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p-value
The p-value is the probability of obtaining a statistic as 
extreme or more extreme than the one observed if the null 
hypothesis was true.
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Normal distributions

If the sampling distribution of the statistic is normal, we will 
use the standard normal distribution z to derive the p value
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Example

An experiment studies the IQ scores of people lacking 
enough sleep. 

H0: μ = 100 and H1: μ < 100 (one-sided)

or

H0: μ = 100 and H1: μ   100 (two-sided)
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Example
Results from a sample of 15 participants are as follows:

90, 91, 93, 100, 101, 88, 98, 100, 87, 83, 97, 105, 99, 91, 81

The mean IQ score of the above sample is M = 93.6. 

Is this value statistically significantly different than 100? 
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Creating the test statistic
We assume that the population standard deviation is 
known and equal to SD = 15. Then, the standard error of 
the mean is:
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�µ̂ =
�p
n
=

15p
15

= 3.88



Creating the test statistic
We assume that the population standard deviation is 
known and equal to SD = 15. Then, the standard error of 
the mean is:

The test statistic tests the standardized difference 
between the observed mean                 and   
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µ0 = 100

�µ̂ =
�p
n
=

15p
15

= 3.88

The p value is the probability of getting a 
z statistic as or more extreme than this value  
(given that H0 is true)

µ̂ = 93.6

z =
µ̂� µ0

�µ̂
=

93.6� 100

3.88
= �1.65



Calculating the p value
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The p value is the probability of getting a 
z statistic as or more extreme than this value  
(given that H0 is true)

z =
µ̂� µ0

�µ̂
=

93.6� 100

3.88
= �1.65



Calculating the p value

9

To calculate the area in the distribution, we will work with 
the cumulative density probability function (cdf).
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R code
m0 <- 100 # mean for null hypothesis
sd <- 15 # We assume that the population sd is known

# These are the observed IQ scores
scores <- c(90, 91, 93, 100, 101, 88, 98, 100, 87, 83, 97, 105, 
99, 91, 81)
m <- mean(scores)

# I calculate the standard error of the mean
se <- sd / sqrt(length(scores))

# I calculate the z statistic, i.e., the standardized mean 
difference
z = (m - m0) / se

# This is the one side p value
pvalue <- pnorm(z) 

cat("one sided p-value =", pvalue, "\n")
cat("two sided p-value =", 2*pvalue, "\n")
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Example: conclusions

If we assume that the standard deviation of the 
population is known (SD = 15):

We reject the null hypothesis (α = .05) if we apply 
a one-sided significance test (p = .049).

But we cannot reject it if we apply a two-sided 
significance test (p = .092)
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One-sided vs. two sided
“A common misunderstanding of directional testing is to believe that it 
should be employed whenever a researcher predicts an effect in a 
particular direction.  

This is almost always bad practice. A one-sided test should be 
employed only if the direction of an effect is already known or if any 
outcome in the non-predicted direction would be ignored.  

The crucial question is not whether you think an effect lies in a 
particular direction, but whether you are willing to declare an effect in 
the wrong direction non-significant (no matter how interesting or how 
important it is). The answer to such a question is usually ‘no’ and for 
this reason one-sided tests should typically be avoided.“
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t tests

If the population variance is unknown, it is 
better to work with the t distribution.
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One sample t
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t =
µ̂� µ0

�̂µ̂
=

µ̂� µ0

�̂/
p
n

H0 : µ = µ0

H1 : µ 6= µ0

Where     is the unbiased estimate of the population standard 
deviation.

And t follows a t distribution with ν = n - 1 degrees of freedom. 

�̂



Back to our example
Results from a sample of 15 participants are as follows:

90, 91, 93, 100, 101, 88, 98, 100, 87, 83, 97, 105, 99, 91, 81

The mean IQ score of the above sample is M = 93.6. Is this 
value statistically significantly different than 100? 

Assume now that we don’t have any prior knowledge of the 
population standard deviation.

