REWRITING QUERIES OVER XML VIEWS

Theophanis Tsandilas

A thesis submitted in conformity with the requirements
for the degree of Master
Graduate Department of Computer Science
University of Toronto

Copyright (© 2001 by Theophanis Tsandilas

Abstract

Rewriting Queries over XML Views

Theophanis Tsandilas
Master
Graduate Department of Computer Science

University of Toronto

2001

XML is widely used as the standard format of data representation and data exchange
on the Web, and database research has recently focused on exploiting its experience in
traditional databases to handle similar issues in the context of the new data format. This
thesis deals with the problem of query composition in the context of XML-QL, which is
one of the most popular XML query languages. More specifically, we study how a user
query defined over one or more views can be rewritten, so that the rewritten query only
refers to source data. This problem is extensively studied in the context of relational
and object-oriented databases, but several issues are not yet examined in XML query
languages.

The thesis presents a simple rewriting algorithm which is based on a matching proce-
dure between properties of the user query and properties of the view query. The purpose
of this procedure is to derive the bindings of the user-query variables without materializ-
ing the view. The underlying data model is object-based and unordered. Special issues
that we study include multiple view references, equality conditions between variables in

the user query, and element grouping in the view.

i

To my parents
Panagiotis and Konstantina

for their love and continuous support.

1

Contents

1 Introduction

1.1 Preliminaries
1.2 Motivation Lo
1.3 Related work and scope of the thesis,
1.4 Organization of the thesis

2 Terminology

2.1 XML-QL . . .o o
2.1.1 Data Model
21,2 Syntax . ..o
2.1.3 Semantics
2.1.4 Splitting pattern expressions
2.1.5 Object Identifiers
2.1.6 Valueequality o

2.2 VIeWSs . . L

2.3 Query Rewriting L
2.3.1 Constructor and Pattern trees
2.3.2 Matching pattern trees to constructor trees

3 Query composition - Base case

3.1 Formalizing the problem 0 oL

11
11
12
13
14
15
16
17
20

24

3.1.1 Assumptions.o 25

3.2 Matching the user query against the view 25
3.2.1 The matching algorithm 25

3.2.2 Deriving the variable bindings from the matchings 28

3.3 The rewriting algorithm L 0oL 30
3.3.1 Detailed algorithm o 0o 30

3.3.2 Justification of the algorithm 36

3.4 Regular path expressions oL 38
3.5 Multiple pattern expressions in the user query 39
3.6 Handling variable equality in the user query 41

4 Introducing explicit OID definitions 46
4.1 Splitting pattern treeso 47
4.2 Matching grouped contents oo 49

5 Conclusions and future work 53
A XML-QL Grammar 56
Bibliography 57

vi

Chapter 1

Introduction

1.1 Preliminaries

The notion of views is essential in traditional database systems. They have been studied
extensively in the context of the relational and object database models, but the relevant

research is still immature in the context of XML [Con98].

The recent emergence of XML as the standard exchange format between applications
on the Internet has important implications for the database community. Classical data
models are not adequate to describe XML data. The introduction of a data model also
requires the development of new storage mechanisms and new query languages implying

a series of new issues such as indexing, query optimization, and database design.

In this new world of XML, the importance of views is even more crucial than in
standard database applications. XML is only a syntax and cannot uniquely describe a
certain portion of data. Different authors may use totally different XML structures or
names to describe the same data. XML views will play a significant role in translating
information between sources and applications that use different schemata and ontologies.
They will also provide the means to integrate multiple heterogeneous sources. Having in

mind that large volumes of data are stored using traditional data models, e.g., relational,

CHAPTER 1. INTRODUCTION 2

views may also be involved in migrating data from these models to XML.

Issues that have been already studied include XMI. data models and query languages
[SLRIS, FSW199], XMT. algebras [BT99, BMR99, FSW00, BFS00], and some preliminary
work on query optimization [MW99]. The most popular XML query languages that
have emerged are: XML-QL [DFF*98, DFF*99], Lorel [GMW99], XQI [RLS98], YATL
[CDSS98], UnQL [BFS00], XQuery [CCFT01], and more recently Quilt [Don00]. The
language that is used in this thesis is XML-QL. Existing work on XML views involves
issues like view definition [BLP*98, LPVV99], maintenance of materialized views [L.D00],

active views [MSA199, Abi99], and XML views over relational data [MF00, Bar99].

1.2 Motivation

This thesis studies the problem of query rewriting in the context of XML views. More
specifically, given an XML query (we call it a user query) that is defined over one or more
virtual (non-materialized) XML views, we find an equivalent query (we call it a rewritten
query) that is defined over the source data. The term “query rewriting” also refers to
the reverse problem: given a query defined over a database and a set of views over the
same database, find equivalent rewritten queries defined over this set of views. Query
composition is another term that is used to describe the problem that we study, since the
user query is composed with the view query in order to produce a single query.

Query rewriting is just one of the methods of evaluating queries over views. Other
ways to process queries over a virtual view are: (i) materialize the view on demand;
(ii) rewrite the view so only the portion of the view that is relevant to the query is
materialized; and (iii) translate the query and the view into expressions of a compositional
algebra and apply the composition and any possible optimizations at the algebraic level.

The second method is clearly more efficient than the first one. The query rewriting

approach is even more efficient, since view rewriting requires the partial materialization

CHAPTER 1. INTRODUCTION 3

of the view and the execution of the original query over this view. However, we should
mention that query rewriting can lead to huge rewritten queries whose optimization may
be difficult or even infeasible [AGM*97].

The third method is similar to the query rewriting approach, but composition is
based on algebraic transformations rather than transformations at the level of the query
language. Mostly due to the lack of a group-by operator in the relational algebra to
express grouping, early composition and unnesting techniques were based on transforma-
tions over SQL queries instead of applying algebraic transformations. The correctness
and completeness of such transformations can be more clearly and strictly proved using
a formal algebra'. Later approaches used algebraic techniques to perform query com-
position and unnesting optimizations, mainly in the world of object-oriented databases
[CM93, Feg98]. However, due to limitations in existing optimizers, query rewriting al-
gorithms can be more efficient than algebraic transformations that are based on these
optimizers. Having in mind that query optimization is still at its infancy in the context
of XML and that optimizers for XML query languages are “under construction”, the

development of query rewriting techniques is significant.

Example 1.1 Consider the view that is expressed by the following XML-QL query:

V: WHERE
<Library>
<book>
<title>$t</>
<author>$a</>
<publisher>Wise Reader</>
</>
</> IN ‘‘library.xml’’
CONSTRUCT
<author>
<name>$a</>
<book>$t</>
</>

The above statement creates the view of the authors and their books that are published by

!Transformations over SQL resulted in a number of bugs which were finally corrected [GW87].

CHAPTER 1. INTRODUCTION 4

“Wise Reader”. The following query asks for the book titles that are written by “Marcel

Proust”:

Q: WHERE
<view>
<author>
<name>Marcel Proust</>
<book>$t</>
</>
</> IN V
CONSTRUCT
<title>$t</>

According to the full materialization approach, we have to compute the view’s result and
then apply the query over this result. The drawback of this approach is that the query is
only interested in the books of a specific author, so the computation of the the whole view
query is redundant.

The view rewriting approach suggests the transformation of the view and the insertion
of the condition $a = “Marcel Proust” in the view definition (we can also replace the
variable $a by the string “Marcel Proust”). The drawback mentioned above is eliminated,
but we still need to evaluate two separate queries.

Finally, the query rewriting approach suggests the transformation of the query as

follows:
Q: WHERE
<Library>
<book>
<title>$t</>

<author>Marcel Proust</>
<publisher>Addison-Wesley</>

</>
</> IN ‘‘library.xml’’
CONSTRUCT
<title>$t</>

The query is directly applied on the source data, so the desired result is produced by a

single query.

CHAPTER 1. INTRODUCTION)

Query rewriting becomes more crucial when there are many levels of views, i.e., views
defined over other views. In this case, instead of evaluating a potential big number of
queries returning redundant portions of data, we compute a single query that produces

only the desired data.

1.3 Related work and scope of the thesis

Rewriting queries defined over views can be seen as a special case of the general problem of
query unnesting, which is extensively studied in the context of relational [Kim81, GW87]
and object-oriented databases [CM93, Feg98].

In the relational world, query composition is simply performed by merging the FROM
and WHERE clauses of the corresponding queries, as long as views are defined as simple
SPJ queries. However, when a view is defined as SELECT DISTINCT, transformations
to move or to pull up DISTINCT should preserve the number of duplicates correctly
[PHH92]. The situation is also complex when aggregates are present in the view [Mur92].
Aggregates are not examined by this thesis.

The problem is similar in the world of object-oriented databases. Queries defined
over views correspond to the case of nesting in the FROM clause, when no predicate
dependency exists between the inner and the outer block of a nested query. Such nested
expressions can be transformed into simple join expressions [CM93].

There are several issues that make the problem different in the context of XML and

XML query languages.

1. The schema of XML data is not always known. As a result of this, the schema of

the view is only partially known.

2. More than one way of matching the user-query variables with the view variables
may be possible, since an element name can appear multiple times even under the

same parent element.

CHAPTER 1. INTRODUCTION 6

3. XML query languages allow the use of tag variables and regular path expressions
which make the problem of matching between the variables of the view and the

query harder.
4. Skolem functions are used to group data.

5. In the XML world, order is often important. The existence of index operators

makes the problem even harder. This thesis does not address the order problem.

Query composition in the context of semistructured data is first addressed in MSL
[PAGM96], a datalog-like query language. A similar approach is presented by Papakon-
stantinou and Vassalos [PV99a] for TSL, which is also a datalog-based query language
for semistructured data. The unification algorithms that the above frameworks propose
are analogous to our matching algorithm. The problem is also examined by Buneman et
al. [BFS00] in the context of UnQL [BDHS96], a query language and algebra based on
structural recursion. The query composition is performed on the algebraic level. How-
ever, the underlying data model is value-based as opposed to the object-based model that
we study. In the XML-QL data model XML data are represented as labeled graphs,
whereas in the UnQL data model, XML data are represented as sets of label /value pairs.
The composition algorithm presented in the SilkRoute framework [MF00] is the clos-
est to our approach. Views are expressed as RXL (Relational to XML Transformation
Language) queries, which inherit the SELECT and FROM clauses from SQL and the
CONSTRUCT clause from XML-QL. In other words, RXL. queries transform relational
data to XML data. User queries are expressed as XML-QL queries. We can enumerate

several differences between our approach and SilkRoute.

1. Object identifiers are not always explicitly defined in the constructor of a view. In
several cases, these identifiers should be present in the constructor of the rewritten

query in order to ensure that the correct object-elements are produced. The way

we derive them is different in XMIL-QL than in RXL queries.

CHAPTER 1. INTRODUCTION 7

2. A variable in the CONSTRUCT clause of an RXL view can only be mapped to a
variable appearing in the WHERE clause of the XML-QL query, since it can only
represent atomic values (like variables in SQL queries). In our case, a variable in
the constructor of the view can also be mapped to a whole pattern subexpression,
since it can represent complex non-atomic values. This difference is reflected in the

rewriting algorithm.

3. We investigate how equality conditions between variables in the user query are

handled.

