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Background: verifying a compiler

 Compiler + proof that the compiler does not introduce bugs 


CompCert, a moderately optimizing C compiler usable for critical embedded 
software 

• Fly-by-wire software, Airbus A380 and A400M, FCGU (3600 files):  

mostly control-command code generated from Scade block diagrams + mini. OS


We prove the following semantic preservation property:


Behaviors = termination / divergence / undefined («going wrong»)  
+ trace of I/O operations performed

For all source programs S and compiler-generated code C, 
if the compiler generates machine code C from source S, 
without reporting a compilation error,  
and S has a safe behavior, 
then «C behaves like S».

2



Our methodology

We program the compiler inside Coq.

Definition compiler (S: program) := ...

We state its correctness w.r.t. a formal specification of the 
language semantics.

Theorem compiler_is_correct : 
∀ S C, compiler S = OK (C) ! safe (S) !  
      «C behaves like S».

We interactively and mechanically prove this theorem

Proof. ...(* a few months later *) ... 
Qed.

We extract an OCaml implementation of the compiler.

Extraction compiler.

 Logical 
 Framework 
(here Coq)

Compiler Language 
Semantics

parser.ml pprinter.mlcompiler.ml

Soundness Proof
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The formally verified part of the CompCert
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Verification patterns 
(for each compilation pass)
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Verified transformation
transformation transformation

validator

Verified translation validation

= formally verified
= not verified



Same methodology

We program the static analyzer inside Coq.

Definition analyzer (p: program) := ...

We state its correctness w.r.t. a formal specification of the 
language semantics.

Theorem analyzer_is_sound : 
 ∀ P, analyzer P = Yes !  
      safe(P).

We interactively and mechanically prove this theorem

Proof. ... (* a few months later *) ... 
Qed.

We extract an OCaml implementation of the analyzer.

Extraction analyzer.

 Logical 
 Framework 
(here Coq)

Compiler Language 
Semantics

parser.ml pprinter.ml

Soundness Proof
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Static Analyzer

analyzer.ml



The Verasco static analyzer
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CompCert compiler...
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Abstract interpretation of low-level programs ? 

• Abstract interpretation traditionally performed at source level


• Need for analyzing lower-levels


• Ex1: compiler optimization (intermediate level)

• Ex2: security analysis performed at assembly level

• Difficulty of the analysis (e.g. keeping track of symbolic equalities 

between values contained in memory cells - incl. points-to information - 
and alignment of memory accesses)


• Our solution: a general and lightweight methodology for carrying the 
results of a source analyzer down to lower-level representations


• 3 use cases: CSE optimization, constant-time analysis, resource 
analysis
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Our methodology

• Inlining enforceable properties


• properties that can be enforced using runtime monitors  
Inlining a monitor yields a defensive form (i.e. a program instrumented 
with runtime checks) 
Enforcing a program to follow a property amounts to checking that it is 
safe.


• Relative safety: P1 is safe under the knowledge that P2 is safe


• An instance of relational verification
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int *x;
int t[3];
/* … */
y = *x; 

int *x;
int t[3];
/* … */
assert (x==t || x==t+1 || x==t+2);
y = *x; 



Methodology
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Instantiation of the methodology

Focus on points-to annotations 
Each memory access is annotated with an optional set of symbolic pointers.


Difficulty: handling local variables 

/* x ! t1[2..4] ∪ t2[6..8] */
assert (x==t1+2||x==t1+3||x==t1+4 ||x==t2+6||x==t2+7||x==t2+8);
y = *x; 

int main(void) { int t_1[12], t_2[9001];
  ... call to f ...  return …}

int f(int* z) { int y, *x;
/* ... */
/* x ! main@t_1[2..4] ∪ main@t_2[6..8] */
y = *x;
/* ... */ return …}



Forging pointers: the shadow stack

Difficulty: handling local variables 
Solution: use of a shadow stack


• We need to compute some concrete pointers that are symbolically given 
by the annotations.


• We make each function leak a pointer to its stack frame into a global 
variable (a.k.a. the shadow stack).

int f(int* z) { int y, *x;
/* ... */
/* x ! main@t_1[2..4] ∪ main@t_2[6..8] */
y = *x;
/* ... */ return …}



Example of shadow stack
int* STK[2048];
int CNT = 0;

int main(void) {
  int main_stk[9013];
  CNT = CNT+1;
  STK[CNT] = main_stk;
  /* ... call to f ... */
  CNT = CNT-1; return … }

int f(int* z) {
  int f_stk[2];
  CNT = CNT+1;
  STK[CNT] = f_stk;
  /* ... */
  /* x ! -1[2..4] ∪ -1[18..20] */
  assert(f_stk[1]==STK[CNT-1]+2 || f_stk[1]==STK[CNT-1]+3 || ... );
  f_stk[0] = *(f_stk[1]);
  /* ... */
  CNT = CNT-1; return …}

prologue (push)

epilogue (pop)

stack pointer
shadow stack



Use case: cryptographic constant-time

Constant-time policy: the control flow and sequence of memory accesses of 
a program do not depend on some of its inputs (tagged as secret).


 
Use of the points-to information from Verasco to keep track of security levels, 
and exploit this information in an information-flow type system (Mach level)

• avoid the need to rewrite programs

• handle larger programs


We were able to automatically prove that programs verify the constant-time 
policy. 
Benchmarks: mainly PolarSSL and NaCl cryptographic libraries
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Use case: cryptographic constant-time
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Conclusion

Lightweight approach to formally verify translation of static analysis results 
(lowering of points-to annotations) in a formally verified compiler


Two main ingredients: inlining enforceable properties and differential 
verification


Improves a previous security analysis at pre-assembly level
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Future work

Improve Verasco to perform a very precise taint analysis


• Relies on a tainted semantics

• Encouraging results on a representative benchmark

• Main theorem: any safe program w.r.t. the tainted semantics is constant 

time (paper proof) 


Add obfuscation transformations and check that they do not introduce side-
channels
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Questions ?
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