15



R code
m0 <- 100 # mean for null hypothesis

# These are the observed IQ scores
scores <- c(90, 91, 93, 100, 101, 88, 98, 100, 87, 83, 97, 105, 
99, 91, 81)
n <- length(scores)
m <- mean(scores)

# I estimate the standard error of the mean
se <- sd(scores) / sqrt(n)

# I calculate the t statistic, i.e., the standardized mean 
difference
t = (m - m0) / se

# This is the two-sided p value, calculated from the cumulative 
density function of the t distribution
pvalue <- 2*pt(t, n - 1)
cat("two sided p-value =", pvalue, “\n")
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R code

Alternatively, you can use the t-test function of R:
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Calculating the p value (two-sided)
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t =
µ̂� µ0

�̂µ̂
= �3.5064
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Example: summarizing the result

t(14) = - 3.51, p = .003 

The researchers reject the null hypothesis. They found 
that the lack of sleep leads to a mean IQ score that is 
statistically significantly lower than 100. 
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Independent t test
NHST of a difference between the means of two 
independent normal samples.
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H0 : µ1 = µ2

H1 : µ1 6= µ2

t =
µ̂1 � µ̂2

�̂µ̂1�µ̂2

⇠ t(⌫)

If we assume equal variances, then: 
�̂µ̂1�µ̂2 = �̂pooled

r
1

n1
+

1

n2
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Independent t test
NHST of a difference between the means of two 
independent normal samples.
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H0 : µ1 = µ2

H1 : µ1 6= µ2

t =
µ̂1 � µ̂2

�̂µ̂1�µ̂2

⇠ t(⌫)

But if variances are unequal, the Welch-
Satterthwaite correction should be used. Please, 
check the slides of Lecture 3 for more details. 



Example

A research team is interested in comparing the performance in an IQ 
test between two groups: adults who have (G1) and adults who have 
not (G2) completed any graduate studies. 

From each group, they test 15 participants. 

SG1: 102, 104, 103, 106, 95, 108, 101, 108, 113, 96, 112, 106, 105, 
109, 105

SG2: 96, 108, 90, 104, 97, 103, 95, 102, 93, 107, 101, 88, 99, 104, 97
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R code
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Corrected for unequal
variances by default



Example: summarizing the results

t(27.32) = 2.94, p = .007 

The researchers reject the null hypothesis (α = .05).  

They conclude that the mean IQ score of adults who have 
completed graduate studies (G1) is statistically significantly 
higher than the IQ score of adults who have not completed 
any graduate studies (G2). 
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Example: summarizing the results

The 95% confidence intervals for this same example. 
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Paired observations

A research team is interested in comparing the performance 
in an IQ test before and after attending a Geometry course:

10 participants are tested before and after the completion of 
the course. 

SBefore: 102,  94, 90, 104,   95, 100, 101, 96, 100, 96

  SAfter: 106, 108, 93, 103, 100, 100, 105, 98, 103, 96
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Paired t test

The solution is again trivial. We calculate the difference 
in performance for each participant.

and then perform the one sample t test on these 
differences.   
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
Befor
e

102 94 90 104 95 100 101 96 100 96

After 106 108 93 103 100 100 105 98 103 96
Diff. 4 14 3 -1 5 0 4 2 3 0



R code
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Lognormal distributions

We follow the same approach as for confidence 
intervals:

We simply apply the t tests on the logarithms of the 
original values and reject the null hypothesis if p < α. 

(but beware of the interpretation of your results)

29



Reporting results of statistical tests 
APA’s (American Psychology Association) style: 

Report the exact p value within the test  
(unless the p value is less than .001)  

  t(7) = 1.92, p = .022 

t(54) = 5.43, p < .001 

t(19) = -0.75, p = .460
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Two decimal points

See: https://www.statisticshowto.com/probability-and-statistics/reporting-statistics-apa-style/

In other research disciplines, 
lower thresholds may be used.



Reporting results of statistical tests 

The Statistical American Association (ASA) recommends reporting 
precise p-values: https://amstat.tandfonline.com/doi/suppl/
10.1080/00031305.2016.1154108?scroll=top#.XEB0js9Kj0A

However, it is not clear whether it makes sense to report very small p-
values (e.g., lower than .0001) in disciplines that deal with small 
amounts of data, and statistical assumptions may not be very accurate.

A good practice may be to report precise values while being careful 
about their interpretation. An extremely small p-value (e.g., .00000001) 
may not necessarily provide stronger statistical evidence than a larger 
p-value (e.g., .001), in particular when data are messy, samples are not 
large, and statistical assumptions are not accurate.
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Type I error

Incorrectly rejecting the null hypothesis (false positive)

Type I error rate = the probability of rejecting the null 
hypothesis given that it is true. 

