
Verified translation validation of static analyses

Sandrine Blazy

1

joint work with Gilles Barthe, Vincent Laporte, David Pichardie and Alix Trieu

IFIP WG 1.9/2.15, Leuven, 2017-05-11

Background: verifying a compiler

 Compiler + proof that the compiler does not introduce bugs

CompCert, a moderately optimizing C compiler usable for critical embedded
software

• Fly-by-wire software, Airbus A380 and A400M, FCGU (3600 files):  

mostly control-command code generated from Scade block diagrams + mini. OS

We prove the following semantic preservation property:

Behaviors = termination / divergence / undefined («going wrong»)  
+ trace of I/O operations performed

For all source programs S and compiler-generated code C,
if the compiler generates machine code C from source S,
without reporting a compilation error,  
and S has a safe behavior, 
then «C behaves like S».

2

Our methodology

We program the compiler inside Coq.

Definition compiler (S: program) := ...

We state its correctness w.r.t. a formal specification of the
language semantics.

Theorem compiler_is_correct :
∀ S C, compiler S = OK (C) ! safe (S) !  
 «C behaves like S».

We interactively and mechanically prove this theorem

Proof. ...(* a few months later *) ...
Qed.

We extract an OCaml implementation of the compiler.

Extraction compiler.

 Logical
 Framework
(here Coq)

Compiler Language
Semantics

parser.ml pprinter.mlcompiler.ml

Soundness Proof

3

The formally verified part of the CompCert

type elimination

loop simplifications

CFG construction

expr. decomp.

spilling, reloading

calling conventions

Compcert C Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

MachASM

side-effects out

of expressions

stack allocation

of «&»variables

Optimizations: constant prop., CSE, tail calls,
(LCM), (software pipelining) 

instruction

selection

register

allocation (IRC)

linearization

of the CFG

layout of

stack frames

asm code

generation

(instruction scheduling)

4

Verification patterns
(for each compilation pass)

5

Verified transformation
transformation transformation

validator

Verified translation validation

= formally verified
= not verified

Same methodology

We program the static analyzer inside Coq.

Definition analyzer (p: program) := ...

We state its correctness w.r.t. a formal specification of the
language semantics.

Theorem analyzer_is_sound :
 ∀ P, analyzer P = Yes !  
 safe(P).

We interactively and mechanically prove this theorem

Proof. ... (* a few months later *) ...
Qed.

We extract an OCaml implementation of the analyzer.

Extraction analyzer.

 Logical
 Framework
(here Coq)

Compiler Language
Semantics

parser.ml pprinter.ml

Soundness Proof

6

Static Analyzer

analyzer.ml

The Verasco static analyzer

7

CompCert compiler...

statesState abstraction

control flowAbstract interpreterOK/Alarm

ClightCompCert C C#minor

integer and

floating-point

arithmetic

CongruencesIntervals Polyhedra OctagonsSymbolic
equalities

Linearization

Numerical abstraction

Communication
channels

Abstract interpretation of low-level programs ?

• Abstract interpretation traditionally performed at source level

• Need for analyzing lower-levels

• Ex1: compiler optimization (intermediate level)

• Ex2: security analysis performed at assembly level

• Difficulty of the analysis (e.g. keeping track of symbolic equalities

between values contained in memory cells - incl. points-to information -
and alignment of memory accesses)

• Our solution: a general and lightweight methodology for carrying the
results of a source analyzer down to lower-level representations

• 3 use cases: CSE optimization, constant-time analysis, resource
analysis

8

Our methodology

• Inlining enforceable properties

• properties that can be enforced using runtime monitors  
Inlining a monitor yields a defensive form (i.e. a program instrumented
with runtime checks) 
Enforcing a program to follow a property amounts to checking that it is
safe.

• Relative safety: P1 is safe under the knowledge that P2 is safe

• An instance of relational verification

9

int *x;
int t[3];
/* … */
y = *x;

int *x;
int t[3];
/* … */
assert (x==t || x==t+1 || x==t+2);
y = *x;

Methodology

10

p
�

p�

[p]h�i
h�i

DefS

DefT

h·i

CosafeT

[p�][p]

[p] |=T h�i

safeT ([p])

safeS(p)

safeT ([p]h�i)

safeT ([p�])

safeS(p�)

Verasco Verasco

CompCertCompCert

v : [l,h] i; ⇾ assert (l≤v && v≤h); i;

Instantiation of the methodology

Focus on points-to annotations 
Each memory access is annotated with an optional set of symbolic pointers.

