
Lecture 6

Correlation & Regression
Theophanis Tsandilas
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Memory experiment

2

Six participants are given a picture (20 cm x 30 cm) showing a 
ball in the air to view it for 3 to 18 seconds.



Memory experiment

3

The researcher measures the error: the distance between the 
position indicated by the participant and its true value.

Six participants are given a picture (20 cm x 30 cm) showing a 
ball in the air to view it for 3 to 18 seconds.

The following day, they are shown an empty frame (20 cm x 30 
cm) and are asked to indicate the position of the ball in the 
original picture as precisely as possible.



Memory experiment: Results
The experimental results are as follows:

4

Participant Presentation Time (sec) Position Error (cm)

1 3 6.3
2 6 3.9
3 9 2.3
4 12 2.0
5 15 2.8
6 18 1.6



Memory experiment: Questions

Is there a relationship between the Presentation Time and 
the Position Error? 


If yes, how could we quantify and describe this relationship? 
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Correlation & dependence

Is any statistical relationship between two random 
variables.


Example: The relationship between Presentation 
Time and Position Error in the previous example.
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Causal relationships

There is a causality process: a cause and an effect.


Example: There is a causal relationship between 
environmental temperature and electricity consumption. 


A drop in temperature causes households to 
consume more electricity for heating purposes. 
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Non-causal relationships 

(example from wikipedia)


Sleeping with one’s shoes on is strongly correlated with 
waking up with a headache.


Conclusion: sleeping with one’s shoes on causes headache.


Correlation does NOT imply causation. A more likely 
explanation is that both effects are caused by a third factor 
such as going to bed drunk. Thus, the conclusion is wrong.
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Smoking and lung cancer 

9
https://en.wikipedia.org/wiki/File:Smoking_lung_cancer.png



Smoking and lung cancer 

10

The theory that increased smoking is “the cause” of the change in apparent incidence of lung cancer is not even 
tenable in face of this contrast.


Ronald Fischer, 1957 (https://www.york.ac.uk/depts/maths/histstat/fisher269.pdf)

even the most prominent statisticians can be wrong about statistics!

1957



Covariance

Measures the average tendency of two variables X and Y to 
change together (covary):


where our sample is


Compare this equation with the equation measuring variance.
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CovX,Y =

NP
i=1

(xi � µ̂X)(yi � µ̂Y )

N

(x1, y1), (x2, y2), ..., (xN , yN )



Estimating the population covariance

We usually want to estimate the population 
covariance from the sample: 


which gives an unbiased estimate.
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�X,Y

�̂X,Y =

NP
i=1

(xi � µ̂X)(yi � µ̂Y )

N � 1



Example in R: memory experiment
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Covariance vs. variance

Variance is a special case of covariance: 


If the two variables are identical (X = Y), 
covariance reduces to variance. 
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Covariance and independence

If two variables are independent, their covariance will be zero. 


The converse is not always true: 

zero covariance does not imply independence!
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Example

Y is fully determined by X, but their covariance is 0!
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X Y = X2

-2 4
-1 1
0 0
1 1
2 4



Drawbacks of covariance measure

Hard to interpret: 


It is scaled in units of the product of X and Y
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See again our example:

How can one interpret this covariance value?



Correlation coefficients

Can be regarded as standardized (normalized) 
covariance:


Scaled by the standard deviations of X and Y

18



Pearson correlation coefficient (or Pearson’s r)
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⇢XY =
�X,Y

�X�Y

The population correlation coefficient:

⇢̂XY = rXY =
�̂X,Y

�̂X �̂Y

And its sample estimate:

covariance

standard deviation of X standard deviation of Y

A measure of linear correlation between two random 
variables X and Y.
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Note: It is also known as Pearson’s product-moment 
correlation.

Pearson correlation coefficient (or Pearson’s r)



Example in R: memory experiment

21

The correlation coefficient is always bounded by -1 and 1 



Correlation coefficient’s bounds
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rXY =
�̂X,Y

�̂X �̂Y

The covariance gets its maximum value when X = Y, 

which means that X and Y are perfectly correlated. 


But in this case:

�̂X,Y = �̂X,X = �̂2
X = �̂X �̂Y

Thus, the maximum 
correlation value is 1.



Interpretation

The Person correlation coefficient (r) has no units.