When α = .05, one expects that the Type I error rate of a 
significance test is 5%.
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Type II error

Failing to reject the null hypothesis when it is not 
true (false negative) 

Type II error rate = the probability of failing to reject 
the null hypothesis given that it is not true

The Type II error rate is often denoted as β (beta)
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Controlling for the Type II error rate

Significance tests do not provide any guarantee for the 
Type II error rate

The larger the size of the sample, the lower the Type II 
error rate is expected to be

It also depends on how large or small the effect of 
interest (such as the difference between two means) is
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Assessing Type II error rates with R

N <- 10000 # Number of experiments

m0 <- 100 # mean of null distribution

# population mean and standard deviation
m = 90
sd = 15

n <- 20 # Sample size

alpha <- .05 # Significance (alpha) level
typeII.errors <- 0

for(i in 1:N){
    sample <- rnorm(n, m, sd)
    p <- t.test(sample - m0)$p.value
    
    if(p > alpha) typeII.errors <- typeII.errors + 1
}

cat("Type II error rate:", typeII.errors / N, "\n")
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These values will determine the Type II error 



Statistical power

It is defined as follows:

power = Pr(reject H0 | H1 is true) = 1 - β

Example: If the Type II error rate is β = .3, then the 
power is 1 - .3 = .7 or 70%.

We say that a study has high statistical power, if it is 
expected to reject the null hypothesis (H0) with a high 
probability, given that H1 is true. 
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Predicting the power of an experiment

1: Assess the minimum expected effect size of interest
How small are the differences that we want to detect?

2: Assess the variance in the population of interest.
(This may not be easy)

3: Based on the above parameters, estimate the minimum 
sample size needed to show the effect of interest.

Small differences and large variance require larger sample sizes
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Underpowered studies

Such studies are unlikely to allow the researcher to 
choose between H0 and H1 at the desired significance 
level (e.g., α = .05) 

They have high Type II error rates.
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Underpowered studies

Main reasons for low statistical power: 
Inadequate sample sizes. This is a common problem for 
many research disciplines (including HCI research).

Failure to identify potential sources of noise or 
variance and well control the experimental task.  
This is always a challenge for researchers.

Large measurement error. A good choice of measures 
and measurements over multiple task replications can 
reduce this problem.
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Reducing sources of variance

Provide clear experimental instructions that are 
consistent across participants

If learning effects are not of interest, provide enough 
training before the main experiment

Avoid long sessions to minimize fatigue effects

Carefully design the experiment through pilot studies
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Pilot studies (pilot experiments)
Informal small-scale preliminary studies conducted prior to a 
formal full-scale study:

• Assess the feasibility, time, and cost of a study

• Identify problems (e.g., adverse effects) and refine the 
experimental procedures

• Predict how large or small the effect of interest is 
Example: How large or small do we expect the difference 
in IQ scores between two different groups to be? 

• Predict the appropriate sample size for the formal study to 
ensure adequate statistical power.
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What is a reasonable power level?

A power of 80% is generally considered as a 
good level of power. (Type II Error rate = .20)

Compare this with the 95% confidence level that 
we commonly use (Type I Error rate = .05)
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Type I vs. Type II error

Some reasonable questions:

Q1. Why do we allow any errors at all?

Q2. Why are we mostly concerned about Type I errors (false 
positives) and less about Type II errors (false negatives)?

43
Note: The discussion in the following slides is based on Toby Mordkoff’s course notes: 
http://www2.psychology.uiowa.edu/faculty/mordkoff/GradStats/part%201/I.13%2012power.pdf   



Q1. Why allowing errors?

It is a necessity!

As the normal distribution goes to infinity in both directions, 
the bounds of 100% confidence intervals are always 

Such confidence intervals are non-informative and useless. 

Similarly, if we wanted to eliminate Type I errors (α = 0), we 
would never be able to reject the null hypothesis.
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Q2. Why does science focus on Type I errors?

By tradition, science is conservative:

By default, it assumes a no effect until someone 
shows an effect (i.e., rejects the null hypothesis). 

Failure to reject the null hypothesis does not change 
our understanding of reality.

