
Flashix: Results and Perspective
Jörg Pfähler, Stefan Bodenmüller, Gerhard Schellhorn, (Gidon Ernst)

Overview

12.05.2017 2

1. Flash Memory and Flash File Systems
2. Results of Flashix I
3. Current Result: Integration of write-back Caches
4. Outlook: Concurrency

Motivation (I)

Flash Memory

• increasingly widespread use
• also in critical systems

(server, aeronautics)

⊕ shock resistant
⊕ energy efficient
⊝ specific write characteristics

→ complex software

12.05.2017 3

Motivation (II)

Firmware errors

• Intel SSD 320: power loss
leads to data corruption

• Crucial m4, Sandforce:
drive not responding

• Samsung: crash during
reactivation from sleep state

12.05.2017 4

Indilinx Everest SATA 3.0 SSD platform specs:
• Dual core 400 MHz ARM
• 1 GB DDR3 RAM
• Up to 0,5 GB/s sequential read/write speed

Motivation (III)

12.05.2017

Mars Rover Spirit
• Loss of communication
• Error in the file system

implementation lead to
repeated reboots

• [Reeves, Neilson 05]

Mars Rover Curiosity
• Feb 27, March 16 2013:

Safe Mode because of data
corruption

• Switched to backup computer

• Pilot project of the Verification Grand Challenge:
Develop a formally verified state-of-the-art flash file system
[Rajeev Joshi und Gerard Holzmann 07]

5

Flash Memory (I)

• Operations

– read page

– write empty page (no in-place overwrite, only sequential)

– erase block (expensive!)

12.05.2017 6

page0 page1 page2

page3 page4 page5

…

block0

page0 page1 page2

page3 page4 page5

…

block0

write page2

Flash Memory (I)

• Operationen

– read page

– write empty page

– erase block (expensive!)

12.05.2017 7

page0 page1 page2

page3 page4 page5

…

block0

page0 page1 page2

page3 page4 page5

…

block0

erase block0

Flash Memory (II)

• Limited lifetime: 104 – 106 Erase-cycles
– Distribute erase operations equally (Wear-Leveling)

• Out-of-place Updates
– Mapping logical → physical erase blocks

– Garbage collection

• SSDs, USB drives
– Built-in Flash-Translation-Layer (FTL)

• Embedded
– Specific filesystems (JFFS, YAFFS, UBIFS)

12.05.2017 8

Flashix: System Boundaries

10

POSIX

Flash driver

/

bin

etc

home

…

/

bin

etc

home

…

• Functional Correctness
• Crash-Safety

12.05.2017

Flashix:

Flashix: System Boundaries

11

POSIX

Flash driver

/

bin

etc

home

…

/

bin

etc

home

…

Page 0 Page 1 Page 2

Page 3 Page 4 Page 5

…

Block 0

• Sequential writing of
pages (no overwrite)

• Erasing whole blocks
(slow, deteriorates
memory)

• Functional Correctness
• Crash-Safety

12.05.2017

Flashix:

Overview

12.05.2017 12

1. Flash Memory and Flash File Systems
2. Results of Flashix I
3. Current Result: Integration of write-back Caches
4. Outlook: Concurrency

Models (simplified)

13

POSIX
top-level requirements

Virtual Filesystem Switch
generic concepts: paths,

file handles, paging

File System Core
flash specific concepts

JournalIndex

Encoding FS Data
Structures + Layout

Write Buffer

Erase Block Management
(EBM)

Linux MTD / Driver Interface

I/O Layer: Encoding EBM Data Structures

AFS

B+ Tree Transactional Journal

Persistence Interface

Buffered Blocks

Logical Blocks

I/O Interface

Interface/Submachine Refinement

12.05.2017

[SSV‘12, VSTTE‘13]

[FM‘09]

[V
STTE‘1

5
]

[H
V

C
‘1

3
]

Overview: [ABZ‘14], Theory: [ABZ‘14] & [SCP’16]

Models: Highlights

• POSIX: very abstract, understandable specification (based on
algebraic trees)

• Generic, filesystem-independent part similar to VFS in Linux
• Orphaned Files and Hardlinks are considered
• Journal-based implementation for crash-safety
• Garbage Collection and Wear-Leveling
• Efficient B+-tree-based indexing
• Index on flash for efficient reboot
• Write-through Caches

