothesis H1 is false. 

An interpretation “the probability that M is equal to 100 is 
0.6%” is incorrect!
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Threshold for rejecting H0

By tradition, the null hypothesis (H0) is rejected when 
the p value is lower than α = .05.


This alpha (α) is the same as the one we discussed 
for C% confidence intervals, where the confidence 
level is: 


C = 100(1 - α) 


(Clearly, there is a correspondence between 
significance tests and confidence intervals.)
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Back to our example
Results from a sample of 15 participants are as follows:


94, 91, 96, 100, 103, 88, 98, 103, 87, 93, 97, 105, 99, 91, 92


The mean IQ score of the above sample is M = 95.8 


The researchers conduct a significance test and find that p = .006 
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Since p < α (α = .05), the null hypothesis is rejected. 

The researchers conclude that the lack of sleep results 
in statistically significantly lower IQ scores.



Statistical significance 

It is common to say that such an experiment has 
resulted in a “statistically significant” result.

57

Since p < α (α = .05), the null hypothesis is rejected. 

The researchers conclude that the lack of sleep results 
in statistically significantly lower IQ scores.



Interpreting statistical significance 
The term “significant” can be very misleading. Statistical 
significance does not refer to the actual significance of the result!


A significance test may often characterize a very tiny (or 
practically insignificant) difference as statistically significant!


Make sure that you refer to “statistical significance” when you 
characterize the results of a study. Don’t use the term “significant” 
alone. 
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In the following lecture, I will explain why even stopping using the 
term “statistical significant” altogether may be a good practice.



Back to our example
Imagine that another researcher conducts the same experiment with 
12 participants and finds the following IQ scores:


 103, 97, 110, 99, 105, 96, 111, 108, 98, 106, 104, 102 

The mean IQ score of the above sample is M = 103.25. 


This mean is higher than 100, so clearly, the data do not support H1.  

Can we still test the null hypothesis (H0) to check whether the lack of 
sleep leads to statistically significantly higher IQ scores?
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Two-sided vs. one-sided tests

Answer: It depends on what type of significance 
tests the researcher uses.  


One-sided (or one-directional) tests do not allow 
for that. If the hypothesized direction is not 
supported, the hypothesis cannot be rejected.


However, the common practice is to use two-sided 
(or two-directional) tests. In this case, the 
hypothesis can be rejected in both directions.
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Back to our example

Imagine that another researcher conducts the same experiment 
with 12 participants and finds the following IQ scores:


 103, 97, 110, 99, 105, 96, 111, 108, 98, 106, 104, 102 

The mean IQ score of the above sample is M = 103.25. 


A two-sided significance test results in p = .047 

Interpretation: If the null hypothesis was true (M = 100), then the 
probability to draw a random sample of 12 people and find that the 
absolute difference between the observed mean and 100 is equal 
to or higher than ΔM = 3.25 is 4.7%.

61
p values are now interpreted differently



Back to our example

Imagine that another researcher conducts the same experiment 
with 12 participants and finds the following IQ scores:


 103, 97, 110, 99, 105, 96, 111, 108, 98, 106, 104, 102 

The mean IQ score of the above sample is M = 103.25. 


A two-sided significance test results in p = .047 
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Conclusion: The null hypothesis is rejected (α = .05). The researchers 
conclude that the lack of sleep results in statistically significantly higher 
IQ scores.



p values vs. confidence intervals
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p values vs. confidence intervals

64p = .036
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p values vs. confidence intervals

65p = .086
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Calculating p

The p value is the probability of obtaining a statistic as extreme 
or more extreme than the one observed if the null hypothesis 
was true.


When data are sampled from a known distribution, an exact p 
can be calculated.


If the distribution is unknown, it may be possible to estimate p.
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Normal distributions

If the sampling distribution of the statistic is normal, we will 
use the standard normal distribution z to derive the p value
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Example

An experiment studies the IQ scores of people lacking enough sleep. 


H0: μ = 100 and H1: μ < 100 (one-sided)


or


H0: μ = 100 and H1: μ   100 (two-sided)

68
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Example
Results from a sample of 15 participants are as follows:


90, 91, 93, 100, 101, 88, 98, 100, 87, 83, 97, 105, 99, 91, 81


The mean IQ score of the above sample is M = 93.6. 


Is this value statistically significantly different than 100? 
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Creating the test statistic
We assume that the population standard deviation is known 
and equal to SD = 15. Then, the standard error of the mean is:
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�µ̂ =
�p
n
=

15p
15

= 3.88



Creating the test statistic
We assume that the population standard deviation is known 
and equal to SD = 15. Then, the standard error of the mean is:


The test statistic tests the standardized difference between 
the observed mean                 and   
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µ0 = 100

�µ̂ =
�p
n
=

15p
15

= 3.88

The p value is the probability of getting a 

z statistic as or more extreme than this value  
(given that H0 is true)

µ̂ = 93.6

z =
µ̂� µ0

�µ̂
=

93.6� 100

3.88
= �1.65



Calculating the p value
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The p value is the probability of getting a 

z statistic as or more extreme than this value  
(given that H0 is true)

z =
µ̂� µ0

�µ̂
=

93.6� 100

3.88
= �1.65



Calculating the p value
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To calculate the area in the distribution, we will work with 
the cumulative density probability function (cdf).
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R code
m0 <- 100 # mean for null hypothesis
sd <- 15 # We assume that the population sd is known

# These are the observed IQ scores
scores <- c(90, 91, 93, 100, 101, 88, 98, 100, 87, 83, 97, 105, 
99, 91, 81)
m <- mean(scores)

# I calculate the standard error of the mean
se <- sd / sqrt(length(scores))

# I calculate the z statistic, i.e., the standardized mean 
difference
z = (m - m0) / se

# This is the one side p value
pvalue <- pnorm(z)


cat("one sided p-value =", pvalue, "\n")
cat("two sided p-value =", 2*pvalue, "\n")
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Example: conclusions

If we assume that the standard deviation of the population is 
known (SD = 15):


We reject the null hypothesis (α = .05) if we apply a one-sided 
significance test (p = .049).


But we cannot reject it if we apply a two-sided significance test 
(p = .092)
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One-sided vs. two sided
“A common misunderstanding of directional testing is to believe that it 
should be employed whenever a researcher predicts an effect in a 
particular direction. 


This is almost always bad practice. A one-sided test should be 
employed only if the direction of an effect is already known or if any 
outcome in the non-predicted direction would be ignored. 


The crucial question is not whether you think an effect lies in a 
particular direction, but whether you are willing to declare an effect in 
the wrong direction non-significant (no matter how interesting or how 
important it is). The answer to such a question is usually ‘no’ and for 
this reason one-sided tests should typically be avoided.“
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from Baguley



t tests

If the population variance is unknown, it is 
better to work with the t distribution.


…but we will continue after the Christmas 
break!
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