The closer the correlation is to 1 or -1, the stronger 
is the linear relationship between X and Y.


A value close to zero seems to suggest a weak or 
absent linear relationship between X and Y. 
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Interpretation

But: 


Is a correlation of r = .2 twice as strong as a correlation 
of r = .1?


Unfortunately, we cannot argue that.

24



Cohen’s [1988] conventions
Cohen’s has proposed guidelines for interpretation of correlation 
values for the behavioral sciences:


Others have tried to apply similar recommendations for other 
domains.
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“Attaching such labels can be dangerous and is usually best avoided.”

(Thomas Baguley)

r Effect Size

.1 Small

.3 Medium

 .5 or higher High



Cohen’s own advice for caution 

"The terms 'small,' 'medium,' and 'large' are relative, not only 
to each other, but to the area of behavioral science or even 
more particularly to the specific content and research method 
being employed in any given investigation….

26



Visually assessing correlation
Examples of Pearson’s correlation coefficients for 
different datasets (shown with scatterplots).

27(from wikipedia)



Visually assessing correlation
Examples of Pearson’s correlation coefficients for 
different datasets (shown with scatterplots).

28
(from wikipedia)



Same stats, different graphs 
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“…make both calculations and graphs. Both sorts of output should be studied; 
each will contribute to understanding.” (Anscombe, 1973)



Same stats, different graphs 
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Matejka & Fitzmaurice (CHI 2017) 
https://www.autodeskresearch.com/publications/samestats



Extending the notion of normality to two dimensions


Bivariate normal distribution

31

A bivariate normal joint density distribution  



Two variables X and Y are said to be bivariate 
normal or (jointly normal):


If their linear combination aX + bY has a normal 
distribution for all a and b.


Attention: Two variables X and Y may be 
independently normal (i.e., when a = 0 or b = 0)  
but not jointly normal.

Bivariate normal distribution

32



Plotting bivariate normal datasets for positive (top) and 
negative (bottom) correlation values.

Bivariate normal distribution
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R code
# Requires to first install the mvtnorm library
library("mvtnorm")

# mean values for our X, Y variables
means <- c(0, 0)

# Four different covariance matrices that correspond to different
# positive correlation values: 0, .3, .5 and .8
cov.mat.1 <- matrix(c(1,0,0,1), nrow=2, ncol=2)
cov.mat.2 <- matrix(c(1,.3,.3,1), nrow=2, ncol=2)
cov.mat.3 <- matrix(c(1,.5,.5,1), nrow=2, ncol=2)
cov.mat.4 <- matrix(c(1,.8,.8,1), nrow=2, ncol=2)

# Random sampling (n = 1000) from bivariate normal distributions
xy.1 <- rmvnorm(1000, mean = means, sigma = cov.mat.1)
xy.2 <- rmvnorm(1000, mean = means, sigma = cov.mat.2)
xy.3 <- rmvnorm(1000, mean = means, sigma = cov.mat.3)
xy.4 <- rmvnorm(1000, mean = means, sigma = cov.mat.4)

# Plotting the results
par(mfrow=c(2,4), mar = c(4,4,1,1), pty='s', cex.main = 1.1) 

plot(xy.1, ylab = "Y", xlab = "X", main = "r = 0", col = 'blue')
plot(xy.2, ylab = "Y", xlab = "X", main = "r = .3", col = 'blue')
plot(xy.3, ylab = "Y", xlab = "X", main = "r = .5", col = 'blue')
plot(xy.4, ylab = "Y", xlab = "X", main = "r = .8", col = 'blue') 34



R code
# Requires to first install the mvtnorm library
library("mvtnorm")

# mean values for our X, Y variables
means <- c(0, 0)

# Four different covariance matrices that correspond to different
# positive correlation values: 0, .3, .5 and .8
cov.mat.1 <- matrix(c(1,0,0,1), nrow=2, ncol=2)
cov.mat.2 <- matrix(c(1,.3,.3,1), nrow=2, ncol=2)
cov.mat.3 <- matrix(c(1,.5,.5,1), nrow=2, ncol=2)
cov.mat.4 <- matrix(c(1,.8,.8,1), nrow=2, ncol=2)

35

X Y

X var(X) cov(X,Y)

Y cov(Y,X) var(Y)



Correlation and independence

We said that a zero covariance (and a zero correlation) 
does not imply independence. 