Related:
• FSCQ [Chen et. al. 15]: no flash-specifics, generates Haskell

code, verified with Coq
• Data61 (NICTA) [Keller eta al 14]: only middle part of the

hierarchy considered, no crash-safety, verified code generator

1412.05.2017

Read: POSIX

12.05.2017 15

data asm specification

state variables
root : tree[fid]
fs : fid ⇸ seq[byte]
of : fh ⇸ (fid × pos)

operations
posix_read(fh; buf, len)
{ /* error handling omitted */

let (fid, pos) = of[fh]

choose n with n ≤ len ∧ pos + n ≤ # fs[fid] in
len := n

buf := copy(fs[fid], pos, buf, 0, len)
of[fh] := (fid, pos + len)

}

[…]

Read: VFS

12.05.2017 16

vfs_read_loop# {
let DONE = false, DST = DST in
while ERR = ESUCCESS ∧ ¬ DONE do
vfs_read_block#

}

vfs_read_block# {
let PAGENO = (START + TOTAL) / PAGE_SIZE,

OFFSET = (START + TOTAL) % PAGE_SIZE,
PAGE = emptypage

in {
let N = min(END - (START + TOTAL),

PAGE_SIZE - OFFSET,
INODE.size - (START + TOTAL))

in
if N ≠ 0 then {
afs_readpage#(INODE.ino, PAGENO; PAGE, ERR);
if ERR = ESUCCESS
then {
BUF := copy(load(PAGE),OFFSET,BUF,DST+TOTAL,N);
TOTAL := TOTAL + N
}

} else {
DONE := true

}
}
}

vfs_read#(FD; BUF, N; ERR) {
ERR := ESUCCESS;
if ¬ FD ∊ OF
then ERR := EBADFD
else if OF[FD].mode ≠ MODE_R

∧ OF[FD].mode ≠ MODE_RW
then ERR := EBADFD
else let INODE = [?] in {
afs_iget#(OF[FD].ino; INODE, ERR);
if ERR = ESUCCESS
then {
if INODE.directory
then ERR := EISDIR
else let START = OF[FD].pos,

END = OF[FD].pos + N,
TOTAL = 0,
DST = 0 in

if START ≤ INODE.size
then {
vfs_read_loop#;
OF[FD].pos := START + TOTAL;
N := TOTAL
} else
N := 0

}
}
}

Size of Models (LOC)

12.05.2017 17

50
ASM

150 error spec 300 algebraic

100 ASM

100
algebraic

100
algebraic

500 ASM, including error handling

POSIX

VFS

AFS

Theoretical Result: Submachines

Theorem [SCP 16] : Submachine Refinement is
compositional

A ⊑ C → M(A) ⊑M(C)

18

Related:
• Simulations propagate [Engelhardt, deRoever]

12.05.2017

Goal: Crash-Safety

Goal: A File System is crash-safe if a crash in the middle of an operation
leads to a state that is similar to
a) the initial state of the operation
b) some final state of a run of the operation
where similar = equal after reboot.

19

Motivation for „similar“: open files handles are cleared = effect of reboot

12.05.2017

OPi OPj
OPk

OPk

Definition: Crash-Neutrality

20

Definition: An atomic operation is crash-neutral if it has a („do nothing“) run
such that a crash after the operation leads to the same state as the crash before
the operation.

Motivation: operations on flash hardware always have a „do-nothing“ run, since
the hardware can always refuse the operation

12.05.2017

Proof Obligation:
pre(Op)(in, state)

∧ Crash(state, state‘)
→ < Op (in; state; out) > Crash(state, state‘)

Crash-Safety: Refinement

21

Theorem [Ernst et. al., SCP 16]:
If
• All operations of C are crash-neutral
• Refinement PO for each operation, including { Crash; Recovery }

then C is a crash-safe implementation of A, written A ⊑cs C.

A + ACrash + ARec

C + CCrash + CRec

Refinement POs Refinement + Crash POs

12.05.2017

Main difficulties:
• Additional data structures and algorithms required for recovery (e.g. journals,

persisted index structures, …)
• Additional Invariants for these data structures required
• Refinement proof for { Crash; Recovery } must ensure that the entire RAM

state can be recovered

A

C

Crash-Safety: Submachines

22

Theorem [Ernst et. al., SCP 16]:
Crash-Safe Submachine Refinement is compositional and transitive
• A ⊑cs C → M(A) ⊑cs M(C)
• A ⊑cs B and B ⊑cs C → A ⊑cs C

A

C

M(A)

M(C)

12.05.2017

By transitivity of refinement we get:

POSIX ⊑cs VFS(…(MTD))

Related Work:
• Temporal extension of Hoare Logic to reason about all intermediate states

[Chen et. al. 15]
• Model-checking all intermediate states [Koskinen et. al., POPL16]
• Crashes as exceptions [Maric and Sprenger, FM2014]

Models: Size & Effort

• 21 models of 5 – 15 operations each
• 10 Refinements
• Models ASMs: 4k LoC

algebraic: 10k LoC
• Ca. 3000 theorems to prove functional correctness,

crash-safety and quality of wear-leveling

• Effort:
– 2 PhDs

– Σ individual problems < fully developed system

– Good, stable interfaces are crucial, but difficult to achieve; in
particular in the presence of errors and crashes

2312.05.2017

Design of Models (I)

24

• Modularization is key to success

– Design small abstract interfaces on many levels

– Use extra refinement levels to capture key concepts

– Horizontal structure: Use submachines!

