Preparing for the final exam
Exam material

UI Programming: Widgets, Events, Listeners, Model-View-Controller (MVC) architecture

Modeling user interaction, state machines

UI Design principles: C.R.A.P., gestalt laws, performance & memory

User-centered design & evaluation: conceptual models, feedback, scenarios, sketches, and storyboards, evaluation & usability criteria

Phrasing and chunking, modes & gestures

Input: Direct, indirect, relative, absolute pointing, CD gains, multitouch
Additional information

Duration: 2 hours

Authorized material: any document in paper form

Language: either English or French
Widgets, event-based programming, and MVC
Exam 2013 – A.

Identify the components (widgets), their events, and their listeners

You don’t necessarily have to follow the naming and precise structure of Swing
Hierarchy of Swing components
Can you create the hierarchy of the containers and components of this UI?
What about the events and their listeners?
Example: Think about how to handle selection events within the list (tabular form) of the files
Figure 2— In this example a user is approaching a digital table with their mobile. A halo appears at the edge of the mobile. The user can flick the image towards the halo. When the image slides off the edge of the mobile it is disappears and reappears on the table.
Where is the application? In the mobile device or in the tabletop?
Where is the application? In the mobile device or in the tabletop?

Create a diagram that shows the interaction between the View, the Controller, and the Model for the mobile device and the tabletop application.
remember...
remember...

Model
- application functionality
- data access and management

internal operations

View
- presentation of data and functionality to the user

Controller
- manage user input
- update application behavior

Controller
- notification of state change

select a View

Model
- notification of input

refresh

user input

request state


But this is not the only possible flow of messages. For example, when the user moves the picture from the mobile phone to the halo, it is the controller of the tabletop application that detects the change. There is no notification from the view.
Modeling interaction: state machines
State machines

Finite Automata
State = interaction state
Transition = input events

State Machine
- boolean expressions of events & conditions associated to transitions (guard)
- actions associated to transitions (not always present)

Example:
The touch surface of a smartphone detects the contact point of a single finger.

The surface sends events when the finger touches the surface (FingerDownEvent), slides on the surface (FingerDragEvent) or leaves the surface (FingerUpEvent). Each event contains the coordinates of the contact point and a value that represents the time (in milliseconds) from the beginning of the session.

To facilitate the programming of interaction with graphical objects (widgets) of the UI of the smartphone, we decided to create a layer of events at the level of the widgets. More precisely, events at this level are produced when the finger touches a widget (OnWidgetEvent), taps on a widget (TapWidgetEvent), moves on a widget (DragWidgetEvent), stays on the widget for more than $T = 300$ ms (PauseWidgetEvent) or is raised from the widget (ReleaseWidgetEvent).
The touch surface of a smartphone detects the contact point of a single finger.

The surface sends events when the finger touches the surface (FingerDownEvent), slides on the surface (FingerDragEvent) or leaves the surface (FingerUpEvent). Each event contains the coordinates of the contact point and a value that represents the time (in milliseconds) from the beginning of the session.

To facilitate the programming of interaction with graphical objects (widgets) of the UI of the smartphone, we decided to create a layer of events at the level of the widgets. More precisely, events at this level are produced when the finger touches a widget (OnWidgetEvent), taps on a widget (TapWidgetEvent), moves on a widget (DragWidgetEvent), stays on the widget for more than $T = 300$ ms (PauseWidgetEvent) or is raised from the widget (ReleaseWidgetEvent).

Define a state machine that manages the creation of the events OnWidgetEvent, TapWidgetEvent, DragWidgetEvent, PauseWidgetEvent, and ReleaseWidgetEvent.

Assume that a TapWidgetEvent is created when the delay between an event OnWidgetEvent and an event ReleaseWidgetEvent is less than $T = 300$ ms and there is no significant finger movement ($D_{min} < 5$ mm).
Solution

FingerDownEvent & widget.contains(p1)
  / fireOnWidgetEvent(widget)
  record(t1)
  record(p1)

DRAG

FingerDragEvent & p1.distance(p_current) > Dmin
  / fireDragWidgetEvent(widget)

DOWN_0

currentTime - t1 > 300ms
  / firePauseWidgetEvent(widget)

DOWN_1

FingerUpEvent
  / fireTapWidgetEvent(widget)
Solution

FingerUpEvent
/fireUpWidgetEvent(widget)

FingerDownEvent & widget.contains(p1)
/fireOnWidgetEvent(widget)
record(t1)
record(p1)

DRAG

FingerDragEvent & p1.distance(currentP) > Dmin
/fireDragWidgetEvent(widget)

FingerDragEvent & p1.distance(p_current) > Dmin
/fireDragWidgetEvent(widget)

currentTime - t1 > 300ms
/firePauseWidgetEvent(widget)

UP

DOWN_0

DOWN_1

FingerUpEvent
/fireUpWidgetEvent(widget)

FingerUpEvent
/fireTapWidgetEvent(widget)
Create a state machine for the three techniques:

- **Area cursor**: area around cursor, can click on targets when inside
- **Bubble cursor**: closest target always selected on click
- **Dynaspot**:
  - area cursor of MAXWIDTH active when speed > MAXSPEED
  - when speed drops an animation starts that takes REDUCETIME during which the area of the cursor becomes smaller until 0 and the cursor becomes a regular cursor
  - during REDUCETIME we can accelerate, and go to area cursor