In contrast, rejecting a null hypothesis changes this 
understanding. If such rejection is false (Type I error), 
then the cost can be high.
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Publication bias
Priority has traditionally been given to papers that report on 
positive results (i.e., ones that confirm an effect)

Why? Because anybody can run a lousy, underpowered 
experiment (e.g., one that does not try to reduce variance) or 
an experiment on non-effective treatments or techniques that 
fails to reject the null hypothesis. 

Research disciplines try to protected themselves from the 
influence of lousy experiments. By not publishing such results, 
they reduce the influence of Type II errors. 
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Example
Imagine a drug company that advertises the results of 
some published studies:

  “nothing has been shown to work better” 
   “no side effects above those with placebo”

Both results may be due to Type II errors. 

How difficult do you think it is to produce such results?
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Note: Based on Toby Mordkoff’s course notes: 
http://www2.psychology.uiowa.edu/faculty/mordkoff/GradStats/part%201/I.13%2012power.pdf   



Dangers of publication bias (1)

But: By not publishing negative results, the 
influence of Type I errors can become great.
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Example: Telepathy

An experiment studies whether two remote people (a sender and 
a receiver) can communicate information without any physical 
interaction. 

The sender picks a card with a random number from 1 to 5 and 
tries to communicate it to the receiver. The receiver tries to guess 
the number communicated by the sender.

H0: The receiver has a 20% chance to guess the correct 
number. 

H1: The receiver guesses the correct number with a rate that 
is higher than chance (20%). 
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Example: Telepathy

Imagine that different parapsychologists conduct this 
same experiment many times. The graph below shows 
the 95% CI of 14 different experiments. 
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Example: Telepathy

Imagine that different parapsychologists conduct this 
same experiment many times. The graph below shows 
the 95% CI of 14 different experiments. 
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0% For these studies, the researchers abandon their efforts.  
They do not even try to publish their results.   



Example: Telepathy

Imagine that different parapsychologists conduct this 
same experiment many times. The graph below shows 
the 95% CI of 14 different experiments. 
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0% The researchers submit their results for publication.  
But all these papers are rejected.



Example: Telepathy

Imagine that different parapsychologists conduct this 
same experiment many times. The graph below shows 
the 95% CI of 14 different experiments. 
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These researchers celebrate! They are the first to provide statistical 
evidence on the existence of telepathy. A journal accepts their paper. 
Their results appear on the headlines of mainstream press and 
trigger many discussions in the social media.



The importance of replication

Such results can be put into question by replicating the 
experiment. Thus, publishing the results of replication studies 
can be important, even if those results are negative.

In several disciplines, replication is a common practice. 
Conclusions are often based on meta-analyses of the results of 
several independent studies.  

Unfortunately, in other disciplines, replications are rare exceptions. 
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https://doi.org/10.1136/bmj.323.7327.1450

Remember?  
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https://doi.org/10.1136/bmj.323.7327.1450

This study is clearly flawed! The author here has just divided 
(by chance or intentionally) the control and the intervention 
group in a convenient way. It is trivial to show the flaw! 

Create a script that randomly divides the patients into two 
groups (control vs. intervention). Repeat it 1000 times. Each 
time, pray for the intervention group! 

For approximately 50 of these repetitions, you will be able to 
reject the null hypothesis, i.e., you will find that retroactive 
prayer works!      

Note: The author here raises a discussion on scientific 
methods in a rather controversial manner. He does not 
suggest that retroactive prayer might work… 
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Dangers of publication bias (2)

Reaching statistical significance (p < .05) has 
somehow become the ultimate goal of research.

This has also lead to misuses of significance 
tests and unscientific but widely spread practices, 
commonly known as p hacking. 
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Common p-hacking techniques
Incrementally increase the sample size n (by recruiting new 
participants) until statistical significance is achieved.

Selectively remove “outliers” or replace participants that do not 
conform to the expectations of researchers.

Change the goals or hypotheses based on the results.  
A common practice is to focus on random “statistically significant” 
results, even if these results were not part of the initial 
experimental goals.