4. We present a different approach to handle grouping by Skolem functions in the
view, which is based on splitting the pattern expressions of the user query. We
also indicate that a grouping performed by a Skolem function should sometimes be
expressed by means of a query in order to perform a correct variable substitution

during the rewriting process.

1.4 Organization of the thesis

The thesis is organized as follows.

o In Chapter 2, we describe XML-QL and introduce the terms that are used in the

next chapters.

o In Chapter 3, we present our query composition approach, when no explicitly de-

fined object identifiers exist in the CONSTRUCT clause of the view.

o In Chapter 4, we introduce explicitly defined object identifiers in the user query

and suggest a solution to the problem.

e Finally, in Chapter 5, we give a conclusion and present the main issues for future

work.

Chapter 2

Terminology

2.1 XML-QL

XML-QL is a declarative XML query language that can extract data from existing XML
documents and construct new XML documents. An XMIL-QL query consists of three
parts: (i) a pattern part, which matches elements in the input document and binds
variables; (ii) a filter part, which provides conditions for the bound variables; and (iii)
a constructor part, which specifies the result in terms of the bound variables. The
pattern and the filter part can include multiple pattern and filter expressions, respectively.
Patterns and filters appear in the WHERE clause, while the constructor appears in the
CONSTRUCT clause of the query.

Example 2.1 The following query returns all the titles of books written by “Dostoyevski”,
published after 1990:

Q: WHERE
<Library> //pattern
<book published = $year>
<title>$t</>
<author>Dostoyevski</>
</>
</> IN ‘‘library.xml’’,
$year > 1990 //filter
CONSTRUCT

CHAPTER 2. TERMINOLOGY 9

<title>$t</> //constructor

Patterns and constructors have the structure of normal XML data, but they can also
contain variables. Patterns can also include reqular path expressions, which can be used
to specify element paths of arbitrary depth and tag variables, which can be considered

as a way of querying the schema of data.

Example 2.2 The following query returns all the authors and their writings. The schema
of the data is not known. We do not know what kind of writings exist, e.g., whether $w
is bound to a book or an article element, and in what depth under Library they appear
By means of reqular path expressions and tag variables, we pose a query that does not

require the knowledge of the exact schema.

Q: WHERE
<Library.*>
<$w>
<title>$t</>
<author|writer>$a</>
</>
</> IN ‘‘library.xml’’
CONSTRUCT
<author ID=AuthorID($a)>
<name>$a</>
<title>$t</>
</>

In the above example, the results are grouped by the name of the authors. This is
achieved by using the Skolem function AuthorID, which generates a new identifier for
each distinct value of $a. According to the data model that we use and describe in the
next paragraph, duplicates are eliminated. Therefore, only a single name element will
appear under each produced author element. Skolem functions are powerful and the

rewriting algorithm is based on their use.

2.1.1 Data Model

XML-QL supports two different data models: an unordered and an ordered data model.

CHAPTER 2. TERMINOLOGY 10

The unordered data model considers that an XML document is a graph, in which
each node is represented by a unique object identifier (OID). A graph has a unique
root node and is labeled as follows: graph edges are labeled with element tags, nodes
are labeled with sets of attribute-value pairs, and leaves are labeled with string values.
Graph edges correspond to element tags, while nodes correspond to element contents.
Since every element is denoted by a tag which contains a single label, it may not be clear
how a certain node can be pointed by two different edges. An element can refer to other
elements by means of IDREF attributes. The value of an IDREF attribute is an OID.
XML-QL blurs the distinction between IDREF attributes and elements, and therefore,
labeled edges represent both element tags and IDREF attribute names. Since a certain
element can be referenced by several other elements, a graph node can be pointed by
more than one edge. Attributes are associated to nodes. Two nodes can be connected
by several edges, but with the following restriction: a node cannot have two outgoing
edges with the same labels and the same values, i.e., between any two nodes there can
be at most one edge with a given label, and a node cannot have two leaf children with
the same label and the same string value. This condition means that XML documents

denote sets.

In the ordered data model, the corresponding document graph contains a totally
ordered set of nodes. The order of the nodes corresponds to the natural order of elements
in the document. Given a total order on nodes, we can enforce a local order on the
outgoing edges of each node. In the ordered model, the above restriction is not retained,
so arbitrarily many edges with the same source, same edge label, and same destination
value can appear. According to this model, duplicates are not eliminated and XML

documents denote bags.

In our study, the underlying model is unordered, so rewritten queries do not neces-

sarily preserve the right order in the output.

CHAPTER 2. TERMINOLOGY 11

2.1.2 Syntax

As XML-QL is still evolving, its syntax varies in different publications [DFF198, Fer99].
In Appendix A, we present the XML-QL syntax that we consider. XMIL-QL queries can
also be expressed as functions. For simplicity, we consider only functions that have no

arguments:

function GreekCities(){
WHERE
<city>
<name> $c </>
<population> $p </>
<country> Greece </>
</> IN ‘‘cities.xml’’
CONSTRUCT
<city>
<name> $c </>
<inhabitants> $p </>
</>

2.1.3 Semantics

We continue with our XML-QL semantics definition. Consider an XML-QL query WHERFE
P CONSTRUCT (' and the set of variables zq, ..., x; that are bounded by one or more
conditions that appear in P. Let (G be a graph that corresponds to an XML document.
We construct a table R(x1,...,2;) with one column for each variable. Each row corre-
sponds to a binding of the variables that satisfies all conditions in P. We should mention
that a certain row is produced when each pattern expression in P matches a certain
XML subgraph of the source data. More information about how pattern expressions
match source XMT data can be found in the XML-QT. proposal [DFF*98]. Two different
rows always correspond to two different matched XML subgraphs for at least one pattern
expression of P.

In each row, a variable can be bound either to an OID that corresponds to internal

non-leaf node in the graph, to a string value (leaf node, attribute value or tag label).

CHAPTER 2. TERMINOLOGY 12

Let C(xy,...,2) be the template contained in the CONSTRUCT clause depending on
a subset of the variables zy,..., 2. If 2%, ..., 2% are the bindings in row 7 of the table R,
where 7 = 1..n, then, for that row, we construct the XML fragment C; := C'(z}, ..., z}).
Each C; is called tuple. The query’s answer contains all the produced tuples, without
taking into consideration any order.

The above description does not clarify how a variable could be bound to the content of
an XML fragment which contains both elements and string values. For instance consider
that a variable var is bound to the content of the following XML fragment:

<city>
Athens

<country> Greece </country>
</city>

It is not clear whether the edge city points to a leaf node or to an internal node. In
such cases, extra edges labeled as C'DAT A encapsulate the string values [DFF*99]:

<city>

<CDATA> Athens </CDATA>

<country><CDATA> Greece </CDATA></country>
</city>

It is now clear that the variable var is bound to the OID of the internal node that is

pointed by the edge city.

2.1.4 Splitting pattern expressions
Consider the following pattern expression:

WHERE E,...E, IN Source

where Fy, ..., F, are distinct XMIL-QL patterns. The pattern expression is equivalent to

the following set of pattern expressions:

WHERE Ey IN Source,...,E, IN Source

CHAPTER 2. TERMINOLOGY 13

2.1.5 Object Identifiers

Each element appearing in the CONSTRUCT part of a query includes an OID which
is probably not explicitly defined. However, it is implicitly determined by a Skolem
function. For instance, consider the function GreekCities() in Subsection 2.1.2. For
each binding of the query’s variables with the source data, a distinct city element is
produced. So a new identifier is constructed for each distinct binding, i.e., we should
define Skolem functions that produce a unique value for each row of the table R, which
contains the variable bindings. In Subsection 2.1.3, we mentioned that two different
rows in R are produced when at least one pattern expression of P matches two different
XML subgraphs of the source data. Two subgraphs are different if they contain at least
two nodes with different values. By different values, we mean either different OIDs or
unequal string values in the case of leaf nodes. We should mention that two graphs can
be different even if they contain identical leaf nodes. Therefore, in order to ensure that a
different result is produced for each row in R: (i) a different identifier variable is assigned
to each element that appears in P, and (ii) a unique OID is created for each element
in the constructor of the query by means of Skolem functions defined over the above
variables. If idy, ..., 1d, are the identifier variables that are assigned to the elements that
appear in the pattern part of a query, each element < e; > in the constructor part can
be written as < e¢; I D = f;(idy,...,1id,) >. The pattern part may contain several pattern
expressions. It is conceivable that when the OID of an element is explicitly defined, no
additional transformation is applied.

According to the above description, the function GreekCities() is written as follows:

V: function GreekCities(){
WHERE
<city ID = $il>
<name ID = $i2> $c </>
<population ID = $i3> $p </>
<country ID = $i4> Greece </>
</> IN ‘‘cities.xml’’,
CONSTRUCT
<city ID = £1($i1,$i2,$i3,$i4)>

CHAPTER 2. TERMINOLOGY 14

<name ID = £2($i1,$12,$i3,$14)> $c </>
<inhabitants ID = £3($i1,$i2,$i3,$i4)> $p </>
</>

In the case of RXI queries [MF00], the implied OID definitions are derived by using
the keys of the relations that are involved in the FROM clause of the query.

The problem changes when the pattern part of the user query involves regular path
expressions. A regular path expression does not require a specific schema for the source
data. Since the schema of the data that can be matched by the pattern part is not
known, it is not possible to derive the implicit OIDs of the elements in the constructor of
the query. In Chapter 3, we see that due to this fact, there are cases where no rewritten
query can be constructed, when regular path expressions appear in the pattern part of

the view.

2.1.6 Value equality

In the case of leaf nodes, two nodes are equal if they correspond to equal string values.
In the case of internal nodes, the nodes are equal if they correspond to the same OID.
Consider the following query which returns publications that are written by more than

one authors:

WHERE
<publications>
<author>
<name> $n1 </>
<publication> $pl1 </>
</>
<author>
<name> $n2 </>
<publication> $p2 </>
</>
</> IN ‘‘publications.xml’’,
$n1'=$n2, $pi1=$p2
CONSTRUCT
<author>
<name> $n1 </>
<publication> $pl </>

CHAPTER 2. TERMINOLOGY 15

</>
<author>
<name> $n2 </>
<publication> $pl </>
</>

If the publication elements in the source data contain atomic values, then the com-
parison between $pl and $p2 is based on the string values to which they are bound.
Otherwise, the OIDs to which the two variables are bound should be identical, i.e., $pl
and $p2 should correspond to the same publication object. Content equality is not ade-

quate.

We can observe that the publications that are bound to the variable $pl are repro-
duced twice in the result. Since each publication element that is created has a unique
OID (no Skolem functions are declared), each binding results in two different nodes, ref-
erenced by two different publication edges. So now, these nodes refer to two different

publications.

2.2 Views

We do not provide any special view definition syntax. Views are defined as normal XML-
QL functions without arguments and schema restrictions for the output. References to
views are expressed as function calls. However, we restrict our problem to function calls
that appear after 'IN’, and not in the interior of elements. In addition, we do not study

view definitions with constructors that contain nested sub-queries.

A well-formed XML document should have a single root element tag. The XML-QI.’s
implementation [Fer99] adds a tag named XML to the result of a query. We can assume
that the result of a view query has a root element named view. A query over a view

should take into consideration this external element.

