Programming of Interactive Systems

Introduction & Definitions

Theophanis Tsandilas
fanis@lri.fr
Interactive systems
Interactive systems
Discover what interactive systems are and how they are developed.

Familiarize with concepts concerning their design:
- Input devices, models of interaction, interaction styles, interaction techniques, user interface widgets.

Learn how to program interaction.

Brief intro to methods, research & innovation in Human-Computer Interaction.
Content

Intro to HCI (brief history & importance)

User-interface programming (models & toolkits), UI widgets

Interaction modeling & design

Peripherals, input devices (mouse, touch, pen-based, gestures), interaction styles

Advanced interaction techniques & special UIs (e.g., sketching, multi-modal, mobile, Web)

Intro to 2D graphics (Java 2D)

Users (perception, cognition, motor performance)

Design and prototyping methods, user evaluation
Course information

Tutorials (lab): programming exercises
 Java & some Javascript

Asistants: Cédric Fleury, Arnaud Prouzeau

2 programming assignments (34%)
+ 1 exam (66%)

Course web site:
 https://www.lri.fr/~fanis/teaching/ISI2014/

Email Contact: [IS] in the title
Definitions
User Interface (UI)

Part of an interactive system that:
- represents its internal state on output peripherals
- captures & manages input from input peripherals

All hardware and software that allows users to control, supervise and communicate with an interactive system

Interactive system = interface + functional layer
“Human Computer Interaction is a discipline concerned with the design, evaluation and implementation of interacting computing systems for human use and with the study of major phenomena surrounding them.”

ACM SIGCHI
Definitions of HCI

Human-computer interaction is a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them (ACM SIGCHI, 1996)

HCI is a study of how people design, implement and use interactive computer systems and how computers affect individuals, organizations and society (Myers, Hollan, Cruz, 1996)

HCI is the study of how people interact with computing technology (Olson and Olson 2003)

Designing interactive products to support the way people communicate and interact in their everyday and working lives (Sharp, Rogers and Preece 2007)
Interaction design

Academic disciplines
- Psychology & Cognitive science
- Ergonomics
- Sociology
- Computer Science
- Engineering
- Business
- Anthropology
- Graphic design

Design practices
- Graphic design
- Product design
- Industrial design
- Artist
- Design
- Film Industry

Interdisciplinary fields
- Cognitive Ergonomics
- HCI
- Information Systems
- Computer-Supported Collaborative Work
- Film Industry
Ergonomics (human factors):

Ergonomics (or human factors) is the scientific discipline concerned with the understanding of interactions among humans and other elements of a system, and the profession that applies theory, principles, data and methods to design in order to optimize human well-being, security, and overall system performance.

International Ergonomics Association
Ergonomics

Influences
- mechanical engineering and physics
- psychology
- physiology and kinesiology

... combined with observations and studies
Traditionally, its goal is to give precise guidelines.
Usability

« The extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency, and satisfaction in a specified context of use »

(ISO 9241)

A usable system is: easy to learn, easy to memorize, efficient, visually appealing and fast to recover from errors
Utility

Reach specific needs and support real tasks
Utility vs. Usability

Is D better than A? What do you think?
Importance of HCI
Examples of bad design

Car park ticket payment machine at Tullamarine airport, Melbourne. For a year, the machine required a uniformed attendant to help people!
Examples of bad design

Nokia N-Gage, Mobile and Handheld gaming device (2003)
Game console + mobile phone
Examples of bad design

Tabbed dialogues with multiple layers:
 clicking tabs reorganises position and row of tabs

Overuse/misuse of tabs, rows, icons and colors
Poor categorisation
Why do we find bad designs?
How Lousy Cockpit Design Crashed An Airbus, Killing 228 People

NEW EVIDENCE SHOWS THAT A LACK OF PILOT FEEDBACK FROM THE COCKPIT CONTROLS LED TO THE CRASH OF AIR FRANCE FLIGHT 447. WHAT LED TO SUCH A DESIGN DISASTER?

On June 1, 2009, Air France Flight 447 crashed into the ocean on its way back from Rio de Janeiro. 216 passengers and 12 crew died on impact. This month, the official investigation is likely to conclude with “human error” as the culprit—pilots making mistakes that forced the plane to crash. But evidence unearthed by The Telegraph tells a different story, that the pilots of the Airbus A330-200, and everyone else on the plane, were really victims of bad design.

“DOMINATED BY COMPUTERS, AIRBUS DESIGNS ITS PLANES WITH LESS TACTILE RESPONSE.”

And it’s not just one single component that could have avoided the tragedy. Multiple Airbus-designed systems played a role to create a deadly feedback loop that convinced them to climb to the point that the plane stalled and it fell from the sky. By the time the pilots figured out what was going on, they’d lost too much altitude to point the nose down and gain the speed necessary to maintain lift. Even if you
Engineers and computer scientists are not (by default) good interface designers: they (we) are expert computer users, and their (our) interest is the computer or the interface.

What interests users is what the interface and the computer helps them do.