Apply different significance tests and pick the one that leads to 
significance, often disregarding its underlying assumptions. 
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p hacking and Type I error

Write an R simulation that estimates the Type I error 
of a simple t test when incrementally increasing the 
sample size of an experiment. 
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R Code
N <- 10000 # Number of experiments
n <- 12 # Initial sample size
nmax <- 16 # Max sample size. Here, the researcher stops the experiment.

alpha <- .05

error <- 0
for(i in 1:N){
    count <- n
    sample <- rnorm(n)
    p <- t.test(sample)$p.value
    
    
     while(p > alpha && count <= nmax){
        sample <- c(sample, rnorm(1))
        p <- t.test(sample)$p.value
        count <- count + 1
     }
    
    if(p < alpha) error <- error + 1
}

cat("Type I error:", error / N, "\n")
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Multiverse Analyses: Report on the results of multiple 
alternative statistical analyses

https://explorablemultiverse.github.io/
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Criticisms of the Null Hypothesis 
Significance Testing (NHST)

Many have recommended abandoning null hypothesis testing 
altogether and focusing on estimation based on confidence 
intervals, effect sizes, and meta-analyses. 

Confidence intervals: Estimate the range of plausible values 
of a statistic.

Effect sizes: Estimate how large or small an effect is

Meta-analysis: Emphasis on replication and integration of 
evidence from multiple studies.
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Criticisms of NHST
"We need to make two substantial changes to how we carry out 
research. First, in response to heightened concern that our published 
research literature is incomplete and untrustworthy, we need new 
requirements to ensure research integrity. These include full pre-
specification of studies wherever possible, avoidance of selection 
and other inappropriate data analytic practices, complete reporting 
of research, and encouragement of replication. Second, renewed 
recognition of the many severe flaws of null hypothesis significance 
testing (NHST) motivates a shift from reliance on NHST to 
estimation. ‘The new statistics’ refers to the full range of 
recommended practices, including estimation based on effect sizes 
(ESs), confidence intervals (CIs), and meta-analysis."  

[Geoff Cumming, 2013]
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CIs vs. p-values

65
Fair statistical communication in HCI [Pierre Dragicevic] 

https://www.lri.fr/~dragice/fairstats-last.pdf

p-values or 95% CI? What is more informative here? 

these p-values are the same 
and tell us very little!  

Given this interval, we can reasonably conclude  
that the difference between C and A is very likely lower than 1



CIs vs. p-values
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p-values or 95% CI? What is more informative here? 

Fair statistical communication in HCI [Pierre Dragicevic] 
https://www.lri.fr/~dragice/fairstats-last.pdf



American Statistical Association (ASA)
ASA’s statement on p-values (2016):

1 P-values can indicate how incompatible the data are with a specified 
statistical model.

2 P-values do not measure the probability that the studied hypothesis 
is true, or the probability that the data were produced by random 
chance alone.

3 Scientific conclusions and business or policy decisions should not 
be based only on whether a p-value passes a specific threshold.

4 Proper inference requires full reporting and transparency.
5 A p-value, or statistical significance, does not measure the size of 

an effect or the importance of a result.
6 By itself, a p-value does not provide a good measure of evidence 

regarding a model or hypothesis.
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Full statement:
http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108?needAccess=true



Interview with ASA’s executive director

Ron Wasserstein:  
 
In the post p<0.05 era, scientific argumentation is not based on 
whether a p-value is small enough or not. Attention is paid to effect 
sizes and confidence intervals. Evidence is thought of as being 
continuous rather than some sort of dichotomy.  (As a start to that 
thinking, if p-values are reported, we would see their numeric value 
rather than an inequality (p=.0168 rather than p<0.05)). All of the 
assumptions made that contribute information to inference should 
be examined, including the choices made regarding which data is 
analyzed and how. In the post p<0.05 era, sound statistical analysis 
will still be important, but no single numerical value, and certainly 
not the p-value, will substitute for thoughtful statistical and 
scientific reasoning.

March 2016
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Interview text:
http://retractionwatch.com/2016/03/07/were-using-a-common-statistical-test-all-wrong-statisticians-want-to-fix-that/



Why then still use p-values?

“ More drastic steps, such as the ban on publishing papers that contain P-
values instituted by at least one journal, could be counter-productive, says 
Andrew Vickers, a biostatistician at Memorial Sloan Kettering Cancer 
Center in New York City.  

He compares attempts to ban the use of P-values to addressing the risk 
of automobile accidents by warning people not to drive - a message that 
many in the target audience would probably ignore. Instead, Vickers says 
that researchers should be instructed to treat statistics as a science, 
and not a recipe. ” 

http://www.nature.com/news/statisticians-issue-warning-over-misuse-of-p-values-1.19503
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Why then still use p-values?