CHAPTER 2. TERMINOLOGY 16

2.3 Query Rewriting

Consider a view defined as an XML-QL query V. V takes as input an XML document
X Dy and returns an XML document X Dy = V(X D). Moreover, consider a user query
(), which takes as input X D, and returns an XML document X D;. We are required
to construct an XML-QL query @', which takes as input the XML document X D; and

returns X D3, i.e., Q' (X D1) = Q(XDy) = Q(V(XDy))=(QoV)(XDy).

We give a brief description of the intuition behind the rewriting process that we
follow. The structure of an XML-QL constructor is very similar to the structure of
XML documents. When no explicitly defined OIDs and nested sub-queries appear in the
constructor of V, its schema is similar to the schema of the individual tuples that are
produced by the query. In other words, the element tags and attributes that appear in
the constructor of V also appear in each tuple of the resulting XML document X D,. The
idea is to match the user-query pattern with the constructor of V' instead of matching it
with X' D,. Since a constructor as opposed to an XML document also contains variables,
the result of the matching procedure is a set of mappings between variables, constants
and element tags. The matching and composition algorithms are presented in Chapter

3.

Explicitly defined OIDs and sub-query blocks in the constructor of a query may result
in aggregated XML data, so the structure of the produced tuples may be different from
the structure of the constructor. As mentioned in the previous section, sub-query blocks
in the constructor of the view are not studied in this thesis. Explicitly defined OIDs in
the view definition are studied in Chapter 4. Finally, we also assume that no regular

path expressions appear in the pattern part of the view and the user query.

CHAPTER 2. TERMINOLOGY 17

2.3.1 Constructor and Pattern trees

We consider that all the variables, as well as the Skolem function declarations that appear
in a query are stored in a symbol table. We denote as Ty the symbol table that contains
all the variables and Skolem function declarations that appear in the body of a query Q).
For each variable, we store its name, while for each Skolem function, we store its name,
and its list of parameters. Parameters may be either constants or pointers to symbols in
To.

We represent constructors by trees instead of graphs, which facilitates the matching
procedure. The internal nodes of a constructor tree represent elements, while the leaf
nodes represent non-tag variables and constants (variables and constants that are not
included in an element tag) that appear in a constructor. Handling the tag elements as
terminal symbols and ignoring the end tags, a constructor tree is similar to the syntax
tree of the corresponding constructor.

A constructor tree can be expressed using the following grammar

1: Node ::= LeafNode | InternalNode

2: LeafNode ::= LeafVariable | LeafConstant

3: InternalNode ::= (TagLabel, Children, AttributesSet)
4: Taglabel ::= TagVariable | ElementName

5: Children ::= Node | Children, Node

6: AttributesSet ::= {0ID, Attributes}

7: 0ID ::= (ID, <Skolem>)

8: Attributes ::= Attribute | Attributes, Attribute
9 Attribute ::= (AttrName, AttrValue)

10 AttrValue ::= AttrVariable | AttrConstant

11: LeafVariable ::= <VAR>

12: TagVariable ::= <VAR>

13: AttrVariable ::= <VAR>

14: ElementName ::= <IDENTIFIER>

15: AttrName ::= <IDENTIFIER>

16: LeafConstant ::= <STRING>

17: AttrConstant ::= <STRING>

The terminal symbols < VAR > and < Skolem > represent references to variables

and Skolem function definitions, respectively, in the symbol table. A node is descendent

CHAPTER 2. TERMINOLOGY 18

of another node that represents an element e,,,c,¢ if it represents an element, a variable
or a constant which is nested under €,4.¢,;. The root node represents the root element
that is produced by the query and is named as view if () is a view definition. In the
sequel, internal nodes are named after their label (Taglabel), and leaf nodes are named
after the variable or the string value that they represent.

A graphical representation of a constructor tree is displayed in Figure 2.1.

Where <author> Construct
<name> $x1 </> <person age="30" >
<pub> $x2 </> <name>
<surname> $x3 </> $x1 $x3
</> </>
<publication>
<title> $x1 </>
</>
</>
o View

person {(ID, f1($il,....$i4)),(age,’30")}

name {(ID, f2($il,....$i4))}
publication {(ID, f3($il,...,$i4))}

$x1 title{(ID, f4($il ,....$i4))}

$x1

Figure 2.1: A query and the corresponding constructor tree

We consider two sets of primitive functions that can be used to access and handle

tree nodes:

Symbol(b):boolean Return true if b can reduce to the non-terminal symbol Symbol of

the grammar presented above. For instance, if node is a leaf node that represents a

CHAPTER 2. TERMINOLOGY 19

variable, the function calls LeafNode(node) and LeafVariable(node) return true,

while the function call LeafConstant(node) returns false.

get Symbol(b):Symbol Return the Symbol part of b. For instance, if node is an internal
node with the form (author,{childy,childy}, {(ID, f(x1))}), then the function call
getTagLabel(node) returns author, and the function call getO1 D(get AttributesSet(node))

returns (ID, f(x1)).

Given a node of a constructor tree, we can reproduce the constructor segment that
corresponds to the subtree rooted by this node. A constructor segment is defined by the
non-terminal symbol Contents in the XML-QL grammar presented in Appendix A.

A pattern tree PTg; is defined similarly and represents the i'" pattern expression of
the pattern part of (). Skolem functions do not appear in pattern trees. OID attributes
may also be omitted. So, the lines 7-8 of the grammar presented above can be simply

replaced by the following line:

7: AttributesSet ::= ’{’ Attributes ’}’

The OID attribute is handled as any other attribute. We should mention that leaf nodes
in a pattern tree cannot have sibling nodes, since patterns with the form <e> $var; $var,
</> or <e> $war const </> are not valid.

We assume that the root node of a pattern tree has always a single child. Pattern

expressions of the form:

WHERE
<view>
Ke_1>...</>
<e_2>...</>
</> IN V

are always translated into:

WHERE
<view>

CHAPTER 2. TERMINOLOGY 20

e_1>...</>
</> IN V

<view>
<e_2>...</>
</> IN V

After this transformation, applying a pattern expression over the view is equivalent

to applying the pattern expression over each distinct view tuple.

2.3.2 Matching pattern trees to constructor trees

The procedure of matching a pattern part of a query to the constructor of another query
is analogous to matching the pattern part of a query to an XML document. A certain
pattern can match an XML document in several different ways, resulting in different
variable bindings. Similarly, a pattern can match a constructor in several different ways.
Each of these matchings involves several independent mappings that involve variables,
constants, element labels, constructor segments and patterns.

The matching procedure between a pattern expression and a constructor is performed
by means of the corresponding pattern and constructor tree. Nodes of the pattern tree
are matched to nodes of the constructor tree by comparing their properties, e.g., the
label names and the attribute values. Since pattern and constructor trees also involve
variables, the comparison may also involve variables. Since variables can be bound to
any value, the comparison between two variables or between a variable and a constant
always evaluates to true.

Consequently, an internal node of a pattern tree can match an internal node of the
pattern tree if the comparison between their labels, attribute names and attribute values
evaluates to true. All the attributes of the pattern node should be matched, but it is not
necessary to match all the attributes of the constructor node. For instance, the pattern
node that represents <$t continent=’’Europe’’> can match the constructor node that

represents <country ID=f($x) continent=$c>

CHAPTER 2. TERMINOLOGY 21

The comparison between constant leaf nodes is based on their string values. However,
a leaf node may consist of a variable. Such a variable can be bound not only to atomic
values, but also to OIDs representing whole XML subgraphs. In order to handle this
case, we consider that a variable in a leaf node can be matched to an internal node or a
collection of sibling nodes.

Not any pair of nodes is compared. A pattern node can match a constructor node
only if their parent nodes can be matched. In other words, in order to match two nodes,
we should match all their ancestors.

Matches between components of the constructor and the pattern tree are represented

by triples that obey the following syntax:

1: Match ::= (TagVariable, TagVariable, ’null’)

2: | (TagVariable, ElementName, ’null’)

3: | (ElementName, TagVariable, ’null’)

4. | (AttrVariable, AttrVariable, ’null’)
5: | (AttrVariable, AttrConstant, ’null’)
6: | (AttrConstant, AttrVariable, ’null’)
7: | (LeafNode, LeafNode, <Skolem>)

8: | (LeafVariable, InternalNode, <Skolem>)
9: | (InternalNode, LeafVariable, ’null)
10: | (LeafVariable, SiblingNodes, <Skolem>)
11: | (SiblingNodes, LeafVariable, ’null’)

12: SiblingNodes ::= Node SiblingNodes | Node Node

A match can involve tag labels, attribute values and nodes that are matched during
the matching procedure. When two internal nodes are matched, the produced matches
represent their matched attributes and labels that involve variables.

The first argument of a match represents the matched component of the pattern
tree, while the second argument represents the matched component of the constructor
tree. As shown above, leaf nodes that represent variables can match collections of sibling
nodes. If the leaf node belongs to the pattern tree, the meaning of such a match is

that the corresponding variable should be bound to the OID of an XML subgraph whose

CHAPTER 2. TERMINOLOGY 22

structure is defined by the constructor segment that the matched nodes represent. This
OID is represented by the third argument of the triple. It is used when the variable
participates in equality filters and the equality should be based on the OID. If the leaf
node belongs to the constructor tree, the meaning is that the pattern represented by the
matched nodes should be applied on the corresponding variable.

In general, a match represents a set of bindings of a certain subset of the user-query

variables.

Example 2.3 Consider the following pair of view and user query:

V: function View(){
WHERE

<$t1 ID = $i2> $x1 </>
<$t2 ID = $i3> $x2 </>
</> IN ‘‘source.xml’’,
CONSTRUCT
<b ID = f1($i1,$i2,$i3) a=’Hi’>
<$t ID = £2($i1,$i2,$i3)> $x1 </>
<b2 ID = £3($i1,$i2,$i3)> $x2 </>

</>
¥
Q: WHERE
<view>
<b a=$v>

<b1> $y1 </>
<b2><b3> $y2 </></>

</>

</> IN View()
CONSTRUCT

<result>
<d1> $y1 </>
<d2> $y2 </>

</>

The following set of matches can be identified: ($v, "Hi’, null), ("b1°, $t, null), (b2°, $t,

)

null), (Syl, $a1, 2($i1,$i2,8i3)), (b3, $x1, f2($i1,$i2,$i3)), and (b3, $22, f3($i1,5i2,8i3)).

The purpose of the matching procedure between a constructor and a pattern tree is to

match the whole pattern tree, but not necessarily the whole constructor tree. Moreover,

CHAPTER 2. TERMINOLOGY 23

the same node of a constructor tree can be matched by several nodes of the pattern tree,
but each node of the pattern tree should be matched only once.

Several different matchings can exist between a constructor and a pattern tree, i.e.,
the pattern tree can match the constructor tree in several different ways. Each matching
is represented by the corresponding set of matches. Each set of matches should obey
the following restrictions: (i) there should be a single match for each tag or attribute
variable of the pattern tree; and (ii) each leaf node of the pattern tree or exactly one of
its ancestors should appear in a single match.

Considering the matches presented in Example 2.3, two possible matchings can be

identified.

1. The first contains the matches ($v, "Hi’, null), ("b17, $t, null), (Sy1, $x1, f2(5i1,$i2,$i3))
and (b3, $x2, f3($i1,%i2,5i3)).

2. The second contains the matches ($v, "Hi’, null), ("b1’, $t, null), ('b2’, $t, null),

($y1, $x1, £2($i1,8i2,i3)) and (b3, $x1, £2($i1,$i2,$i3)).