However:


If two variables X and Y are bivariate normal and 
their correlation is zero (rXY = 0), then they are 
independent.  

36



Correlation and independence

For which of these cases, are X and Y independent?

37



Correlation and statistical inference 

How do we construct the confidence interval for a 
correlation coefficient?


Problem: The correlation coefficient is bounded between 
-1 and 1. Unless the sample size is large, its sampling 
distribution cannot be assumed as normal.  

38



Fisher’s z transformation 

Fisher (1921) showed that the following transformation:


leads to a normal distribution with a standard error that 
is approximately equal to


Thus, one can construct a CI for zr and then apply the 
inverse transformation in order to calculate the CI for the 
correlation coefficient r.

39

1p
N � 3

zr =
1

2
ln(

1 + r

1� r
)



Fisher’s z transformation 

40

What you need to know:


The transformation assumes that X and Y are bivariate 
normal. However, this assumption is often reasonable unless 
the data are severely skewed or contain extreme outliers.   



Example: memory experiment
Provide an interval estimate of the correlation 
between Presentation Time and Position Error.

41

Participant Presentation Time (sec) Position Error (cm)

1 3 6.3
2 6 3.9
3 9 2.3
4 12 2.0
5 15 2.8
6 18 1.6



Example: R Code

42



Example: conclusion

Pearson’s correlation between Time and Error is 


rTime,Error = -.83, 95% CI [-.98, -.07]

43

Note that the CI is asymmetric and quite wide (N = 6).  



Other correlation coefficients

The phi (φ) coefficient: For dichotomous variables.

Example: Correlation between gender (women, men) 
and employment (yes, no) 


Spearman’s rho: For discrete ordinal variables. Appropriate 
for monotonic relationships (whether linear or not). Less 
sensitive to extreme outliers.


Kendall’s τ rank coefficient: Alternative to Spearman’s rho 
and has some advantages. 

44



Limitations of correlation coefficients

They make no distinction between predictor (X) and 
outcome (Y).

They simply quantify a relationship between two 
variables X and Y. 


Not adequate for creating predictive statistical models 
that connect multiple random variables together.

45



Regression

Its goal is to model a relationship between two (or more) 
random variables


In the simplest case of two variables X and Y, the goal is 
to determine a function f such that Y = f(X)

46



Example: memory experiment
Can we find a function f: Time ! Error that describes the 
relationship between Presentation Time and Position Error? 
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Participant Presentation Time (sec) Position Error (cm)

1 3 6.3
2 6 3.9
3 9 2.3
4 12 2.0
5 15 2.8
6 18 1.6



Example: memory experiment
Let’s first plot our data. 
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Example: memory experiment
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One might be tempted to choose the function that 
perfectly fits the sampled data!



Example: memory experiment
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This is generally a bad approach. Such a 
function will not help us understand the true 
relationship between X and Y and make 
inference about the population.


In the absence of previous theory about this 
relationship, it makes more sense to start with 
the simplest possible model.   

One might be tempted to choose the function that 
perfectly fits the sampled data!



Example: memory experiment
This is a simple linear function, and it is probably 
a more reasonable choice. 
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Example: memory experiment
This is a simple linear function, and it is probably 
a more reasonable choice. 
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Even a rough model of a relationship is informative. 
With enough data, more sophisticated models could 
be possibly derived. But simple models are often 
better than complex ones.



Linear regression

It is an approach for modeling a relationship 
between X and Y as a linear function:


Y = b0 + b1X


b0: known as the intercept (or constant)


b1: known as the slope

53



Linear functions

54
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b0=2
b1= ΔΥ / ΔΧ = 0.5 

ΔΧ = 10 
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R code

Drawing the function:


curve(0.5*x+2, ylim = c(0,10), xlim = c(0,10))


To make it appear exactly as in the previous slide:


curve(0.5*x+2, ylim = c(0,10), xlim = c(0,10),  
         lty = 3, yaxs="i", xaxs="i", ylab="Y", xlab="X")

55

Force starting at (0, 0)



Regression terminology

X is known as the predictor, and Y is known as the outcome


Other terms used for X: independent variable, explanatory 
variable, regressor, or covariate.


Other terms used for Y: dependent variable, response, 
regressand, criterion, or measurement variable. 