”One reason for its continued use is the lack of an agreed 
alternative. At this stage, it is sufficient to realize that 
statistical significance is only one, relatively modest, 
component in the evaluation of quantitative data. 

This point has been articulated by a number of experts, 
notably by Abelson (1995). Abelson’s position is that statistics 
can be viewed as a form of principled argument. Statistical 
significance, in the form of a conventional NHST, is only one 
potential element of such an argument.” 

[Thom Baguley]
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Why then still use p-values?

”The main drawback of making the switch to CIs is that it can 
be difficult to translate some tests into equivalent interval 
estimates that are both easy to interpret and easy to plot (e.g., 
tests with multiple degrees of freedom). These situations 
provide the strongest case for retaining NHSTs.” 

[Thom Baguley]
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Example
A research team is interested in assessing the effect of a 
Geometry course on students’ IQ performance. They randomly 
create two groups of students (Control vs. Geometry). 


Each student takes three IQ tests over three weeks.
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
Week 1 90 88 80 103 91 105 82 91 100 82
Week 2 98 102 93 120 85 105 96 88 105 88
Week 3 107 119 94 112 97 122 104 97 107 92

Control Group

P11 P12 P13 P14 P15 P16 P17 P18 P19 P20
Week 1 105 94 108 101 99 115 100 95 98 106
Week 2 106 98 110 114 95 122 91 105 92 112
Week 3 107 89 118 106 97 123 102 103 97 111

Geometry Class Group



Example
Suppose the researchers are interested in the following questions:


- Is there a difference between the two student groups?


- Does student IQ performance improve with repeated tests?


- Is there are an interaction between repeated tests and the 
student group (Control vs. Geometry)?
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Example
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Let’s plot the 95% CIs for the mean scores of each group 
and week.



Example
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Let’s plot the 95% CIs for the mean scores of each group 
and week.

This is what we call an interaction effect between multiple 
independent variables. There is a simultaneous effect of the two 
variables here: the effect of repeated tests over several weeks 
depends on the student group (Geometry or Control).  



Example
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We can also plot the 95% CIs for the mean score differences.



Example
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The analysis becomes more complex if there are more than two 
independent variables with multiple levels.


In this case, we can combine estimation through confidence 
intervals with statistical models that can describe complex 
relationships between variables, such as Analysis of Variance 
(ANOVA) and Linear (or Generalized) Mixed-Effect Models.

Such models are our of the scope of this course.



Example: an ANOVA model in R
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anovaModel <- aov(score ~ group*week + Error(factor(participant)/week), data)


summary(anovaModel)

Error: factor(participant)
          Df Sum Sq Mean Sq F value Pr(>F)
group      1    516   516.3   2.306  0.146
Residuals 18   4030   223.9               

Error: factor(participant):week
           Df Sum Sq Mean Sq F value   Pr(>F)    
week        1  731.0   731.0   32.79 1.98e-05 ***
group:week  1  286.2   286.2   12.84  0.00212 ** 
Residuals  18  401.2    22.3                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

p-value for the overall effect of 
the student group 

p-value for the effect  
of repeated tests

p-value for their interaction



Updated ASA recommendations (2019) 
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https://www.tandfonline.com/doi/full/10.1080/00031305.2019.1583913#_i2

2. Don’t Say “Statistically Significant” 
The ASA Statement on P-Values and Statistical Significance stopped just 
short of recommending that declarations of “statistical significance” be 
abandoned. We take that step here. We conclude, based on our review of 
the articles in this special issue and the broader literature, that it is time to 
stop using the term “statistically significant” entirely. Nor should variants 
such as “significantly different,” “p < 0.05,” and “nonsignificant” survive, 
whether expressed in words, by asterisks in a table, or in some other way.
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Ronald Fisher (1890 - 1962). He established the notions of 
the null hypothesis and significance testing, popularized p-
values, and developed the analysis of variance.  

In his earlier works, he used .05 as a convenient 
threshold for statistical significance.  

"The value for which P = 0.05, or 1 in 20, is 1.96 or nearly 2; 
it is convenient to take this point as a limit in judging whether 
a deviation is to be considered significant or not.”