The matching procedure is presented in detail in Chapter 3.

Chapter 3

Query composition - Base case

In this chapter, we present our solution to the problem of composing queries that are
defined over XML views. Explicit OID definitions are not studied in this chapter. They

are introduced in Chapter 4.

3.1 Formalizing the problem

Consider a view V(db) which is defined by a query V/(db):
WHERE
Py (db, 24, ..., x,)

FV(xlv"wxn) (31)
CONSTRUCT Cy(zy, ..., xy)

where Py is the pattern part, Fy is the filter part, C'yv is the constructor, and X =
{x1,...,2,} is the set of variables that appear in V. The query is applied on the XML
document db.

Consider the user query Q(V') that is defined over V:

WHERE
PQ (V7 Y1y -eny ym)
Fo(yiy ey Ym) (3.2)

CONSTRUCT Cg (Y1, e Ym)

24

CHAPTER 3. QUERY COMPOSITION - BASE CASE 25

where Py, Fg and (g are defined over the variables Y = {y1, ...,y }, and X NY = @'
Our problem is the construction of a query @’(db) which is defined over the source

data and returns the same result as (). @)’ has the following format:

WHERE
Py (db, 2y, ...,)
FQ'(wlv"wx?wylv--wym) (33)

CONSTRUCT Coi(®1, ey Tny Y15 -y Ym)

The rewriting process involves two sequential steps. During the first step, we discover
the matchings between Py and Cy. These matchings are used in the second step to
produce the rewritten query ()’. The first step is presented in Section 3.2, and the second

one is presented in Section 3.3.

3.1.1 Assumptions

We assume that Py contains only a single pattern expression, which is the one that refers
to V. We introduce multiple pattern expressions in Py in Section 3.5. We also assume
that there are no equality conditions between variables in {yy, ..., y,»}. This means that
there are no filters y; = y; in Fg, and furthermore, each y; appears only once in Fg.
Equality conditions between variables are studied in Section 3.6. Finally, we assume that
both Py and Py do not contain regular path expressions. In Section 3.4, we justify this

assumption.

3.2 Matching the user query against the view

3.2.1 The matching algorithm

Let PTy be the pattern tree that represents the pattern part Py of the user query @),

and C'Ty be the constructor tree that represents the constructor C'y of the view V.

If X NY # (), we can always find a renaming X’ of the set of variables in X, such that X’ NY = (.

CHAPTER 3. QUERY COMPOSITION - BASE CASE 26

Algorithm 3.1 describes how the matchings between PTy and CTy are discovered.
The algorithm consists of the function findMatchings(node,, node.), which performs the
matching procedure recursively. It takes as arguments a node node, from C'Ty and a
node node. from PTg and returns all the matchings between the subtrees that are defined
by these two nodes. We use the functions that are defined in Section 2.3 to access and

handle nodes.

Lines 4-9 check whether the nodes represent constants. If they both represent equal
constants, a single matching exists that contains only the match between the two nodes.
Lines 12-14 check whether the tag labels of the two nodes are identical or at least one of
them is a tag variable. If none of these situations holds, no matching exists. Lines 17-20
checks whether the attributes of the elements that correspond to the nodes match. The
function matchAttr(node,, node.) returns false if and only if (i) both node, and node.
represent internal nodes, and (ii) there is at least one attribute in node, which is either
not included in the attribute list of node. or the corresponding attribute values do not
match. Two attribute values match if either their values are equal or at least one of them
is a variable. The function findAttributeMatches(node,, node.) returns the matches that
contain the matched pairs of attribute values, when at least one value in each pair is a
variable. Lines 27-30 check whether node, has a single child which represents a variable.
If this is the case, one single matching exists containing the match between this child

and the whole collection of subnodes of node..

Lines 34-43 handle the case when more than one nodes are under node,. None of
these nodes can be a variable. In this case, we consider each child child, of node,
independently and find the matchings between child, and the children of node.. After
all the combinations of children pairs have been identified, a number of different sets
of matchings are discovered and stored in the list matchings[]. Each set of matchings
corresponds to a different pair of children nodes of node, and node.. The function

merge(matchings[]) results in a single set of matchings S by combining the matchings in

CHAPTER 3. QUERY COMPOSITION - BASE CASE 27

matchings[] as follows. Each set of matchings corresponds to a single child or a subset
of children of node,. We consider all the combinations combination; of matchings sets
Sij, such that each combination; corresponds to disjoint children subsets, and every child
of node, appears in such a subset. The matchings sets S;; that correspond to a certain
combination; are combined resulting in a single set S;. More specifically, each matching
in S; is produced by considering one matching from each 5;; and merging them. All
the possible combinations between matchings in each 9;; are considered. Following this
process we ensure that every leaf node in the subtree under node, or one of its ancestors
appears in a single match of each matching in 5;. Finally, all the sets S; are merged into
a single set S that contains all the matchings.

If at least one of the tag labels of node. or node, is a variable, the match between
the two labels is added to each individual matching by calling the function addMatch()
(Lines 47-50). Finally, Lines 53-54 add the attribute matches to each matching by calling
the function addMatches().

Algorithm 3.1
Input: root node of C'T'v, root node of PTg

Output: the set of all the matchings between C'Ty and PTy
: function Matchings findMatchings(node,, node.){

% if both nodes represent constants
if (LeafConstant(node.) or LeafConstant(node,))
if (LeafConstant(node.) and LeafConstant(node,) and node, = node,)
return new Matchings(
new Matching(
new Match(node,, node., null)));

S S s fede

else return null;

[y
~ QD

: % If the tag labels do not match
12: if (ltagVariable(getTagLabel(node.;)) and tagVariable(get TagLabel(node,))

13: and getTagLabel(node.)!=get TagLabel(node,))
14: return null;
15:

16: % Find matches between the attribute values
17: if (!matchAttr(getAttributesSet(node,), getAttributesSet(node,)))
18: return null;

CHAPTER 3. QUERY COMPOSITION - BASE CASE 28

19: else attributeMatches < findAttribute Matches(

20: getAttributesSet(node,), getAttributesSet(node,));
21:

22: % Get the children of the nodes

23: children, < (getChildren(node,)));

24: children. < (getChildren(node.)));

25:

26: % If node, has a single child that represents a variable

27: if LeafVariable(children,)

28: return new Matchings(

29: new Matching(

30: new Match(children,, children., getOID(getAttributes(node,))));
31:

32: % If node, has multiple children, find the matchings
33: % that correspond to all the possible pairs of subtrees and merge them

34: for each child.[i] in children.

35: if /LeafVariable(child.[i])

36: for each child,[j] in children,

37: matchingsli, j| < findMatchings(child,[j], child.[i]);

38: else

39: for each subchildren,[j] in children,

40: matchings(i, j] <+ new Matchings(

41: new Matching(

42: new Match(subchildren,[j], child.[i],null);
43: mergedMatchings < merge(matchings[]);

44:

45: % If the tag label of at least one node is variable,
46: % include the corresponding match
47: if (tagVariable(getTagLabel(node.)) or tagVariable(get TagLabel(node,)))

48: for each matching in mergedMatchings

49: addMatch(matching,

50: new Match(getTagLabel(node,), getTagLabel(node.), null));
51:

52: % Include the attribute matches
53: for each matching in mergedMatchings
54: addMatches(matching, attribute Matches);

55: return mergedMatchings;
57: }

3.2.2 Deriving the variable bindings from the matchings

As mentioned in Section 2.3, the purpose of the matching procedure is to discover how
the set of variables of the user query are mapped to the source XML document, without

materializing the view. In this subsection, we show that all the bindings that are produced

CHAPTER 3. QUERY COMPOSITION - BASE CASE 29

when the pattern part of the user query is applied over the view can be derived from
the matchings that the matching algorithm produces. We also show that no additional
bindings are derived from the matchings. In Section 3.3, we use this fact to prove that

the rewriting algorithm produces the correct composition query.

Let X' = {z!,...,2!} be a binding of the set X of the view variables, and let ; be
the corresponding tuple that is produced by V. The structure of Vs constructor Cy (X))
defines the structure of the produced tuples. Therefore t; = Cy(X"). Instead of matching
the pattern part Po(Y) of the query with each tuple Cy(X*), the matching algorithm

matches Py (Y) with Cy(X) by following a similar procedure.

The matching algorithm does not bind variables to specific constants or XML graphs.
It finds matches involving components of the view constructor (constants, variables and
constructor segments), which include variables that are not yet bound to specific values.
However, we should ensure that the matching algorithm produces matchings that derive
all the actual bindings of the user-query variables, if the filter part of the user query is
ignored. In addition, the matching algorithm should not produce matchings that derive

bindings that cannot be produced by Pgy(Y).

Consider a certain binding of the set of variables Y, when applying Po(Y') over the
output of V. This binding results after matching Py(Y) to a certain tuple ¢; produced
by V. Let X' be the binding of V’s variables that results in #;. Fach variable y; € Y
is bound to Cy;(X), where Cy;(X") is a constant or an XML subgraph constructed by
the component Cy;(X) of the constructor of V. A binding between y; and a subgraph
is represented by the OID of the node that parents the subgraph.

When Py is applied over C'y by means of the rewriting algorithm, there is a matching,
where each variable y; is matched to Cy,;(X), which evaluates to Cy,;(X") when the set
of variables X is bound to X*. If y; is not a tag or attribute variable, the algorithm
also records the OID definition of the parent element of Cy ;(X) as the third argument

of the match triple. This definition represents the OIDs to which y; is actually bound

CHAPTER 3. QUERY COMPOSITION - BASE CASE 30

and is used when y; is involved in equality filters with other variables. Such filters are
introduced in Section 3.6.

The previous situation is not always possible. The binding X* may involve non-atomic
values, i.e., a variable z; € X may be bound to a subgraph . Assume that when Py is
applied over ¢;, a variable y; is bound to a subgraph G; of G. Even if (¢; does not depend
on the binding X* of the set of variables X, we can denote it as Cy;(X*). The matching
algorithm cannot directly represent this binding, since Cy;(X') is not available without
materializing the view. Instead, it records a match between a sub-pattern Py(Y') and xy.
Applying Py(Y) on 2, y; is bound to Cy;(X*), when z;, is bound to . We conclude,
that given a binding of the set of the user query variables, there is a matching produced
by the matching algorithm that represents it as described above.

Consider now a matching M returned by the matching algorithm. Assume that each
variable y;, where j = 1..q, is matched to a component Cy ;(X) of the constructor of V.
Moreover, there are matches in which a variable 25, € X is matched to a pattern Py(Y)
or to a constant c¢;. M represents a set of bindings of the variables Y with the following
properties. Given a binding X* of Vs variables, each variable y;, where j = 1..¢, is bound
to Cy;(X"), while the binding of each y;, where j = ¢ + 1..m, is derived by applying
a certain pattern Py(Y) on %, where i € X'. A match between a variable z) and a
constant ¢ is translated as follows. The bindings are derived only if 2% = ¢;, where
zi € X' Tt is clear that when Pp is applied over the tuple Cy(X?) that is generated by

V', all these bindings are produced.