56



Fitting a line

Problem: Giving a sample, how do we decide 
which line is the best fit?
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Residuals (errors)
A residual is the difference between the observed value 
yi (for a given point xi) and its predicted outcome ŷi :

58

ei = yi � ŷi

Here, residuals are shown in green.



Other common notation
It’s common to express a linear regression model 
as follows:

59

intercept slope

residual (error term)i-th observation

yi = �0 + �1xi + ✏i

<latexit sha1_base64="inykejHc3CQ2QDeAujzyUfF0/aY=">AAACEXicbVDLSgMxFM34rPU16tJNsAgFocxIRTdC0Y3LCvYB7TBk0jttaCYzJBlxKP0FN/6KGxeKuHXnzr8xbWehrQcCJ+ecS3JPkHCmtON8W0vLK6tr64WN4ubW9s6uvbffVHEqKTRozGPZDogCzgQ0NNMc2okEEgUcWsHweuK37kEqFos7nSXgRaQvWMgo0Uby7XLmM3yJuwFo4jv4JGcufjC6uUGiGDdB5tslp+JMgReJm5MSylH37a9uL6ZpBEJTTpTquE6ivRGRmlEO42I3VZAQOiR96BgqSATKG003GuNjo/RwGEtzhMZT9ffEiERKZVFgkhHRAzXvTcT/vE6qwwtvxESSahB09lCYcqxjPKkH95gEqnlmCKGSmb9iOiCSUG1KLJoS3PmVF0nztOJWK2e31VLtKq+jgA7RESojF52jGrpBddRAFD2iZ/SK3qwn68V6tz5m0SUrnzlAf2B9/gAvKptk</latexit>



Least squares

The least squares criterion for fitting a line minimizes 
the squares of the residuals or better, it minimizes 
the sum of squares of the residuals:


 

60

SSresidual =
NX

i=1

e2i =
NX

i=1

(yi � ŷi)
2

A different way to think about it: 

The least squares criterion minimizes the variance 
of the residuals (vertical errors). 



Solution to the least squares criterion

61

b1 =

NP
i=1

(xi � µ̂X)(yi � µ̂Y )

NP
i=1

(xi � µ̂X)2

b0 = µ̂Y � b1µ̂X

Slope:

Intercept:

=
Cov(X,Y )

V ar(X)
=

�̂XY

�̂2
X



Example: memory experiment
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Participant Presentation Time (sec) Position Error (cm)
1 3 6.3
2 6 3.9
3 9 2.3
4 12 2.0
5 15 2.8
6 18 1.6



Example: memory experiment
Result: The equation for the best-fitting 
straight line is: Y = 5.86 - 0.2581X
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Is this the end of the story?

Not really! 

Finding the best-fitting line for a sample of X, Y is like finding 
the best point estimate for a parameter such as the mean.


We need to quantify the quality of the fit of our model. 


We also need to express the uncertainty about our parameter 
estimates for the slope (b0) and the intercept (b1)

64



Variance of the error vs. total variance
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The variance of the error (residuals) is as follows:

�̂2
residual =

SSresidual

N � 1
=

PN
i=1 e

2
i

N � 1
=

PN
i=1(yi � ŷi)2

N � 1

The overall variance of Y is as follows:

�̂2
Y =

SStotal

N � 1
=

PN
i=1(yi � µ̂Y )2

N � 1



Unexplained variance

The following ratio is commonly use to express the 
proportion of unexplained variance in the sample:


This quantity gives the variance of the error as a percentage 
of the total variance in the outcome Y. Thus, it is used as a 
measure of the lack of fit of our model.
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�̂2
residual

�̂2
Y

=
SSresidual

SStotal



The R-square (R2) measure

The explained variance is commonly known as 
the R-square:


67

R2 =
SStotal � SSresidual

SStotal
= 1� SSresidual

SStotal



Example: memory experiment
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Participant Presentation 
Time (sec)

Position 
Error (cm)

Predicted 
Position 

Error (cm)
Residual

1 3 6.3 5.0857 1.2143

2 6 3.9 4.3114 -0.4114

3 9 2.3 3.5371 -1.2371

4 12 2.0 2.7629 -0.7629

5 15 2.8 1.9886 0.8114

6 18 1.6 1.2143 0.3857

Best-fitting line: Y = 5.86 - 0.2581X



Example: memory experiment
# Example of how to derive R square for a linear regression
# where X = time and Y = position error

time <- c(3,6,9,12,15,18)
poserror <- c(6.3,3.9,2.3,2.0,2.8,1.6)