R. Fisher, Statistical Methods for Research Workers, 1925

In his later writings, however, he argued that appropriate levels of significance 
largely depend on the research in question and may vary from research to 
research. According to his approach, reporting exact p-values is important for 
assessing the level of statistical evidence.

Some argue that modern version of hypothesis testing is an inconsistent hybrid of 
Fisher’s method and the method of Neyman and Pearson (junior), resulting from 
confusion by writers of statistical textbooks.

A long scientific dispute between Fisher and Neyman-Pearson only ended 
after Fisher’s death.



Interaction effects (further examples)

81from https://en.wikipedia.org/wiki/Interaction_(statistics)

Interaction effect of education and ideology on concern about sea level rise
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Multiple Comparisons and Registration



Example
Suppose a research team is interested in whether and how listening 
to music affects the performance of kids in IQ tests. To this end, they 
test three groups of 10 year old participants: 

(G1) No music (20 participants) 

(G2) Classical music (20 participants) 

(G3) Rock music (20 participants)    
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G1 <- c(102, 97, 90, 107, 89, 104, 101, 112, 86, 108, 113, 94, 80, 98, 101, 107, 103, 111, 93, 99) 

G2 <- c(112, 100, 86, 115, 94, 100, 112, 117, 95, 99, 89, 108, 97, 104, 109, 102, 100, 95, 99, 107) 

G3 <- c(105, 83, 92, 106, 98, 86, 103, 87, 97, 103, 83, 90, 105, 79, 100, 96, 97, 105, 95, 99)

These are the IQ scores for the three groups:



Summary of results
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Bars show 95% Confidence Intervals

One could claim here that 
there is a statistically 
significant  difference (α = .05) 
between these two groups.



Summary of results
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Bars show 95% Confidence IntervalsBut the researchers perform a 
total of 3 comparisons here. 

Unfortunately, the more the 
comparisons, the more the 
danger to find a random 
difference as statistically 
significant! 

The Type I error rate increases 
with the number of tests that 
we do.    



Accounting for multiple comparisons

We adjust the α level with respect to the number k of 
comparisons that we test: αk = α / k  

For k = 3 comparions and α = .05, the corrected level will be 
α3 = 0.05/3 = .0167 = 1.67% 

Thus, a difference will be assessed as statistically significant 
if p < .0167  

(This is commonly known as the Bonferroni correction)
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Corrected Confidence Intervals

To account for k comparions, we will construct (100 - α/k)% CIs 

For example, for 3 comparisons we will correct the 95% CIs by 
constructing (100 - 1.67)% = 98.33% CIs
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Back to our example
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Bars show 95% CIs - RED extensions correspond to Bonferroni corrected CIs 

How clear is this 
difference now?



Problems
There is no clear consensus on how to correct for multiple 
comparisons.  

Should we also correct for comparisons on different 
independent variables?  

Should we correct for planned tests whose effect has 
been predicted in advance or only for multiple post hoc 
comparisons?

89



Some good practices
Try to predict the effects based on previous theory, past studies, 
or early results. 

Plan the comparisons of interest in advance.  

Assess the power of an experimental design and select sample 
sizes with respect to the number of planned comparisons. 

Keep the number of comparisons low.  

In contrast, conducting all possible tests, looking for all possible 
differences is a bad practice. 
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Preregistration
Many disciplines and scientific journals have started 
encouraging (or even requiring) the preregistration of 
research protocols. 

Preregistration is a kind of publishing the goals, 
hypotheses, and methodology (procedures, sample sizes, 
types of analysis and tests, etc.) of a study before it begins.  

The goal is to avoid publication bias and reduce the risk of 
false positive results, thus reduce the risk of Type I errors.

91



Preregistration
There are several open services for registering research 
protocols, e.g., see the Open Science Framework 
[ https://osf.io/registries ]
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https://www.nature.com/articles/d41586-018-07118-1



Exploratory Findings vs. Confirmatory Tests

There is a distinction between confirmatory research that 
uses data to test hypotheses and exploratory research that 
uses data to generate hypotheses. 

Some studies can be largely exploratory, helping researchers 
to identify interesting patterns or trends in data that were not 
evident before running the study. 

Researchers should be clear about which parts of their 
analyses are confirmatory and which parts are exploratory. 
Results from exploratory analyses can help researchers 
frame the hypotheses of future studies.  
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