3.3 The rewriting algorithm

3.3.1 Detailed algorithm

A formal description of the rewriting procedure is presented by Algorithm 3.2. The

algorithm first calls the findMatchings() function to discover the matchings between the

CHAPTER 3. QUERY COMPOSITION - BASE CASE 31

pattern tree of the user query and the constructor tree of the view query. For each
matching, it produces a different sub-query block. More specifically, if {M;,..., M, } is
the set of the discovered matchings, the final rewritten query has the form {Q}...{Q"},
where Q) is the sub-query that corresponds to M;. Since equality between variables in
the user query is not handled by the algorithm, the third argument of the match triples

is not used.

Algorithm 3.2
Input: «a view definition V', and a user query () defined over V.

Output: the composition query Q' =Q oV

1: function Query compose(Q, V){

2:

3: % Rename the variables in V' so that they do not conflict
4: % with the variables names of @

5: rename Variables(V,Q);

b:

7: % Get the parts of QQ and V that will form the corresponding parts
8: % of the rewritten query

9: Py « getPatternPart(V);

10: Cg « getConstructorPart(Q));

11: Fy <« getFilterPart(V);

12: Fg < getFilterPart(Q);

13:

14: % Initialize the rewritten query Q'

15: Q' « new Query();

16:

17: % Find the matchings between V'’s constructor tree and @)’s pattern tree

18: matchings « findMatchings(getPatternTree(Q), getConstructorTree(V));

19:

20: % For each matching, create a separate sub-query

21: for each matching in matchings {

22:

23: % Initialize the pattern, filter and constructor parts of the sub-query
24: PSQ +— Py;

25: Fsq < mergeFilters(Fg,Fy);

26: CSQ — CQ,‘

27:

28: % If a variable in 'V is matched to a constant

29: for each (m,, mc,1id) in matching {

30: if (LeafConstant(m,) or AttrConstant(m,) or ElementName(m,))
31: addFilter(Fsg,m. = my);

32:

CHAPTER 3. QUERY COMPOSITION - BASE CASE 32

33: % If the matched component that corresponds to Q is a variable

34: if (LeafVariable(m,) or AttrVariable(m,) or TagVariable(m,)){
35: substitute(Csg,my,,m.);

36: % If the variable cannot be substituted in the filter part, the matching is rejected
37: if /substitute(Fsg,m,,m.) goto 47;

38: }

39:

40: % If a variable in V' is matched to internal nodes of Q) ’s pattern tree

41: if (SiblingNodes(m,) or InternalNode(m,))

42: addPattern(Psq, constructPattern(m,) IN m.);

43:

44: % Construct the sub-query and add it to Q'

45: SQ — new Query(Psqg,Fsg,Csq);

46: addSubquery(Q',SQ);

)

48: return Q';

49:)

We give an explanation of the new functions that appear in the algorithm. The func-
tion rename(querys,querys) in Line 5 renames the variables in query, so that they do
not conflict with the variable names in query,. The functions getX(query), where X is
a query part (Lines 9-12), return the corresponding part of query, while the functions
getConstructor Tree(query) and getPatternTree(query) return the constructor and pat-
tern tree of query. The function mergeF'ilters(filtery, filters) (Line 25) produces a filter
that contains both filters filtery and filtery. The function substitute(queryPart, var,
component) (Lines 35, 37) replaces all the appearances of variable var in queryPart
by the constant, variable, element label or constructor segment that corresponds to
component. If component represents an internal node, i.e., InternalNode(component)
is true, or a collection of sibling nodes, i.e., SiblingNodes(component) is true, var is
substituted by the constructor segments that correspond to the constructor subtrees par-
ented by these nodes. Since each subtree results in a different segment, var is replaced
by the concatenation of all the individual segments. A constructor segment cannot par-
ticipate in a filter. Therefore, if the first argument of substitute() is a filter, and the third
argument is an internal node or a collection of nodes, the function returns false, and the

corresponding matching is rejected (Line 37).

CHAPTER 3. QUERY COMPOSITION - BASE CASE 33

The function addPattern(p, expr) adds a new pattern expression expr into the pat-
tern part p of a query (Line 41). The translation of a pattern tree {ree into a pattern
pattern is performed by the function addPattern(tree, pattern). Finally, the function

addSubquery(query, subquery) adds subquery to query as a sub-query block.

Example 3.1 Consider the following pair of a view and a query:

V: function View(){
WHERE

<b ID = $i2>
<b1 ID = $i3> $x1 </>
<b2 ID = $id> $x2 </>
</>
</> IN ‘‘source.xml’’
CONSTRUCT
<c ID = f1($i1,$i2,$i3,$i4)>

<cl ID = £2($1i1,$12,$13,%$14)> $x1 </>
<c2 ID = £2($1i1,$12,$13,%$14)> $x2 </>
<c2 ID = £2($i1,$12,$13,$14)>

<ch ID = f2($i1,$i2,$i3,$i4)> $x1 </>
</>

<c3 ID = £2($i1,$i2,$i3,8$i4)>
<c4 ID = £2(%$i1,%$i2,$i3,%i4)>
<c6 ID = £2($i1,$i2,$i3,$i4)> Hello </>

</>
</>
</>
}
Q: WHERE
<view>
<c>

<c1> 100 </>
<e2><eb> $y1 </></>
<e3> $y2 </>
</>
</> IN View(),
$y1 < 100
CONSTRUCT
<result>
<d1> $y1 </>
<d2> $y2 </>
</>

CHAPTER 3. QUERY COMPOSITION - BASE CASE 34

The implicit OIDs have already been included in the element tags of the view’s con-
structor. The matching algorithm discovers the different matchings between the pat-
tern tree of () and the constructor tree of V.. The first matching contains the matches
(100, %21,), (cb, %22,) and (Sy2,c4,), and the second matching contains the matches
(100, $21,), (Syl,$x1,.) and ($y2,c4,_). The third argument of each match is ignored.
Fach matching corresponds to a different sub-query. The first sub-query involves the fol-
lowing transformations.

(i) The filter $21 =100 is added in the filter part of the sub-query.

(ii) The variable $y2 is substituted by the constructor segment
<c6ID=..>Hello< | >< />

(iii) The pattern expression < ¢b > Syl < / > [N $22 is added to the pattern part of
the sub-query.

The second sub-query also involves the first and the second transformations. In addi-
tion, Syl is substituted by $x1.

The query that is produced is presented below:

Q’:
{ WHERE

<b ID = $i2>
<b1l ID = $i3> $x1 </>
<b2 ID = $id> $x2 </>
</>
</> IN ‘‘source.xml’’,
<cb> $y1 </> IN $x2,
$y1 < 100, $x1 = 100
CONSTRUCT
<result>
<d1> $y1 </>
<d2>
<c4 ID = f1($i1,$i2,$i3,$i4)>
<c6 ID = £2($i1,$i2,$i3,$i4)> Hello </>
</>
</>
</>
¥
{ WHERE

CHAPTER 3. QUERY COMPOSITION - BASE CASE 35

<b ID = $i2>
<b1 ID
<b2 ID
</>
</> IN ‘‘source.xml’’,
$x1 < 100, $x1 = 100
CONSTRUCT
<result>
<d1> $x1 </>
<d2>
<c4 ID = f1($i1,$i2,$i3,$i4)>
<c6 ID = £2($i1,$i2,$i3,$i4)> Hello </>
</>
</>
</>

$i3> 100 </>
$id> $x2 </>

At this point, we can explain why implicit OIDs are included in the element tags
of the view’s constructor as described in Subsection 2.1.5. The XML-QL data model is
object based, and XML nodes represent distinct objects which are identified by unique
object identifiers. When the OID of a tag element in the constructor of a query is
not explicitly defined, then, for each binding of the query’s variables, one distinct such
element is constructed containing a unique OID.

Consider the following view:

V: WHERE ...
CONSTRUCT

<e>...</>

When V is applied over an XML document, for each binding of its variables, a different

e element is constructed. Now, consider the following query:

Q: WHERE ...
o8y L INY
CONSTRUCT

oo 8y Ll
oo 8y Ll

Assume that when the pattern tree of () is matched to the constructor tree of V', $y

is matched to the node that represents e. If OIDs are ignored, the rewritten query is as

CHAPTER 3. QUERY COMPOSITION - BASE CASE 36

follows:

Q’: WHERE ...
CONSTRUCT
L<e>. > L.
L<e>. > L.

The above rewritten query constructs two different e elements, i.e., elements with different
OIDs, for each binding of the query variables. This is not the output that () generates.
V produces a single e element for each binding. When () is applied over the resulting
document, and $y is bound to the subgraph that includes an element e, a single element
e is created. So, the rewritten query should assign the same OID to two e elements
that correspond to the same binding of $y. This is achieved by including the implicit
OID definitions in the element tags of V’s constructor and preserving them during the
matching procedure.

Figure 3.1 exhibits how ignoring implicit OID definitions can lead to incorrect rewrit-

ten queries for the view and user query presented in Example 3.1.

3.3.2 Justification of the algorithm

We show that the rewritten query Q" which is produced by Algorithm 3.2 is equivalent
to the composition of the user query Q(Y) and the view V(X). In order to simplify our
presentation, we assume that no filter conditions appear in).

Let Py(X), Fv(X) and Cy(X) be the pattern, filter and constructor part of V,
and Py(Y) and Cq(Y) be the pattern and constructor part of Q). We first apply the
matching algorithm and produce a set of matchings. Consider a matching M in this set.
For this matching, the rewriting algorithm produces a query block @), which includes:
(i) the pattern expression Py (X) of V; (ii) the filter part Fy (X)) of V; (iii) a set of pattern
expressions P (Y), ..., P.(Y); (iv) a set of filters F'(X) = {(x1 = ¢1), ..., (¥, = ¢,) }, where
T1,...,2, € X; and (v) the constructor Co(Cvi(X), ..o, Cvg(X), Ygtt1s ooy Ym). A pattern

expression P;(Y) corresponds to a match between a variable z; € X and a pattern, i.e.,

CHAPTER 3. QUERY COMPOSITION - BASE CASE 37

b
Hello Hello
output when ignoring implicit OID definitions
b
b1 b2 ®)
100
c5 c5
result
1 2
input data

Hello

correct output
()
Figure 3.1: Importance of implicit OID definitions

an internal node or a collection of nodes of the corresponding pattern tree. A condition
x; = ¢; corresponds to a match between a variable ; € X and a constant ¢;. Finally,
a substitution Cy;(X) in Cg corresponds to a match between a variable y; € Y and a

component Cy;(X) of the constructor Cy(X).

Assume that V is applied on an XML document db. Let X' be a binding of the
set of variables X, and let #; = Cy/(X*) be the corresponding tuple that is produced by

V. Assume that) is applied on ¢; and a set of bindings is derived. Consider such a

CHAPTER 3. QUERY COMPOSITION - BASE CASE 38

binding Y*, where each variable y; € Y is bound to C{/J(Xi). The resulting tuple is
i = Co(Cy (X7, ..., Oy (X)),

As discussed in Subsection 3.2.2, every such binding can be derived from a matching
that the matching algorithm produces. Assume that Y* is derived from M. This means
that Cy; = C{/J, where j € {1,...,q}. It also means that there is a pattern expression
P,(Y) which binds y; to C"/J(Xi), where u € {1,....,r} and j € {g+ 1,...,m}. It also
means that F'(X*) evaluates to true. Consequently, when Q) is applied on db, there is
a binding X' U{CY,,(X"),...,;C},,(X*)} of its set of variables which results in the tuple
CQ(CV71(Xi),...,Cv7q(Xi),C{/7q+1(Xi),...,C{/M(Xi)) = t.. So, Qy € @, and therefore,
Q' CQ.

