Teaching Deductive Verification to Teenagers

Jean-Christophe Filliâtre CNRS

IFIP WG 1.9/2.15
Leuven, Belgium
May 11-12, 2017

context

Université Paris Sud participates to a programme called Les Apprentis Chercheurs (the research apprentices)
where teenagers meet researchers to get an initiation to science
started in 2004; involves several universities, grandes écoles, and research institutes; more than 1,000 apprentices so far

apprenticeship

the apprentices

- are volunteers
- meet researchers 3 hours a month, over one year
- observe, but also practice
- work in pair (one from middle school, one from high school)
- have to give a 7-minute presentation at the very end

our apprentices

my colleague Andrei Paskevich and I supervised four apprentices

- one from French $4^{\text {ième }}$ grade (age $13, \sim$ US $7 / 8$ th grade)
- one from French $2^{\text {nde }}$ grade (age 15, \sim US 9/10th grade)
- two from French $1^{\text {ière }}$ grade (age $16, \sim$ US $10 / 11$ th grade)
our apprentices had a very light exposure to programming so far
- one with MIT's Scratch
- one with programming on a calculator only
- two with Python
(1) basic notions of programming first
- with Python
(2) then an introduction to deductive verification
- with Python (and Why3 under the hood)

basic notions of programming

a pragmatic choice

we chose Python

- far from being a good programming language
- not that bad as a first language
in a browser, using https://repl.it/

subset of Python

we use only

- the while language
- integers and arrays
- input, random, and print
no functions, no libraries

first program: guess my number

a number is chosen randomly in $0 . .100$ and guessed by the user built interactively with the apprentices
introduces input/output, conditionals, and loops (but also the idea of binary search)
note: we won't try to prove anything about this program

second program: Russian multiplication

$$
\begin{aligned}
& r=0 \\
& \text { while } q>0: \\
& \quad \text { if } q \% 2==1: \\
& \quad r=r+p \\
& p=p+p \\
& q=q / / 2
\end{aligned}
$$

- we explain it at the blackboard, on an example
- the invariant shows up
- we test it, exhaustively for $p, q \in\{0 . . N\}$
- but N cannot be too large

first exercise: Nim game

implement the 21 Nim game (jeu des allumettes), where the user plays against the machine
the program

- must check that the user is playing by the rules
- displays the outcome ("you win", "you lose")
- first, implement an opponent playing randomly
- then an opponent playing perfectly
we took other exercises from Project Euler https://projecteuler.net/
- the first problems are really easy
- fits nicely in our fragment (the answer is a number)
- entertaining

Project Euler problem 1

If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3,5, 6 and 9. The sum of these multiples is 23 .

Find the sum of all the multiples of 3 or 5 below 1000.

Project Euler problem 1

of course, they first implement a laborious, brute force solution then we go to the blackboard and we figure out

$$
\begin{aligned}
& 3 \times\left(1+2+\cdots+\left\lfloor\frac{999}{3}\right\rfloor\right) \\
+\quad & 5 \times\left(1+2+\cdots+\left\lfloor\frac{999}{5}\right\rfloor\right) \\
-\quad & 15 \times\left(1+2+\cdots+\left\lfloor\frac{999}{15}\right\rfloor\right)
\end{aligned}
$$

as well as

$$
1+2+\cdots+n=\frac{n(n+1)}{2}
$$

(without induction)

deductive verification

the big picture

the main idea is sketched

(with simpler words), but that's not really important at the end, we'll have a big button with a yes/no outcome

main objectives

- keep going with Python (no new language to learn)
- keep working within a browser (nothing to install)
- as few logical concepts as possible
- avoid connectives and quantifiers in the first place

demo: Russian multiplication

we reuse the Russian multiplication to make a first demo the concept of loop invariant

p	q	r	
34	13	0	
$34 \times 13+0$			
68	6	34	$=68 \times 6+34$
136	3	34	$=136 \times 3+34$
272	1	170	$=272 \times 1+34$
544	0	442	$=544 \times 0+442$

Russian multiplication

```
r = 0
while q > 0:
    #@ invariant 0 <= q
    #© invariant r + p * q == a * b
    print(p, q, r)
    if q % 2 == 1:
        r = r + p
    p=p + p
    q = q/// 2
print(p, q, r)
print("a\sqcup* bb\sqcup\", r)
#@ assert r == a * b
```


exercise: triangular numbers

prove the identity

$$
1+2+\cdots+n=\frac{n(n+1)}{2}
$$

with a program (their first lemma function!)

