
Teaching Deductive Verification
to Teenagers

Jean-Christophe Filliâtre
CNRS

IFIP WG 1.9/2.15
Leuven, Belgium
May 11–12, 2017

context

Université Paris Sud participates to a programme called
Les Apprentis Chercheurs (the research apprentices)

where teenagers meet researchers to get an initiation to science

started in 2004; involves several universities, grandes écoles, and
research institutes; more than 1,000 apprentices so far

apprenticeship

the apprentices

• are volunteers

• meet researchers 3 hours a month, over one year

• observe, but also practice

• work in pair (one from middle school, one from high school)

• have to give a 7-minute presentation at the very end

our apprentices

my colleague Andrei Paskevich and I supervised four apprentices

• one from French 4ième grade (age 13, ∼ US 7/8th grade)

• one from French 2nde grade (age 15, ∼ US 9/10th grade)

• two from French 1ière grade (age 16, ∼ US 10/11th grade)

a challenge

our apprentices had a very light exposure to programming so far

• one with MIT’s Scratch

• one with programming on a calculator only

• two with Python

plan

1 basic notions of programming first
• with Python

2 then an introduction to deductive verification
• with Python (and Why3 under the hood)

basic notions of programming

a pragmatic choice

we chose Python

• far from being a good programming language

• not that bad as a first language

in a browser, using https://repl.it/

https://repl.it/

subset of Python

we use only

• the while language

• integers and arrays

• input, random, and print

no functions, no libraries

first program: guess my number

a number is chosen randomly in 0..100 and guessed by the user

built interactively with the apprentices

introduces input/output, conditionals, and loops
(but also the idea of binary search)

note: we won’t try to prove anything about this program

second program: Russian multiplication

r = 0

while q > 0:

if q % 2 == 1:

r = r + p

p = p + p

q = q // 2

• we explain it at the blackboard, on an example
• the invariant shows up

• we test it, exhaustively for p, q ∈ {0..N}
• but N cannot be too large

first exercise: Nim game

implement the 21 Nim game (jeu des allumettes),
where the user plays against the machine

the program

• must check that the user is playing by the rules

• displays the outcome (“you win”, “you lose”)

• first, implement an opponent playing randomly

• then an opponent playing perfectly

other exercises

we took other exercises from Project Euler
https://projecteuler.net/

• the first problems are really easy

• fits nicely in our fragment (the answer is a number)

• entertaining

https://projecteuler.net/

Project Euler problem 1

If we list all the natural numbers below 10 that are
multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of
these multiples is 23.

Find the sum of all the multiples of 3 or 5 below 1000.

Project Euler problem 1

of course, they first implement a laborious, brute force solution

then we go to the blackboard and we figure out

3× (1 + 2 + · · ·+ b999
3 c)

+ 5× (1 + 2 + · · ·+ b999
5 c)

− 15× (1 + 2 + · · ·+ b999
15 c)

as well as

1 + 2 + · · ·+ n =
n(n + 1)

2

(without induction)

deductive verification

the big picture

the main idea is sketched

program
+

specification

verification
conditions

proof

(with simpler words), but that’s not really important

at the end, we’ll have a big button with a yes/no outcome

main objectives

• keep going with Python (no new language to learn)

• keep working within a browser (nothing to install)

• as few logical concepts as possible
• avoid connectives and quantifiers in the first place

demo: Russian multiplication

we reuse the Russian multiplication to make a first demo

the concept of loop invariant

p q r

34 13 0 34× 13 + 0
68 6 34 = 68× 6 + 34

136 3 34 = 136× 3 + 34
272 1 170 = 272× 1 + 34
544 0 442 = 544× 0 + 442

Russian multiplication

r = 0

while q > 0:

#@ invariant 0 <= q

#@ invariant r + p * q == a * b

print(p, q, r)

if q % 2 == 1:

r = r + p

p = p + p

q = q // 2

print(p, q, r)

print("a * b =", r)

#@ assert r == a * b

exercise: triangular numbers

prove the identity

1 + 2 + · · ·+ n =
n(n + 1)

2

with a program (their first lemma function!)

exercise: triangular numbers

n = int(input("enter n: "))