Assume now that Q' is applied on db and generates a tuple t: = Co(Cy1(X'), ..., Cy (X)),
which corresponds to a binding X* U {yé_l_l, .,y b of its set of variables. Let Q' be the
sub-query of Q) that generates t.. Moreover, let M be the matching that corresponds to
Q- As showed in Subsection 3.2.2, the matching algorithm does not produce match-
ings that derive invalid bindings of the user-query variables, i.e., bindings that cannot
be derived, when applying the pattern part of the user query on the view. Thus, there
is a binding of the set of variables Y, such that y/ is bound to Cy;(X?). The tuple that
Q generates for this binding is Co(Cy1(X"), ..., Cym(X?)) = t.. Therefore, Q C @', and
Q' =Q.

3.4 Regular path expressions

The introduction of regular path expressions in the user query does not require any
changes in the rewriting algorithm. However, the matching procedure is more complex
than the one presented in Algorithm 3.1. We do not provide a solution here.

Regular path expressions can also appear in a view definition. In Subsection 2.1.5,

we concluded that when a query involves regular path expressions we cannot derive the

CHAPTER 3. QUERY COMPOSITION - BASE CASE 39

implicit OIDs in the query’s constructor. In addition, in the previous section, we showed
that the rewriting can produce incorrect rewritten queries, when the OID definitions are
not included in the element tags of the view’s constructor. For this reason, we assume
that view queries either explicitly define all the OIDs? in their constructor or do not

contain regular path expressions in their pattern part.

3.5 Multiple pattern expressions in the user query

Our rewriting algorithm considers that a single pattern expression appears in the user
query. In this section we present how multiple pattern expressions in the user query can
be handled.

Consider that a user query Q(Y) = Q(Y1,Y2) contains two pattern expressions
PE(Y1) and PFE5(Y3), where Y = Y; U Y; is the set of variables that appear in .
Since no equality conditions between variables exist, we conclude that (i) Y1 NY; = 0,
and (ii) the filter part Fp(Y) of @ can be split into two different sets of filter conditions
Fi(Y1) and Fy(Y3).

Assume that PFy is defined over a view V;(dby, X1), where db; denotes an XML docu-
ment, and X is a set of variables such that X; NY = (). Also assume that PF, is defined
over an XML document dby. Our goal is to construct a query Q'(dby,dby, X1,Y1,Y3) =
Q(V, dby, Y1,Y3).

Let X! be a binding of the variables in X; when the V; is applied on db;. Similarly,
let Yzj be a binding of the variables in Y; when @ is applied on db,. For each pair X,
Yzj, a set of tuples Co(X1, Yzj) is produced by), where Uy is the constructor of ().

We transform @ into a query Qv, by removing PFy(Y3) and F5(Y3). Any variable
y € Y5 which appears in the constructor of the new query is handled as a constant. For

each binding X of the set of variables X, Qv, produces a set of tuples Co(X1, Y).

2Explicitly defined OIDs are introduced in Chapter 4.

CHAPTER 3. QUERY COMPOSITION - BASE CASE 40

Let QY. (dby, X1,Y1,Y3) be the query that is produced when applying the rewriting

algorithm on Qv,. Consider the following query:

Q:
WHERE

PF;y(dby, Ys), F2(Y3)
CONSTRUCT

Q§/1 (dbh X17 Y17 YQ)

The above query produces a set of tuples Co(X1, YQJ) for each pair X1, Yzj of bindings of
the variable sets X and Y3, respectively. So, we conclude that Q' = Q.

The situation is similar if we assume that PFs is defined over a view Vi(dby, X5),
where Xo N X; NY = (). Following the procedure described above, we produce the

following query:

Q:
WHERE

PFEy(Vy,Ya), Fy(Ya)
CONSTRUCT

Q§/1 (dbh X17 Y17 YQ)

Then, we apply the rewriting algorithm to @, and produce the query
Q//(dblv db?v le X27 1/17 1/2) = Q/(dblv ‘/27 le 1/17 1/2) = Q(‘/lv ‘/27 1/17 1/2)

The nesting of the generated query Q" can be eliminated. Assume that @y, is com-
posed of the sub-queries QY, |, ..., Qy, , and Q" is composed of the sub-queries Q7, ..., Q.
The CONSTRUCT clause of each Q7 consists of the union of all the @y, . sub-queries.
So each Q! can be split into q sub-queries. The ;" such sub-query contains the pat-
terns and filters of the WHERE clause of both QY and @y, ;, as well as the constructor
of Qy, ;- Consequently, the resulting query consists of the union of g X r sub-queries.
FEach sub-query corresponds to a certain pair of matchings (My, My), where M; is match-
ing between PFE; and V;’s constructor, while M, is a matching between PF, and V4's

constructor.

CHAPTER 3. QUERY COMPOSITION - BASE CASE 41

The above solution can be generalized for user queries that contain more than two
pattern expressions. Pattern expressions can also be defined over variables. We do not

provide a solution for this case.

3.6 Handling variable equality in the user query

In the previous sections, we assumed that no equality conditions between variables exist
in the user query. Equality can be expressed either by including equality conditions in
the filter part, e.g., $x = $y, or by placing the same variable in different positions in the
pattern part of a query. If the same variable appears more than once in the pattern part
of the user query, we can use additional variables and declare their equality by filters. For
instance, consider the following pattern expression, which matches people whose name is

identical to their surname:

WHERE
<view>
<person>
<name> $y </>
<surname> $y </>
</>
</> IN V

This pattern expression can be rewritten as follows:

WHERE
<view>
<person>
<name> $y </>
<surname> $y’ </>
</>
</> INV, $y’°=$y

Let v; and vy be two variables in a user query () which is defined over a set of views
{W1,...V,}. Assume that a filter v; = vy appears in the filter part of). The variables v,

may appear either in the same or in different pattern expressions of ().

CHAPTER 3. QUERY COMPOSITION - BASE CASE 42

Let ()’ be the rewritten query that is produced, when the filter v; = v, is omitted. As
shown in the previous paragraph, @’ consists of the union of several sub-queries, and each
such sub-query corresponds to a set M of matchings between the pattern expressions of
@ and the corresponding views. Let %, be the sub-query that corresponds to M. M
represents a set of bindings of the variables that appear in (), which produce a certain
set of tuples, when the filter vy = vy is omitted. When the above filter is included,)
produces a subset of these tuples. In order to produce the same subset of tuples with
the rewritten query, we should also include the appropriate filter in the filter part of Q.
The filter vy = vy can be directly included in the filter part of @, only if both vy and
vy have not been substituted by the rewriting algorithm.

Assume that only vy has been substituted by a component C;(X;) of the constructor
of a view V. If C;(X;) is a constant ¢, then we just add the filter v, = ¢ to Q). If
C:(X;) is a constructor segment, which is not a variable, the filter vy = vy always returns
false for the corresponding bindings of v; and v,. The reason is that v; can only be
bound to the OID of a source element, and this OID cannot be equal to the OID of an
element produced by V;. In this case, the binding M is rejected, i.e., the sub-query @,
is removed. Finally, if C;(X;) is a variable # € X, special care is required. The fact that
z 1s bound to an OID does not indicate that v; is bound to the same OID. To be more
precise, vy is bound to the OID of an element that V; produces. In this case the filter
v; = vy returns false, even if the equality vy = x is true. However, x can also be bound
to a constant. In order to handle this case, we introduce the external function atomic(v)
which returns true if and only if v is bound to an atomic value. The filter that we add
to Q' is

atomic(v) AND vy = vy

Assume now that both vy and vy have been substituted by C;(X;) and C;(X}), re-
spectively, where C;(X;) is a component of V;’s constructor, and C;(X;) is a component

of V;’s constructor. The following six cases can be identified.

CHAPTER 3. QUERY COMPOSITION - BASE CASE 43

Case 1: C;(X;) = C;(X;) = ¢, where ¢ is a constant. No filter is added to @, since

vy = vy always evaluates to true for the set of bindings that correspond to M.

Case 2: (;(X;) is a constant ¢, and C;(X;) is a variable @ € X;. The filter x = ¢ is
added to Q);. The case where C;(X;) is a variable and C;(X;) is a constant is

symmetric.

Case 3: Ci(X;) = f(xy,...,2s), C;(X;) = f(a),...,2)), and ¢ = 7, i.e., both the compo-
nents are Skolem function declarations of the same Skolem function, and appear in

the same view. The filters x; = 2, ..., 2, = 2/ are added to Q.

Case 4: Both C;(X;) and C;(X;) are constructor segments of the same view, i.e., i = j,
and they are not variables. Moreover, the OID definitions that appear as arguments
in the corresponding matches of M are id; = f(xy,...,2,) and id; = f(a],...,2)),

respectively. As discussed in Subsection 3.2.2, these OID definitions represent the

actual bindings of vy and vy. Thus, the filters x4y = 2,...,z, = 2! are added to

Q-

Case 5: (;(X;) = z and C;(X;) = 2/, where 2 and 2’ are variables. We do not know
whether # and 2’ are bound to atomic values or to OIDs. Consequently, we do
not know whether the equality between vy and vy involves constants or OIDs. For
this reason, we use again the external function atomic(). If id; = f(x1,...,),
id; = f(a),...,2") and © = j, where id; and id; are defined as in Case 4, we add the
filter

(atomic(cq) AND z = 2’) OR (NOT (atomic(cy)) AND z1 = 41, ..., 25 = ys)

Otherwise, since vy and vy cannot be bound to the same OID, we add the filter

atomic(cy) AND z =2/

CHAPTER 3. QUERY COMPOSITION - BASE CASE 44

Case 6: None of the previous cases is valid, e.g., C;(X;) is a constant and C;(X;) is a
Skolem function. In this case, the filter v; = vy evaluates to false for every binding

that corresponds to M. The sub-query @), is removed.

Example 3.2 We consider the following pair of view and user query:

V: function View(){
WHERE
<a>
<al> $x1 </>
<a2> $x2 </>
</> IN ‘‘source.xml’’
CONSTRUCT

<b1> $x1 </>
<b2> $x2 </>
</>
}

Q: WHERE
<view>

<b1> $y1 </>
<b2> $y2 </>
</>
</> IN View(), $yi1=$y2
CONSTRUCT
<result> $y1 </>

The nodes $yl and $y2 of the pattern tree of () match the nodes $x1 and $x2, respec-
tively, of the constructor tree of V' and are required to be equal. The matching corresponds
to Case 5. The variables can only be bound to string values, since the OIDs of bl and

b2 are always different. The rewritten query is presented below:

Q’:
WHERE
<a>
<al> $x1 </>
<a2> $x2 </>
</> IN ‘‘source.xml’’,
atomic($x1) AND $x1=$x2,
CONSTRUCT
<result> $x1 </>

CHAPTER 3. QUERY COMPOSITION - BASE CASE 45

It is clear that filters that involve inequality between variables of the user query are

handled similarly.

Chapter 4

Introducing explicit OID definitions

The rewriting algorithm that we presented in the previous chapter assumes that no
explicitly defined OIDs exist in the constructor of the view. In this chapter, we show
how explicit OID definitions can be handled without changing the core of Algorithm 3.2.
We assume that the same Skolem function does not define the OID of more than one
element. In other words, element merging is not handled.