# Derive the slope and the intercept with least squares
b1 <- cov(time,poserror)/var(time)
b0 <- mean(poserror) - b1*mean(time)

# Define the regression function
f <- function(x){b0 + b1*x}

# Find the predicted position error values
poserror.predicted <- f(time)

# Find the residuals
residuals <- poserror - poserror.predicted

# Calculate R-squared
R2 <- 1 - var(residuals) / var(poserror)

cat("R squared =", R2)

69



Example: memory experiment
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Result: The equation for the best-fitting straight line is: 
Y = 5.86 - 0.2581X


The explained sample variance is R2 = .697

This means that the predictor (Time Presentation) 
explains 69.7% of the total sample variance in a 
simple linear model.



Things to consider (1)
For this particular scenario, how reasonable do you think a linear 
model is? 


What happens if presentation time increases further (> 20 sec)?
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Things to consider (2)

The above statistical model considers that the values for the 
predictor X (e.g., presentation times) are measured or 
controlled with no error. 


This is normally a reasonable assumption for most experimental 
designs. However, it may not be always the case.

72



Things to consider (3)

As the sample size becomes small, finding a good fit by 
chance becomes easier. 


For N = 2, the line always produces a perfect fit.

73



Adjusted R2

The R-square measure tends to overestimate the fit when 
the sample size N is low with respect to the number q of 
predictors.


Thus, the adjusted R-squared measure is often used:


For a simple linear regression with one predictor: q = 1

74

R2
adj = 1� (1�R2)(N � 1)

N � q � 1

For our example:  
       adj. R squared = 1 - (1 - .697)*(6 - 1)/(6 - 2) = .621  



Correlation vs. R square

The Pearson correlation r between X and Y 
coincides with R: R2 = r2

75

The R square is more generic and is also used for 
regression analysis with multiple predictors.



Statistical inference 

We can construct confidence intervals (and t tests) for 
the slope (b1) and the intercept (b0) with the following 
assumptions for the residuals (errors):


They are independently sampled from a normal 
distribution with a constant variance

76



Common assumption violations

Unequal variance (or heteroscedasticity) 
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Statistical inference 

We can construct confidence intervals (and t tests) for the 
slope (b1) and the intercept (b0) with the following 
assumptions for the residuals (errors):


They are independently sampled from a normal 
distribution with a constant variance

78

Explaining the full method for deriving such confidence 
intervals is out of the scope of this course.



R code

But we can use R’s linear model function to 
conduct a complete linear regression.

79



R code

80



Getting the 95% CIs of the intercept and the slope:

R code

81

Results summary:

b0 =  5.86, 95% CI [3.10, 8.62]

b1 = -0.26, 95% CI [-0.49, -0.02]



Fitting non-linear relationships with linear regression 

There may be theoretical reasons to a non-linear function, 
such as:


Y = b0 + b1ln(X), or


ln(Y) = b0 + b1X, or 

ln(Y) = b0 + b1ln(X)


All these can be handled as linear regressions. However, 
all assumptions apply now to the residuals (errors) of the 
transformed variables.

82

This assumes a lognormal distribution  
of errors as well as constant variances. 



Example: memory experiment

83

Alternative models.
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Example: memory experiment

84

Alternative models.
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Logarithms may have a theoretical justification for variables that are 
bounded by zero. The last model results in the best fit, but this does not 
mean that it is the best one. The first model is an attractive alternative 
given that the distance error cannot be negative.



The outcomeY is a binary (Bernoulli) variable with parameter 
p = P(Y=1), that is, the probability that Y = 1. The model is 
reduced to a linear function as follows:

Logistic regression

85
Commonly used for binary classification.

log
p

1� p
= �0 + �1xi
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Multiple linear regression

More than one predictors (independent variables):
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yi = �0 + �1xi1 + �2xi2 + ...+ �pxip + ✏i

<latexit sha1_base64="p+8mTIBBDJU5QOzc+EPIytOpAKw="></latexit>

residual (error term)



Generalized Linear Model

A generalization of the linear regression model that 
unifies a wide range of regression models: linear 
regression, logistic regression, Poisson regression, etc.


R provides an implementation through its glm function.


It’s out of the scope of this class. 
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