**Can use:**

- List = IntersectTargets (mousePos, WIDTH)
- Target = ClosestTarget (mousePos, List)
- ResetTimer(), GetTime (): start a timer and see time passed
- TimeOut (programmable) event to start after n sec with Arm(n), a function Disarm() cancels the Arm call if TimeOut has not started
Example


```
Start

BubbleCursorActivated /
  t = ClosestTarget (Pos, TargetsList)
  HighlightTarget (t)

MouseMove /
  t = ClosestTarget (Pos, TargetsList)
  RemoveHighlightFromEveryTarget ()
  HighlightTarget (t)

MousePress / LaunchTargetAction (t)
```
Other examples:

You may be asked to create a state machine that describes a small set of multitouch gestures or a technique for mid-air interaction.
Models of user performance
Menus

Discuss the advantages & disadvantages of different ways of improving a menu design:

- [1] Double the height of the menu items
- [2] Order the menu items in alphabetic order
- [3] Order the menu items by frequency of use
- [4] Group the items based on their semantics

Use criteria from human performance and models or laws to justify your analysis
Fitts’ law

\[ T = a + b \cdot \log_2 \left( \frac{D}{W} + 1 \right) \]
Fitts’ law

Top better because all buttons are bigger

or

Bottom better because “back” is more frequent
Hick-Hyman’s law

Describes the time to take a simple decision as a function of number of choices

\[ T = a + b \cdot \log_2(n+1) \]

\( n \): number of choices
\( a, b \): constants

We divide the total number of choices and re-search: binary search
Other factors?

memorisation

visual search

...
Enlarging the height of the items
Enlarging the height of the items

\[ T_1 = a + b \cdot \log_2 \left( \frac{D_1}{W_1} + 1 \right) \]

\[ T_2 = a + b \cdot \log_2 \left( \frac{D_2}{W_2} + 1 \right) \]

\[ T_2 < T_1 \]
Enlarging the height of the items

\[ T_1 = a + b \cdot \log_2 \left( \frac{D_1}{W_1} + 1 \right) \]

\[ T_2 = a + b \cdot \log_2 \left( \frac{D_2}{W_2} + 1 \right) \]

\[ W_2 = \alpha \cdot W_1 \Rightarrow D_2 = \alpha \cdot D_1 \]

\[ \Rightarrow T_2 = T_1 \]
Enlarging the height of the items

Other factors that may affect performance?
Enlarging the height of the items

How do things change if we also consider submenus?
<table>
<thead>
<tr>
<th>Alphabetical order</th>
<th>linear</th>
<th>logarithmic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allemagne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belarus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulgarie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espagne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irlande</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Islande</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lettonie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norvège</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pologne</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Find France !
Alphabetical order

- Allemagne
- Belarus
- Bulgarie
- Espagne
- France
- Italie
- Irlande
- Islande
- Lettonie
- Norvège
- Pologne

Disadvantages?
Selection frequency

Benefits according to Fitts’ law?

\[ \bar{T} = \sum_{i=1}^{N} (a + b \cdot \log_2 \left( \frac{D_i}{W} + 1 \right)) / N \]

Is the mean movement time different?
Selection frequency

And the time for visual search?

Factors

... before and after the « stabilization » of frequencies

... distribution of selections

and memorization of the item position?
Semantic grouping

Advantages and disadvantages?
Semantic grouping

Which gestalt principles have been applied to this menu design?
Gestalt laws of perception

Continuity
Proximity
Similarity
Symmetry
Closure
Common Fate

etc…
Gestalt laws of perception

Continuity
Proximity
Similarity
Symmetry
Closure
Common Fate

etc...
Gestalt laws of perception

- Continuity ✔
- Proximity ✔
- Similarity ✔
- Symmetry ✔
- Closure ✔
- Common Fate

etc...
Design, sketching, prototyping
We may be asked to design/prototype a user interface or a specific interaction technique, e.g., one that is based on touch or gestures.

You won’t have to write code but you can sketch it!

You may be explicitly asked to respect or follow some design guidelines or you may be asked to design it for certain users, e.g., novices or experts.

You may be asked to design it to address a specific problem, e.g., increase accuracy or reduce occlusion.
Example

Design an editor that helps UI designers to easily create state machines.

Specify the main functionality of the application and sketch its main screen.
You may be asked to create a **storyboard** to describe an interaction sequence.
You may be asked to create a storyboard to describe an interaction sequence.

Example: Draw a storyboard that describes the main steps of creating a state machine with your proposed interface.
You may be asked to redesign a user interface to reduce problems that you identified or extend it to satisfy some new user needs.
Critique the interface by using three usability criteria (next lecture) and redesign it to fix the problems
Other examples
An adaptive interaction technique adjusts CD gain of different screen areas depending on how often and for how long users visit them (at start all CD = 1)

Assuming that very visited areas where the cursor moves slowly are dense, we reduce CD gain to make interaction more detailed

We increase the CD of unvisited areas or areas the cursor moves fast as they likely do not contain interesting targets

We show visual feedback of “dense” areas and the algorithm continues to adapt

What are drawbacks of the technique and solutions?
exercise 2012-B: Feedback/Feedfwd

Both gray-out buttons for impossible actions ("Stop") and list of history

Where users can input text is clear (text box)

Clicking options clearer in 2 (buttons look like buttons and not images)

2 has a better grouping of actions to guide users in what to use (e.g. back very close to fwd)

In 2 attention is attracted by larger button
exercise 2012-B : Gestalt laws

Similarity: the first 2 icons similar in Shape and Color BUT their actual button shape is different, making grouping weaker

Similarity: all buttons look like buttons (including the “g” which in top does not look like a widget)

Proximity: the first 2 buttons are closer together than all the rest, thus a group

Closure: the first 2 buttons are inside an enclosure (making them grouped together as related). All other buttons also enclosed to show individual functionality and clear boundaries.