• Middle-out strategy was key to bridge the wide gap
between POSIX and Flash Interface

12.05.2017

Design of Models (II)

25

• Use expressive data types + control constructs

– (KIV’s) version of ASMs allows abstract models as well as
Code-like implementations

– Do not use program counters for control structure

– Expressive data types are helpful (various types of trees,
streams, pointer structures with separation logic library in
HOL).

– Sometimes we would have liked even more
expressiveness, e.g. dependent/predicative types.

12.05.2017

Changing Models and Verification Support

• Models are bound to change:
modifications ripple through several models

→ great similarity to software refactoring
• Main reason for changes due to properly handling

hardware failures and power cuts
• Do not verify too early: testing and simulation can help a

lot! Better integration would help
• Support machines with crashes and generate VCs for

crash-safe refinement -> less error-prone, faster
refactoring

• Verification tool has to minimize redoing proofs:
– Compute minimal set of affected proofs

(Correctness Management)
– Replaying proofs is common

2612.05.2017

Open issues and limitations of Flashix I

• Verification of final C-code

– Idea: Use VCC/VeriFast to prove 1:1-correspondence
between C code and KIV-ASM annotated as ghost code

• Limitations:

– Concurrency has not been considered

– Limited use of write-back Caches

– Special files (e.g. pipes, symbolic links) have been left out,
but could be added orthogonally

2712.05.2017

Code Size & Performance

28

0

5

10

15

20

25

format mount read writes

S
e
c
o
n
d
s

Flashix

UBIFS (immediate flush)

UBIFS (without flush)

Same I/O

Write-back Cache,
asynchronous
write to flash

• C Code generated: 13k LoC
manually: 1k LoC (integration)

• Runs on embedded board (with Linux)
• Scala Code available (requires Linux FUSE library):

https://github.com/isse-augsburg/flashix

12.05.2017

https://github.com/isse-augsburg/flashix

Overview

12.05.2017 29

1. Flash Memory and Flash File Systems
2. Results of Flashix I
3. Current Result: Integration of write-back Caches
4. Outlook: Concurrency

Caches in Flash File Systems

• Flashix uses several caches: index, superblock, etc…
• Most are recoverable from data stored on flash
• These just need an invariant in proofs:

Cache = recover(Flash)
• Invisible to the user of POSIX

• Other write-back Caches are visible to the user

• Write-buffer

• Inode/Page/Dentry-Cache in VFS (Future Work)

12.05.2017 30

Flashix: Write Buffer (I)

12.05.2017 31

Cache

Block

Flashix: Write Buffer (I)

12.05.2017 32

Block

Cache

• Low-Level View: Crash loses data in Cache
• Other higher-level Specifications (POSIX) cannot express this
• Therefore, Flashix I flushed the write buffer at the end of every AFS

operation (wastes space, less efficient)

• High-Level View: Crash retracts several operations (blue and gray)

Weak Crash-Safety

33

Definition: The implementation of a machine is weak crash-safe if a crash in the
middle of an operation leads to a state that is similar to
a) the initial state of the operation
b) some final state of a run of an earlier operation
where similar = equal after reboot.

OPi OPj

12.05.2017

OPi

OPk

Flashix: Write Buffer

12.05.2017 34

Block

Cache

• High-Level View: Crash retracts several operations (blue and gray)

• Observation: Runs of operations are either
• retractable: Crashing before or after the operation has the

same effect (gray)
• completable: there is an alternative run that leads to a

synchronized state with empty cache (blue)

• Synchronized States are definable on abstract levels, e.g. POSIX:
every state after fsync

Idea: Weak Crash-Safety by Refinement

3512.05.2017

• Machines with synchronized states Sync⊆ S
and Crash ⊆ Sync x Sync

• The write buffer implementation has
Sync = S and Crash = „delete cache“

• The abstract write buffer specification has
Sync = „cache is empty“ and Crash = identity

• Idea: Incrementally switch from low-level view to high-level view
by refinement

Abstract Write buffer

Write Buffer Implementation

Weak Crash-Safety: Refinement Type I

36

A = M + ASync + ACrash

C = M + CSync + CCrash

Theorem [Pfähler et. al., submitted to iFM17]:
If every run of every operation is either retractable or completable then C is a
weak crash-safe implementation of A, written A ⊑wcs C.