Explicit OID definitions by means of Skolem functions are used to control how the

result of a query is grouped. For instance, consider the view query:

function Classes(){
WHERE
<couple>
<boy> $b </>
<girl> $g </>
<age> $a </>
</> IN ‘‘couples.xml’’
CONSTRUCT
<class ID = f($a)>
<boy> $b </>
<girl> $g </>
</>

This query matches couples of boys and girls and groups them by their age. Each
couple contains a boy and a girl of the same age. Fach class element of the resulting

document contains all the boys and girls of a certain age. This means that the structure

46

CHAPTER 4. INTRODUCING EXPLICIT OID DEFINITIONS 47

of the XML document that the query produces does not strictly follow the structure of

the query’s constructor.

4.1 Splitting pattern trees

Consider the following user query, which is defined over the view C'lasses:

Q: WHERE
<view>
<class>
<boy> $x </>
<girl> $y </>
</>
</> IN Classes()
CONSTRUCT
<couple>
<boy> $x </>
<girl> $y </>
</>

The above query creates couples between boys and girls from the set of children that
appear in each class. All the possible combinations of couples between boys and girls of
the same age is produced. If we apply Algorithm 3.2 to the above view and user query
the resulting rewritten query is:

Q’: WHERE

<couple>
<boy> $b </>
<girl> $g </>
<age> $a </>

</> IN ‘‘couples.xml’’

CONSTRUCT

<couple>
<boy> $b </>
<girl> $g </>

</>

It is clear that the above query does not produce the same result. The problem originates

from the fact that a certain couple element in the view can contain more than one boy

CHAPTER 4. INTRODUCING EXPLICIT OID DEFINITIONS 48

and girl element. Unfortunately, the matching algorithm considers that the structure of
each couple strictly follows the structure of the constructor of the view, which involves a
single boy and a single girl element.

However, if we split the pattern tree of () so that the boy and the girl node can match

the constructor tree independently, the problem is resolved. We transform) as follows:

Q: WHERE
<view>
<class ID=$i1>
<boy> $x </>
</>
</> IN Classes(),
<view>
<class ID=$i2>
<girl> $y </>
</>
</> IN Classes(), $il = $i2
CONSTRUCT
<couple>
<boy> $x </>
<girl> $y </>
</>

The transformed query is identical to the original one, since the filter $71 = $i2 ensures
that the two pattern expressions match boy and girl elements that belong to the same
class. These two pattern expressions are not affected by the grouping under the class
element of the view, since they can match the corresponding boy and girl elements no
matter if these elements appear under the same or a different class element. Therefore,
we can apply the rewriting algorithm independently for the two pattern expressions as

described in Section 3.5 and receive a rewritten query which produces the correct output:

Q’: WHERE

<couple>
<boy> $b </>
<girl> $g </>
<age> $a </>

</> IN ‘‘couples.xml’’,

<couple>
<boy> $b’ </>
<girl> $g° </>

CHAPTER 4. INTRODUCING EXPLICIT OID DEFINITIONS 49

<age> $a’ </>

</> IN ‘‘couples.xml’’,

$a = $a’

CONSTRUCT

<couple>
<boy> $b </>
<girl> $g° </>

</>

The filter $a = $a’ results from the filter $:1 = $i2, since $i1 is matched to f($a) and
$:12 is matched to f($a’).

In general, the pattern tree that corresponds to a user query is split into a set of
ordered lists, whose number is equal to the number of the leaf nodes. Fach ordered list
consists of the nodes of a different path of the tree. The first node in each list is the root
node, while the last node in the list is a leaf node of the tree. Before splitting the tree,
all the nodes are assigned a variable as their OID attribute. So, the OID of nodes in

different lists that correspond to the same tree node is represented by a common variable.

4.2 Matching grouped contents

When explicit OID definitions appear in the constructor of the view query, the substitute()
function in Line 35 of Algorithm 3.2 should be adjusted to handle grouping.

Consider the following query:

Q: WHERE
<view>
<class> $c </>
</> IN Classes(),
<teacher> $t </> in ‘‘teachers.xml’’
CONSTRUCT
<class>
<teacher> $t </>
$c
</>

This query assigns teachers to classes. All the possible combinations between teachers

and classes are produced. If we apply the matching algorithm to the above query, ¢ is

CHAPTER 4. INTRODUCING EXPLICIT OID DEFINITIONS 50

matched to the collection of the nodes that represent the boy and girl element of the
view’s constructor. These elements are grouped under the class element by the Skolem
function that defines its OID. According to the rewriting algorithm, ¢ is substituted by
the constructor segment that corresponds to the matched nodes. Since the parent of
these nodes does not participate in the match, the grouping cannot be expressed by a
Skolem function.

In general, a match between a variable in the pattern tree of a user query and a node or
a collection of nodes in the constructor tree of a view query needs a different manipulation,
when the third argument of the corresponding triple involves a Skolem function of an
explicit OID definition. More precisely, the variable cannot just be replaced by the
constructor segment that the matched nodes represent, since the grouping information
should also be included.

We explain how the problem is resolved. A grouping performed by means of a Skolem

function can also be derived by using a query block. Consider the following query:

WHERE P(zy,...,2,)

CONSTRUCT
<e ID = f(Zky.eey Thpm)>
c(T1y ey Tp)
</>

The grouping that the Skolem function f performs can be expressed by a query block as

follows:

WHERE P(zy,...,2,)
CONSTRUCT

<e ID = f(Zky.eey Thpm)>

{
WHERE P(z
/

c(xl, .,

Loy @), B = Thy ooy T = Thgm
)

</>

CHAPTER 4. INTRODUCING EXPLICIT OID DEFINITIONS 51

where X' = {2/, ..., 2/} is produced after renaming the set of variables X = {zy,...,2,},
such as X' N X = 0.

The grouping is expressed by means of a nested query, which scans the input document
and places the data that correspond to the same values of x;, under the same e element.
Assume that the above query defines a view and consider a user query that is applied
over this view. If now, there is a match between a variable of the user query and the
collection of nodes that represent the constructor segment ¢(xq,...,2,), the variable is
substituted by the sub-query block:

{
WHERE P(z
/

clal, ... x
}

! I
’)7xk—xk7"'7$k—xk+m

)

The parameters {xg, ..., Zr4m } of the Skolem function are derived from the third argument
of the triple that represents the match.

If the rewritten query involves several such substitutions, the resulting sub-query
blocks are independent, i.e., there is no nesting between them. Therefore, the same
renaming X’ can be applied to all the sub-queries. Since the pattern part P(x,...,2))
is common in all these sub-queries, it can be replaced by a single P(x,...,2) in the
WHERE clause of the main query. Before this replacement, we explicitly define the OIDs
in all the element tags of the query’s constructor in order to ensure that the mappings
that correspond to P(xf,...,2.) only affect data that participate in groupings.

In our example, after following the procedure presented above, the following rewritten
query is produced:

Q’: WHERE

<couple>
<boy> $b </>

CHAPTER 4. INTRODUCING EXPLICIT OID DEFINITIONS

<girl> $g </>
<age> $a </>
</> IN ‘‘couples.xml’’,
<teacher> $t </> in ‘‘teachers.xml’’

CONSTRUCT
<class>
<teacher> $t </>
{
WHERE
<couple ID = $i1’>
<boy ID = $i2’> $b’ </>
<girl ID = $i3’> $g’ </>
<age ID = $i4’> $a’ </>
</> IN ‘‘couples.xml’’,
$a’=%a
CONSTRUCT
<boy ID = gi1($i1’,$i2°,$i3’,$i4’)> $b°> </>
<girl ID = g2($i1’,$i2°,$i3°,$i4°)> $g’ </>
}
</>

52

We can move the pattern part of the sub-query to the outermost level, after including

all the implicit OID definitions:

Q’: WHERE
<couple ID = $ii>
<boy ID = $i2> $b </>
<girl ID = $i3> $g </>
<age ID = $i4> $a </>
</> IN ‘‘couples.xml’’,
<teacher ID = $ib5> $t </> in ‘‘teachers.xml’’,
<couple ID = $i1’>
<boy ID = $i2°> $b’ </>
<girl ID = $i3’> $g’ </>
<age ID = $i4’> $a’ </>
</> IN ‘‘couples.xml’’,
CONSTRUCT
<class ID = hi1($i1,$i2,$i3,$i4,$i5)>
<teacher ID = h2($i1,$i2,$i3,$i4,$i5)> $t </>

{
WHERE $a’=$a
CONSTRUCT
<boy ID = gi($i1’,$i2’,$i3’,$i4’)> $b’ </>
<girl ID = g2($i1’,$i2°,$i3°,$i4°)> $g’ </>
}
</>

Chapter 5

Conclusions and future work

The problem addressed by this thesis is query composition by means of query rewriting
in the context of XML-QL. More precisely, we studied how a user query defined over one
or more views can be rewritten so that the rewritten query only refers to source data.

User queries and views are expressed as XML-QL queries.

We presented a simple rewriting algorithm which is based on a matching procedure
between the pattern part of the user query and the constructor part of the view query.
The matching procedure results in sets of matchings which involve components of the
above parts of the view and the user query. Matchings represent the bindings of the
user-query variables when the user query is applied over the view. These bindings can be
derived directly from the bindings of the view-query variables, without materializing the
view. In order to facilitate the matching procedure, pattern expressions and constructors
are represented by tree structures. The XMIL-QI data model is object based, i.e., XML
elements are assigned a unique OID. In order to produce a correct rewriting, the elements
in the constructor of the view query should be assigned an OID by means of Skolem

functions. We showed how OIDs are derived when they are not explicitly defined.

The rewriting algorithm does not handle multiple pattern expressions and equality

conditions between variables in the user query, explicit Skolem function definitions and

33

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 54

nested queries in the constructor of the view query, as well as regular path expressions.
We showed that multiple pattern expressions can be handled by applying the algorithm
in multiple steps. Each step performs the rewriting for a different pattern expression. We
also demonstrated how the algorithm is enhanced to handle equality conditions between
user-query variables. Finally, we presented how grouping introduced by explicit Skolem
function definitions can be addressed without changing the algorithm. More specifically,
we proposed a technique of splitting the pattern expressions of the user query, so that
the produced pattern expressions are not affected by the grouping. We also identified
cases in which a grouping performed by a Skolem function should be expressed by means

of a nested query in the rewritten query.

This thesis did not present a complete solution for explicit Skolem function definitions.
We assumed that the same Skolem function cannot appear in more than one element tag,
so element merging is not allowed. We are working on how constructor trees should be
extended in order to represent element merging. Nested queries in the constructor of the

view query could also be handled by enhancing the properties of constructor trees.

In order to simplify the matching procedure, we did not study regular path expressions
in the user query. The problem is similar to matching an XML-QL pattern with regular
path expressions to an XML document. Techniques used by existing XML-QL query
engines [Fer99] can be adapted to handle this problem. Regular path expressions in
the view query cannot be handled, when the OIDs in the constructor of the query are
not explicitly defined. In this case, a rewritten query cannot be always produced. This
also means that XML-QL is not closed under composition. In general, when a query
language involves regular path expressions and the underlying model is object based, it

is not closed under composition [BLP*98].