We have to design FOR and WITH users.
Importance of user-centered design

Development cost
Cost of user interfaces: ~50% of total cost

Cost of maintenance
20%: « bugs »
80%: unpredictable user needs

Cost of problem corrections
$1 during the design stage
= $10 during the development
= $100 after the delivery
Why is hard to design UIs?

« It is easy to make things hard. It is hard to make things easy »

Seems easy, common sense, but seldom done right. But once done right, it seems obvious!

User interface design is a creative process

Designers have difficulty thinking like users
- don’t understand users’ domain
- can’t « unlearn »

(from Brad Myers’ slides)
Why is hard to design UIs? (2)

Software specifications are often wrong

“Only slightly more than 30% of the code developed in application software development ever gets used as intended by end-users. The reason for this statistic may be a result of developers not understanding what their users need.”

(from Brad Myers’ slides)
Why is hard to design UIs? (3)

Human Impact of Information Technology
- range of devices
- range of applications
- complexity of applications
- volume of information

Human Capacities

1980s 1990s 2000s
Why is hard to design UIs? (4)

Software becomes more and more complex
Word 1 (100 commands) vs. Word 2007 (>2000)

Theories & guidelines are not sufficient
- too general or too specific

UI design involves many tradeoffs
- standards
- graphic-design (artistic)
- performance issues
- social factors (e.g., cost, existing practices)
- multiple platforms (e.g., hardware, browsers)
- legal issues (can’t always copy other designs)
Why is hard to program UIs?

They are reactive
- event-based programming, difficult to modularize

They require multi-processing
- deal with user events, aborts, window refreshing, multiple devices

Need for robustness
- no crashing, unexpected input, helpful error messages, aborts, undo, recovering mechanisms

Being responsive, real-time requirements
- Tracking input events, fast output
- Video, sound, multimedia
Brief history of HCI
The history of interfaces

Grudin (1990) The computer reaches out: The historical continuity of interface design
The history of interfaces

Phase 1 (Interface as hardware)

1950s
Engineers / programmers
Electrical engineering
The history of interfaces

Phase 2 (Interface as software)
1960s-1970s
Programmers
Punched cards, batch processing
Users (indirect)
Computer Science
The history of interfaces

Phase 3 (Interfaces as terminals)
1970s-1990s
End users (time-sharing)
Human factors, cognitive psychology, graphic design
Time sharing creates the illusion of a personal machine
User can afford to think “at the terminal”
Focus on user behaviour and productivity
Computer mediated human-human interaction (CSCW)
Messages / Shared file systems
Phase 4 (Interface as dialogue)

1980s-
Personal computers
Many end-users
More cognitive psychology, graphic design

The history of interfaces
The history of interfaces

Phase 5 (Interface as work setting)
1990s-
Widespread use of networks
Groups of end users, communities
Social psychology, anthropology, organizational studies
The history of interfaces

Phase 6 (?)

2000s-
Mobile computing
Mobile users, ad-hoc communities
Pervasive / ubiquitous computing
Domestic computing
Social computing
Anthropology, arts and drama
Influences

Computer science
 Software engineering
 Technological advances

Human factors & psychology
 Computer programming and usage
 Work environments

Cognitive science
 Models, theories, frameworks
Software Engineering

Software crisis (NATO Software Engineering Conference, 1968) ➔ Software engineering

Specifications

« Waterfall » and « Spiral » dev. models

Iterative development

Prototyping
Evolution of technologies

Speed increase
 Motivated more applications

Cost decrease
 Interfaces accessible to more people

New technologies
 New challenges & interaction needs
Guides for improving interface design
Guides for evaluating interfaces

First psychological studies in HCI

- Programming psychology (Software psychology ‘60s)
- Behavior of programmers (Weinberg 1971)
- Comparison of batch processing and time-sharing (Sackman et al. 1968)
- Response time and productivity
- Individual differences among programmers (Sackman 1970)
- Design principles de (Hansen 1971)
Cognitive sciences

Study of perception, cognitive processes such as attention, memory, and learning

Provide guidance at early stages of the software development process
MEMEX and Hypertext (1945)
- Vannevar Bush: “As We May Think”
Game interfaces

Spacewar!
MIT - Steve “Slug” Russel et al. (1961-62)
DEC PD1 “mini-computer”
History of HCI

Technological innovations - Sketchpad

Sketchpad – PhD thesis at MIT by Ivan Sutherland (1963)
1st graphical user interface
Pointing gestures (optical pen), drawing, zooming, copy-paste
Coined the term hypertext (1965)

“non-sequential writing”

“Mr. Nelson pointed out that we often do not think in linear sequences but rather in "swirls" and in footnotes. He introduced the concept of the hypertext, which would be a more flexible, more generalized, non-linear presentation of material on a particular subject.

The educational possibilities in the use of the hypertext are vast. For example, it is possible that basic texts on a subject could be interindexed, so that the necessity and difficulty of tracing footnotes and rare sources would be eliminated. In this way the problems of information retrieval because of widespread writing today would be alleviated, making decisions in many fields easier.”