Difficulty: handling local variables 

/* x ! t1[2..4] ∪ t2[6..8] */
assert (x==t1+2||x==t1+3||x==t1+4 ||x==t2+6||x==t2+7||x==t2+8);
y = *x;

int main(void) { int t_1[12], t_2[9001];
 ... call to f ... return …}

int f(int* z) { int y, *x;
/* ... */
/* x ! main@t_1[2..4] ∪ main@t_2[6..8] */
y = *x;
/* ... */ return …}

Forging pointers: the shadow stack

Difficulty: handling local variables 
Solution: use of a shadow stack

• We need to compute some concrete pointers that are symbolically given
by the annotations.

• We make each function leak a pointer to its stack frame into a global
variable (a.k.a. the shadow stack).

int f(int* z) { int y, *x;
/* ... */
/* x ! main@t_1[2..4] ∪ main@t_2[6..8] */
y = *x;
/* ... */ return …}

Example of shadow stack
int* STK[2048];
int CNT = 0;

int main(void) {
 int main_stk[9013];
 CNT = CNT+1;
 STK[CNT] = main_stk;
 /* ... call to f ... */
 CNT = CNT-1; return … }

int f(int* z) {
 int f_stk[2];
 CNT = CNT+1;
 STK[CNT] = f_stk;
 /* ... */
 /* x ! -1[2..4] ∪ -1[18..20] */
 assert(f_stk[1]==STK[CNT-1]+2 || f_stk[1]==STK[CNT-1]+3 || ...);
 f_stk[0] = *(f_stk[1]);
 /* ... */
 CNT = CNT-1; return …}

prologue (push)

epilogue (pop)

stack pointer
shadow stack

Use case: cryptographic constant-time

Constant-time policy: the control flow and sequence of memory accesses of
a program do not depend on some of its inputs (tagged as secret).

 
Use of the points-to information from Verasco to keep track of security levels,
and exploit this information in an information-flow type system (Mach level)

• avoid the need to rewrite programs

• handle larger programs

We were able to automatically prove that programs verify the constant-time
policy. 
Benchmarks: mainly PolarSSL and NaCl cryptographic libraries

14

Use case: cryptographic constant-time

15

p
�

p�

[p]h�i
h�i [p�][p]

Verasco Verasco

CompCertCompCert

RTL

relative-safety

checker

points-to
defensive

encoder
(C#minor)

points-to
defensive

encoder
(RTL)

points-to
translator

CompCert points-to
translator

Mach
constant-time
analyzer

Conclusion

Lightweight approach to formally verify translation of static analysis results
(lowering of points-to annotations) in a formally verified compiler

Two main ingredients: inlining enforceable properties and differential
verification

Improves a previous security analysis at pre-assembly level

16

Future work

Improve Verasco to perform a very precise taint analysis

• Relies on a tainted semantics

• Encouraging results on a representative benchmark

• Main theorem: any safe program w.r.t. the tainted semantics is constant

time (paper proof)

Add obfuscation transformations and check that they do not introduce side-
channels

17

References

• G. Barthe, S. Blazy, V. Laporte, D. Pichardie, A. Trieu. Verified translation
validation of static analyses. Computer Security Foundations Symposium
(CSF), 2017.

• S. Blazy, V. Laporte, D. Pichardie. An abstract memory functor for verified
C static analyzers. ICFP 2016.

• J.H. Jourdan, V. Laporte, S. Blazy, X. Leroy, D. Pichardie. A formally-verified
static analyzer. POPL 2015.

• G. Barthe, G.Bertate, J.D.Campo, C.Luna, D. Pichardie. System-level non-
interference for constant-time cryptography. Conference on Computer
and Communications Security (CCS), 2014.

• F. Schneider. Enforceable security policies. ACM Transactions on
Information and System Security. 2000.

• M. Dam, B. Jacobs, A. Lundblad, F. Piessens. Provably correct inline
monitoring for multithreaded Java-like programs. Journal of Computer
Security, 2010.

18

Questions ?

19