exercise: triangular numbers


```
#@ assume n >= 0
s = 0
k = 0
while k <= n:
    #@ invariant k <= n+1
    #@ invariant s == (k-1) * k // 2
    s = s + k
    k = k + 1
print(s)
#@ assert s == n * (n+1) // 2
```


another exercise: integer square root

verify the following program

```
n = int(input("enter访:\sqcup"))
#@ assume n >= 0
r = 0
s = 1
while s <= n:
    r = r + 1
    s = s + 2 * r + 1
print(r)
#@ assert r*r <= n < (r+1)*(r+1)
```


a more complex exercise: binary search

we first explain the problem and let them devise a solution
then they have to
(1) implement it
(2) test it on small, manually-written arrays
(3) generate random, sorted arrays to make larger tests
(4) prove safety
(5) prove soundness
(6) prove completeness
(7) prove termination
note: no arithmetic overflow issue here,
as Python uses arbitrary-precision integers
we start by verifying that

```
a = [0] * n
a[0] = randint(0, 100)
for i in range(1, n):
    a[i] = a[i-1] + randint(0, 10)
```

ends up with a sorted array

binary search

we have to introduce quantifiers and implication, so that we can write annotations such as

```
\#@ assert forall \(i, j .0<=i<=j<l e n(a)->a[i]<=a[j]\)
```

(we briefly mention why this is better than
\#C assert forall i. $0<=i<l e n(a)-1$-> $a[i]<=a[i+1]$
but we try to avoid a technical discussion)
we prepared two other exercises:

- insertion sort (invariants are more involved)
- Nim game opponent wins whenever possible (requires axiomatization of win/lose predicates)
but they were not used at the end (lack of time)

under the hood

translating Python to WhyML

Why3's programming language \sim a small subset of OCaml
we translate Python (and the annotations) to this language
some caveats

- Python is untyped
- Python variables are mutable (including loop indices)
- Python has constructs such as break or return

Python variables

\# first time we assign id
$i d=e$
\# and later
id $=$ e
(* we introduce id *)
let id = ref e in
...
id := e;
within annotations, we dereference all variables
e.g. the loop invariant

$$
\text { \#@ invariant } r+p * q==a * b
$$

gets translated to

$$
\begin{aligned}
\text { invariant }\{\text { let } \mathrm{a} & =!\mathrm{a} \text { in let } \mathrm{b}=!\mathrm{b} \text { in } \\
\text { let } \mathrm{p} & =!\mathrm{p} \text { in let } \mathrm{q}=!\mathrm{q} \text { in } \\
\text { let } \mathrm{r} & =!\mathrm{r} \text { in } \mathrm{r}+\mathrm{p} * \mathrm{q}=\mathrm{a} * \mathrm{~b}\}
\end{aligned}
$$

Python variables

we account for arguments being passed by value, yet received in mutable variables

$$
\begin{aligned}
& \text { let } f \text { x1 } \ldots \text { xn }= \\
& \text { let } x 1=\text { ref } x 1 \text { in } \\
& \ldots \\
& \text { let } x n=\text { ref } x n \text { in }
\end{aligned}
$$

def $f(x 1, \ldots, x n):$ body

```
let l = e in
for i = 0 to len(l) - 1 do
    invariant { let id = l[i] in inv }
    let id = ref l[i] in
    body
done
```


with a special case

for id in range(e1, e2):
 \#® invariant inv body

```
for id = e1 to e2 - 1 do
    invariant { inv }
    let id = ref id in
    body
done
```

break and return are translated using exceptions

try	
while test: \ldots do	
while	\ldots
done	
with Break \rightarrow	
()	
end	

break and return are translated using exceptions

$$
\operatorname{def} f(x 1, \ldots, x n):
$$

body

$$
\begin{aligned}
& \text { let } f \text { x1 . . xn }= \\
& \text { try } \\
& \ldots \\
& \text { with Return v } \rightarrow \\
& \text { v } \\
& \text { end }
\end{aligned}
$$

we let Why3 inferring types
(arbitrary-precision integers, arrays, etc.)
our translator fails on a program that is ill-typed, e.g.

```
def f(x):
    if }\textrm{x}==0\mathrm{ 0:
        return 1
```

(so we turn some run-time errors into compile-time errors)

Python's lists are actually resizable arrays
we make a simplification, using mutable arrays only
it would be easy to model Python's lists instead, at the cost of extra annotations regarding lengths being unchanged

support library

a small Why3 library provides definitions for things such as

- int(input(s)), randint(l, u)
- len(a), range(l, u)
- // and \%
caveat: this is neither Euclidean division, nor computer division (but defined in Python's manual)

Why3 in your browser - why3.lri.fr/try

we are using

- js_of_ocaml to compile both Why3 and Alt-Ergo to JavaScript
- Ace (Ajax.org Cloud9 Editor)
- Font Awesome
- a few lines of CSS and HTML (600 loc)
even possible to build an offline version
much simpler than running a server

going further?

to support a larger fragment of Python, it is likely that we should do first a Python-specific static typing, then translate to Why3
missing features

- tuples, parallel assignments, etc.
- objects
- dynamic scope?

questions?