Leading to the sub-discipline of hypertext and hypermedia
Augmentation not automation: “increasing the capability of a man to approach a complex problem situation, to gain comprehension to suit his particular needs, and to derive solutions to problems”

NLS (Online system) tools (1968):
- Outline editor for idea development
- Hypertext linking
- Tele-conferencing
- Word processing
- E-mail
- User configurability and programmability
History of HCI
Technological innovations - Douglas Engelbart

NLS (Online system) devices and concepts:
- The mouse pointing device for on-screen selection
- A one-hand chording device for keyboard entry
- Video-conferencing, document sharing
- On-line help systems
- The concept of consistency in user interfaces

The first mouse (1963)
Textual interfaces

(1969 - 1983)

command line, menus and input screens

First text editor
WordStar (MicroPro, 1979)

First spreadsheet: Visicalc
Dan Bricklin (1979)
Xerox PARC (‘70)

PARC: Palo Alto Research Center created in 1970
 ▪ Three researchers/engineers have won the Turing Award

Object-oriented programming (Smalltalk)

Laser printer, Ethernet

WIMP: Windows, Icons, Menus & Pointers

Portable computers: Dynabook (1968)
 ▪ Designed but never built
Xerox Star (1981)

$16,500

Design influenced by software needs (based on task analysis, scenarios, 600-700 hours of video)

Native function on a network

GUI based on office/desk metaphor

Use of icons and windows and the idea of WYSIWYG ("What You See Is What You Get »)

System focusing on documents (users do not know the applications)

...but market failure
Xerox Star (1981)

Too innovative, powerful, different
Target market missed (e.g., no spreadsheets)
Expensive ($16,500)
Closed architecture (impossible to develop applications outside Xerox)
Political reluctance to expand market beyond printers

...but it has greatly influenced future systems
Apple Macintosh (1984)

$2,495
Apple Macintosh (1984)

Commercial success, more mature and a more open public

Aggressive price ($2,500) accessible to larger public

Menu bar, modal dialog boxes and visible applications inherited from l’Apple]

UI toolkit to help external developers

Detailed style guides to help consistence between apps

Three key applications: Finder, MacPaint, MacWrite
X Windows (1984)

Athena project of MIT: connect 4000 UNIX machines, from different sponsors (DEC, IBM, Motorola, etc.)

Client/server model:
- division of what/how to facilitate portability
- transparent use of network that permits remote displaying
MS Windows (1985)

Moved to overlapping windows

Microsoft Windows 1

Microsoft Windows 2 (1987)
Desktop interface (1984 -)

More power and new uses (network), but little change in interaction: WIMP (Window, Icon, Menu & Pointing)

... this is not necessarily a bad thing!
Does not follow Moor’s law

<table>
<thead>
<tr>
<th>Original Macintosh</th>
<th>iMac 20”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 1984 - $2500</td>
<td>x0.6</td>
</tr>
<tr>
<td>CPU 68000 - 0.7 MIPS</td>
<td>x3000</td>
</tr>
<tr>
<td>RAM 128kB</td>
<td>x2000</td>
</tr>
<tr>
<td>Floppy 400kB</td>
<td>x2000000</td>
</tr>
<tr>
<td>9” b&w 512x342 keyboard, mouse</td>
<td>x2 / x10 idem</td>
</tr>
<tr>
<td>WIMP desktop</td>
<td>idem</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
...WILD in LRI

screen wall:
- 5.5m x 1.8m
- 20480 x 6400 = 131 million pixels
- 32 screens of 30”, in a 8x4 configuration
- driven by a cluster of 18 PC,
- linked by a high speed network

3D motion capture system that tracks users in real time

Multi-touch interactive tables
But also: Disappearing devices

(Ni and Baudisch, 2009)
HCI and research

Most innovations come from research labs (academic or industrial)

It takes time to reach commercial products
Example 1: Touch displays

Touch displays
IBM (1971)

MultiTouch
U of Toronto (1982)

Gesture research
Bell Labs (1983)

Mainstream
Apple’s iPhone, iPad, iTouch
Microsoft Surface
Example 2: Wearable computing

Evolution of Steve Mann's "wearable computer" invention

from http://www.eecg.toronto.edu/~mann/

Steve Mann today...

Google Glasses
virtual reality

user immersion (sensor + motor) input? usually body tracking or speech

e.g., a head mounted display and a cave
DigitalDesk (Wellner, 1991-93)

Augmented Reality
Augmented paper

physical « Toolglass » (Mackay, 2002)

Projection on paper with pocket-projectors (Song, 2010)

Paper and touch table (Brandl, 2008)
Tangible interfaces

Reactable: Tangible music interface

Dynamic Shape Display (MIT)

http://tangible.media.mit.edu/project/inform/
Foldable interfaces

Vertegaal et al., Queen's University, Canada
Brain interfaces
HCI in popular culture

Her (2013)

http://vimeo.com/2229299