12.05.2017

PO for Op retractable or completable:
< Op(s) > (CCrash(s, s‘))
→ CCrash(s, s‘)
∨ < Op(s) > (ASync ∧ CCrash(s, s‘))

Weak Crash-Safety: Refinement Type II

37

Theorem [Pfähler et. al., submitted to iFM17]:
If
• C crash-neutral
• Refinement PO for each operation, including { Crash; Recovery } assuming we

start in a synchronized state
• M has no additional persistent state
• ASync ∧ abs → CSync

then A ⊑wcs M(C)

A

M(C)

A + ACrash + ARec

M(C) + MCrash + MRec

Refinement POs
Refinement + Crash POs

+ SyncPOs

12.05.2017

By transitivity of refinement we get:

POSIX ⊑wcs VFS(…(MTD))

Weak Crash-Safety: Submachines

38

Theorem [Pfähler et. al., submitted to iFM17]:
Weak Crash-Safe Submachine Refinement is compositional and transitive
• A ⊑wcs C → M(A) ⊑wcs M(C)
• A ⊑wcs B and C ⊑wcs C → A ⊑wcs C

A

C

M(A)

M(C)

12.05.2017

By transitivity of refinement we get:

POSIX ⊑wcs VFS(…(WriteBuffer(…(MTD))))

Summary & Related Work

• Added KIV support for weak crash-safe machines
• Simplified Verification

500 → 300, 1050 → 1270 (proof interactions)
for the two specifications where we previously had
proofs

• 30-40% less waste of space for padding

Related Work:
• Specifying and Checking File System Crash-

Consistency Models [ASPLOS 16]
• Reducing Crash Recoverability to Reachability

[POPL 16]

12.05.2017 39

Overview

12.05.2017 40

1. Flash Memory and Flash File Systems
2. Results of Flashix I
3. Current Result: Integration of write-back Caches
4. Outlook: Concurrency

Goals & Previous Research

Goals for Flashix:
• Parallel operations

– Garbage Collection, Wear-Leveling in background

– Allow parallel access to POSIX

• No Dead/Livelocks

Previous Research:
• Rely/Guarantee & Temporal Logic
• Linearizability
• Lock-free & starvation-free algorithms / data structures

Challenge in Flashix:
• Scale verification to a large case study with deep hierarchy of

refinements

12.05.2017 41

Non-local Extension

42

M1

M2

Mn

Incremental
Development

M1’

M2’

Mn’

Non-local Extension with an
additional concept

M1

M2

Mn

Modularization following
the original refinements

Goal: Do not verify from scratch

δ1

δ2

δn

Additional, concept-specific
Proof Obligations

12.05.2017

Instances of Non-local Extensions

• Crash-Safety

– Modularization resulting in additional, orthogonal proof
obligations worked

• Write-back Caches and Weak Crash-Safety

• Concurrency?

– Making expensive operations concurrent seems to be a
standard problem in software engineering

– Related formal theories or verified case studies?
→ Interested in Feedback

4312.05.2017

Linearizability under Protocol (I)

• Concurrency Protocol CP(A) specifies whether AOpi(ini) || AOpj(inj) is allowed
• Restricts possible concurrent histories

=> only these have to be linearizable
• Examples in Flashix:

• Writing to the same block disallowed (only sequential writes)

• Wear-Leveling or block erase is allowed in parallel

• Examples outside Flashix:
• Iterators may not be used concurrent with modifications

• Difference to general linearizability: we have a single known client M for C, while
linearizability requires C to work for any client

12.05.2017 44

A

M C

Data Refinement

Atomic(A) + CP(A)

M + Locks Atomic(C) + CP(C)

Linearizability under
Protocol

Linearizability under Protocol (II)

Open Issues:
• How to specify CP? Current assumption is that a predicate (AOpi, ini. AOpj, inj) is

sufficient
• What proof obligations show that calls of C opertions follow protocol CP(C)

assuming that calls to M(C) operations follow protcol CP(A)?
• Incrementally increase atomicity of M operations [Lipton 75], [Elmas, Qadeer,

Tasiran 09] with ownership
• What granularity of atomic blocks remains and how do we then reuse the

sequential verification?
• Ideally, M(C) operations with locks are immediately atomic → nothing new must be proved

12.05.2017 45

A

M C

Data Refinement

Atomic(A) + CP(A)

M + Locks Atomic(C) + CP(C)

Linearizability under
Protocol