#@ assume n >= 0

s = 0

k = 0

while k <= n:

#@ invariant k <= n+1

#@ invariant s == (k-1) * k // 2

s = s + k

k = k + 1

print(s)

#@ assert s == n * (n+1) // 2

another exercise: integer square root

verify the following program

n = int(input("enter n: "))

#@ assume n >= 0

r = 0

s = 1

while s <= n:

r = r + 1

s = s + 2 * r + 1

print(r)

#@ assert r*r <= n < (r+1)*(r+1)

a more complex exercise: binary search

we first explain the problem and let them devise a solution

then they have to

1 implement it

2 test it on small, manually-written arrays

3 generate random, sorted arrays to make larger tests

4 prove safety

5 prove soundness

6 prove completeness

7 prove termination

note: no arithmetic overflow issue here,
as Python uses arbitrary-precision integers

binary search

we start by verifying that

a = [0] * n

a[0] = randint(0, 100)

for i in range(1, n):

a[i] = a[i-1] + randint(0, 10)

ends up with a sorted array

binary search

we have to introduce quantifiers and implication, so that we can
write annotations such as

#@ assert forall i, j. 0 <=i<=j<len(a) -> a[i]<=a[j]

(we briefly mention why this is better than

#@ assert forall i. 0 <=i<len(a)-1 -> a[i]<=a[i+1]

but we try to avoid a technical discussion)

other exercises

we prepared two other exercises:

• insertion sort (invariants are more involved)

• Nim game opponent wins whenever possible
(requires axiomatization of win/lose predicates)

but they were not used at the end (lack of time)

under the hood

translating Python to WhyML

Why3’s programming language ∼ a small subset of OCaml

we translate Python (and the annotations) to this language

some caveats

• Python is untyped

• Python variables are mutable (including loop indices)

• Python has constructs such as break or return

Python variables

first time we assign id

id = e

...

and later

id = e

(* we introduce id *)

let id = ref e in

...

id := e;

Python variables

within annotations, we dereference all variables

e.g. the loop invariant

#@ invariant r + p * q == a * b

gets translated to

invariant { let a = !a in let b = !b in

let p = !p in let q = !q in

let r = !r in r + p * q = a * b }

Python variables

we account for arguments being passed by value, yet received in
mutable variables

def f(x1, ..., xn):

body

let f x1 ... xn =

let x1 = ref x1 in

...

let xn = ref xn in

...

for loops

for id in e:

#@ invariant inv

body

let l = e in

for i = 0 to len(l) - 1 do

invariant { let id = l[i] in inv }

let id = ref l[i] in

body

done

with a special case

for id in range(e1, e2):

#@ invariant inv

body

for id = e1 to e2 - 1 do

invariant { inv }

let id = ref id in

body

done

break and return

break and return are translated using exceptions

while test:

body

try

while ... do

...

done

with Break →
()

end

break and return

break and return are translated using exceptions

def f(x1, ..., xn):

body

let f x1 ... xn =

try

...

with Return v →
v

end

type inference

we let Why3 inferring types
(arbitrary-precision integers, arrays, etc.)

our translator fails on a program that is ill-typed, e.g.

def f(x):

if x == 0:

return 1

(so we turn some run-time errors into compile-time errors)

lists

Python’s lists are actually resizable arrays

we make a simplification, using mutable arrays only

it would be easy to model Python’s lists instead,
at the cost of extra annotations regarding lengths being unchanged

support library

a small Why3 library provides definitions for things such as

• int(input(s)), randint(l, u)

• len(a), range(l, u)

• // and %

caveat: this is neither Euclidean division, nor computer
division (but defined in Python’s manual)

Why3 in your browser — why3.lri.fr/try

we are using

• js of ocaml to compile both Why3 and Alt-Ergo to
JavaScript

• Ace (Ajax.org Cloud9 Editor)

• Font Awesome

• a few lines of CSS and HTML (600 loc)

even possible to build an offline version

much simpler than running a server

why3.lri.fr/try

going further?

to support a larger fragment of Python,
it is likely that we should do first a Python-specific static typing,
then translate to Why3

missing features

• tuples, parallel assignments, etc.

• objects

• dynamic scope?

questions ?