We considered that the schema of the source data is unknown. Information about
the schema of the source data, e.g., by means of DTDs or XML Schema, can change the

situation in some special cases. For instance, regular path expressions in the pattern part

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 55

of a query can be eliminated if the schema strictly restricts the nesting depth of the data.
Future work will concentrate on how the schema of the data can be exploited in order to
overcome the above limitations and produce optimized rewritten queries. Previous work
on this direction has been presented in the context of XMAS [LPVV99, PV99h].

Our study was restricted in the unordered data model. Order makes the problem
harder. It is a subject of future work the investigation of under which conditions and
how rewriting can be performed when order is considered. Aggregation is another issue
not addressed by this thesis. Relevant work on relational [Kim81, GW87, Mur92] and
object-oriented models [CM95] can be extended to handle aggregated views in the context
of XML.

Appendix A

XML-QL Grammar

XML-QL grammar for views and user queries

XML-QL ::= (Function | Query) <EOF>
Function ::= ’FUNCTION’ <FUN-ID> > (’>)’ >{’
Query
)})
Element ::= StartTag Contents EndTag
StartTag ::= ’<’(<ID>|<VAR>) (’ID’ ’=’ SkolemID)? Attributex ’>’
SkolemID ::= <ID> ’(° <VAR> (’,’ <VAR>)* ’)°
Attribute ::= <ID> ’=’ ("> <STRING> ’"’> | <VAR>)
EndTag ::= ’<’> / <ID>7 ’>°
Literal ::= <STRING>
Query ::= Where Construct (°{’ Query ’}’)x*
Where ::= ’WHERE’ Condition (’,’ Condition)*
Construct ::= ’CONSTRUCT’ Contents
Contents ::= (KVAR> | Literal | Element | Query)+
Condition ::= Pattern BindingAs* ’IN’ DataSource | Predicate
Pattern ::= StartTagPattern Pattern* EndTag
StartTagPattern ::= ’<’ RegularExpression Attributex ’>’
RegularExpression ::= RegularExpression ’*’ |
RegularExpression ’+° |
RegularExpression ’.’ RegularExpression |
RegularExpression ’|’ RegularExpression |
(<VAR> | <ID> | <UNDER>)
BindingAs ::= ’ELEMENT_AS’ <VAR> | ’CONTENT_AS’ <VAR>
Predicate ::= Predicate <OR> Predicate |
Predicate <AND> Predicate |
<NOT> Predicate |
>(’ Predicate ’)’ |
Expression OpRel Expression
Expression ::= <VAR> | <CONSTANT>
OpRel ce= &0 I 1K= I ’S? I ry=2 I)= I Y=
DataSource ::= <VAR> | <URI> | <FUN-ID> ’(’)’

56

Bibliography

[Abi99]

[AGM*97]

[Bar99]

[BDHS96]

[BFS00]

[BLP*98]

S. Abideboul. On Views and XML. In PODS °99. Proceedings of the
eighteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of

database systems, pages 1-9. ACM press, 1999. Invited talk.

S. Abiteboul, R. Goldman, J. McHugh, V. Vassalos, and Y. Zhuge. Views for
semistructured data. In Workshop on Management of Semistructured Data,

Tucson, Arizona, 1997.

C. Baru. XViews: XML views of relational schemas. In Proceedings of the
10th International Workshop on Database and Fxpert Systems Applications,

pages 700-705, Florence, Italy, September 1999.

Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu. A
query language and optimization techniques for unstructured data. SIGMOD
Record (ACM Special Interest Group on Management of Data), 25(2):505—
516, 1996.

Peter Buneman, Mary Fernandez, and Dan Suciu. UnQL: A Query Language
and Algebra for Semistructured Data Based on Structural Recursion. VLDB

Journal, 9(1):76-110, 2000.

C. Baru, B. Ludaescher, Y. Papakonstantinou, P. Velikhov, and V. Vianu.

Features and Requirements for an XML View Definition Language: Lessons

57

BIBLIOGRAPHY 58

[BMROY]

[BT99]

[CCF+01]

[CDSS8]

[CM93]

[CM93]

[Con98|

from XML Information Mediation. Position paper in W3C’s Query Language
Workshop, 1998.

D. Beech, A. Malhotra, and M. Rys. A formal data model and algebra for
XML. Communication to the W3C, September 1999.

C. Beeri and Y. Tzaban. SAL: An algebra for semistructured data and XMI..
In Informal Proceedings of Workshop on The Web and Databases, ACM SIG-
MOD, June 1999.

D. Chamberlin, J. Clark, D. Florescu, J. Robie, J. Simeon, and M. Stefanescu.
XQuery 1.0: An XML Query Language, June 2001. W3C Working Draft.

S. Cluet, C. Delobel, J. Siméon, and K. Smaga. Your mediators need data
conversion! In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD’98), volume 27,2 of ACM SIGMOD Record,
pages 177-188, New York, June 1-4 1998. ACM Press.

Sophie Cluet and Guido Moerkotte. Nested queries in object bases. In Catriel
Beeri, Atsushi Ohori, and Dennis Shasha, editors, Database Programming
Languages (DBPL-/), Proceedings of the Fourth International Workshop on
Database Programming Languages - Object Models and Languages, Manhat-
tan, New York City, USA, 30 August - 1 September 1993, Workshops in

Computing, pages 226-242. Springer, 1993.

S. Cluet and G. Moerkotte. Classification and optimization of nested queries

in object bases. Technical Report 95-6, RWTH Aachen, 1995.

World Wide Web Consortium. Extensible Markup Language (XML).
http://www.w3.org/ TR/REC-xml, February 1998.

BIBLIOGRAPHY 59

[DFF198]

[DFF199]

[Don00]

[Feg9s]

[Fer99]

[FSW+99]

[FSWOO]

A. Deutch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A
query language for XML. Submission to the World Wide Web Consortium,
August 1998. http://www.w3.org/TR/NOTE-xml-ql.

A. Deutch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query
language for XML. In Proceedings of the 8th International World Wide Web

Conference, pages 77-91. Elsevier Science, May 1999.

Don Chamberlin and Daniela Florescu and Jonathan Robie. Quilt: an XML
query language for heterogeneous data sources. In Proceedings of WebDB,

Dallas, TX, May 2000.

L. Fegaras. Query unnesting in object-oriented databases. In Laura Haas
and Ashutosh Tiwary, editors, Proceedings of the 1998 ACM SIGMOD In-
ternational Conference on Management of Data: June 1—4, 1998, Seattle,
Washington, USA, volume 27(2) of SIGMOD Record (ACM Special Interest
Group on Management of Data), pages 49-60, New York, NY 10036, USA,
1998. ACM Press.

M. Fernandez. XML-QL : A Query Language for XML. User’s Guide Version

0.9. http://www.research.att.com/ mff/xmlql/doc/, 1999.

M. Fernandez, J. Siméon, P. Wadler, S. Cluet, A. Deutsch, D. Flo-
rescu, A. Levy, D. Maier, J. McHugh, J. Robie, D. Suciu, and
J. Widom. XML query languages: Experiences and exemplars. http://www-

db.research.belllabs.com /user/simeon /xquery.ps, 1999.

Mary Fernandez, Jerome Simeon, and Philip Wadler. A Data Model and
Algebra for XML Query. Technical Report, Number Unpublished manuscript,

2000.

BIBLIOGRAPHY 60

[GMW99]

[GWST]

[Kim81]

[1.D00]

[LPVV99]

[MF00]

[MSA*99]

R. Goldman, J. McHugh, and J. Widom. From Semistructured Data to XML:
Migrating the Lore Data Model and Query Language. In Proceedings of the
2nd International Workshop on the Web and Databases (WebDB '99), pages
25-30, Philadephia, Pensylvania, June 1999.

Richard A. Ganski and Harry K. T. Wong. Optimization of nested SQL
queries revisited. In Umeshwar Dayal and Trv Traiger, editors, Proceedings of
Assoctation for Computing Machinery Special Interest Group on Management
of Data 1987 annual conference, San Francisco, May 27-29, 1987, pages 23—
33, New York, NY 10036, USA, 1987. ACM Press.

W. Kim. On optimizing SQL-like nested queries. Technical Report RJ 3063,
IBM, San Jose, CA, 1981.

H. Liefke and S. Davidson. View Maintenance for Hierarchical Semistructured
Data. In International Conference on Data Warehousing and Knowledge

Discovery, 2000.

B. Ludaescher, Y. Papakonstantinou, P. Velikhov, and V. Vianu. View def-
inition and DTD Inference for XML. In Workshop on Query Processing for

Semi-Structured Data and Non-Standard Data Formats (in conjunction with

ICDT"99), Jerusalem, Israel, 1999.

D. Suciu M. Fernandez, W-C. Tan. SilkRoute: Trading between Relations and
XML. In Proceedings of the 9th International WWW Conference, Amsterdam,
May 2000.

J.C. Mamou, C. Souza, S. Abideboul, V. Aguilera, A. Ailleret, B. Amann,
S. Cluet, B. Hills, F. Hubert, A. Marian, L.. Mignet, B. Tessier, A. M. Ver-

coustre, and T. Milo. XML repository and Active Views Demonstration.

BIBLIOGRAPHY 61

[Mur92]

IMW99]

[PAGMOY6]

[PHH92]

[PV99a

[PV99b)]

In Proceedings of 25th International Conference for Very Large Databases
(VLDB’99), September 1999. Demonstration.

M. Muralikrishna. Improved unnesting algorithms for join aggregate SQL
queries. In Proceedings of the 18th Conference on Very Large Databases,

Morgan Kaufman pubs. (Los Altos CA), Vancouver, August 1992.

J. McHugh and J. Widom. Query Optimization for XML. In Proceed-
ings of the Twenty-Fifth International Conference on Very Large Databases
(VLDB’99), September 1999.

Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object Fusion in
Mediator Systems. In T. M. Vijayaraman et al., editors, Proceedings of the
22nd International Conference on Very Large Data Bases (VLDB’96), pages
413-424, Los Altos, CA 94022, USA, 1996. Morgan Kaufmann Publishers.

Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. Extensible/rule
based query rewrite optimization in Starburst. In Michael Stonebraker, ed-
itor, Proceedings of the 1992 ACM SIGMOD International Conference on
Management of Data, San Diego, California, June 2-5, 1992, volume 21(2)
of SIGMOD Record (ACM Special Interest Group on Management of Data),
pages 39-48, New York, NY 10036, USA, 1992. ACM Press.

Y. Papakonstantinou and V. Vassalos. Query Rewriting for Semistructured
Data. In Alex Delis, Christos Faloutsos, and Shahram Ghandeharizadeh, edi-
tors, Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data (SIGMod-99), volume 28,2 of SIGMOD Record, pages 455-466,
New York, June 1-3 1999. ACM Press.

Y. Papakonstatinou and P. Velikhov. Enhancing Semistructured Data Me-

diators with Document Type Definitions. In Proceedings of the 15th Inter-

BIBLIOGRAPHY 62

[RLSOS]

[SLROS]

national Conference on Data Fngineering. IEEE, Computer Society Press,

March 23-26 1999.

J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL).
http://www.w3.org/ TandS/QL/QLI8 /pp/xql.html, 1998.

D. Schach, J. Lapp, and J. Robie. Querying and transforming XML. In
Proceedings of The W3C Query Languages Workshop, Boston, 3—4 December
1998. http://www.w3.org/TandS/QL/QL98/.

