Synthesis, Verification, and Inductive Learning

Sanjit A. Seshia

EECS Department
UC Berkeley

Joint work with Susmit Jha (UTC)

Dagstuhl Seminar → Verified SW Working Group
August 2014 → July 15, 2015
Messages of this Talk
[Seshia DAC’12; Jha & Seshia, SYNT’14, ArXiV’15]

1. Synthesis Everywhere
 – Many (verification) tasks involve synthesis

2. Effective Approach to Synthesis: Induction + Deduction + Structure
 – *Induction*: Learning from examples
 – *Deduction*: Logical inference and constraint solving
 – *Structure*: Hypothesis on syntactic form of artifact to be synthesized
 – “*Syntax-Guided Synthesis*” [Alur et al., FMCAD’13]
 ■ Counterexample-guided inductive synthesis (CEGIS) [Solar-Lezama et al., ASPLOS’06]

3. Analysis of Counterexample-Guided Synthesis
 – Counterexample-driven learning
 – Sample Complexity
Artifacts Synthesized in Verification

- Inductive invariants
- Auxiliary specifications (e.g., pre/post-conditions, function summaries)
- Environment assumptions / Env model / interface specifications
- Abstraction functions / abstract models
- Interpolants
- Ranking functions
- Intermediate lemmas for compositional proofs
- Theory lemma instances in SMT solving
- Patterns for Quantifier Instantiation
- ...
Formal Verification as Synthesis

- Inductive Invariants
- Abstraction Functions
One Reduction from Verification to Synthesis

NOTATION
Transition system $M = (I, \delta)$
Safety property $\Psi = G(\psi)$

VERIFICATION PROBLEM
Does M satisfy Ψ?

SYNTHESIS PROBLEM
Synthesize ϕ s.t.

\begin{align*}
I \Rightarrow & \phi \land \psi \\
\phi \land \psi \land \delta \Rightarrow & \phi' \land \psi'
\end{align*}
Two Reductions from Verification to Synthesis

NOTATION
Transition system $M = (I, \delta)$, $S = \text{set of states}$
Safety property $\Psi = \text{G}(\psi)$

VERIFICATION PROBLEM
Does M satisfy Ψ?

SYNTHESIS PROBLEM #1
Synthesize ϕ s.t.
$\begin{align*}
I &\Rightarrow \phi \land \psi \\
\phi \land \psi \land \delta &\Rightarrow \phi' \land \psi'
\end{align*}$

SYNTHESIS PROBLEM #2
Synthesize $\alpha : S \rightarrow \hat{S}$ where $\alpha(M) = (\hat{I}, \hat{\delta})$
s.t.
$\begin{align*}
\alpha(M) &\text{satisfies } \Psi \\
\text{iff} \\
M &\text{satisfies } \Psi
\end{align*}$
Common Approach for both: “Inductive” Synthesis

Synthesis of:-

- **Inductive Invariants**
 - Choose templates for invariants
 - Infer likely invariants from tests (examples)
 - Check if any are true inductive invariants, possibly iterate

- **Abstraction Functions**
 - Choose an abstract domain
 - Use Counter-Example Guided Abstraction Refinement (CEGAR)
Counterexample-Guided Abstraction Refinement is Inductive Synthesis

[Anubhav Gupta, ‘06]
CEGAR = Counterexample-Guided Inductive Synthesis (of Abstractions)

INITIALIZE
- Structure Hypothesis ("Syntax-Guidance"), Initial Examples

SYNTHESIZE
- Candidate Artifact
- Counterexample
- Synthesis Fails

VERIFY
- Counterexample
- Verification Succeeds
Lazy SMT Solving performs Inductive Synthesis (of Lemmas)

- SMT Formula
- Initial Boolean Abstraction

SYNTHESIS
- Generate SAT Formula
- Blocking Clause/Lemma
- Proof Analysis
- “Spurious Model”

VERIFICATION
- Invoke SAT Solver
 - SAT (model) ("Counter-example")
- Invoke Theory Solver
 - SAT
 - UNSAT
- Done

Done
CEGAR = CEGIS = Learning from (Counter)Examples

What’s different from std learning theory: Learning Algorithm and Verification Oracle are typically general Solvers

- INITIALIZE
- "Concept Class", Initial Examples
- LEARNING ALGORITHM
- VERIFICATION ORACLE
- Learning Fails
- Learning Succeeds
- Candidate Concept
- Counterexample
Comparison*

<table>
<thead>
<tr>
<th>Feature</th>
<th>Formal Inductive Synthesis</th>
<th>Machine Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept/Program Classes</td>
<td>Programmable, Complex</td>
<td>Fixed, Simple</td>
</tr>
<tr>
<td>Learning Algorithms</td>
<td>General-Purpose Solvers</td>
<td>Specialized</td>
</tr>
<tr>
<td>Learning Criteria</td>
<td>Exact, w/ Formal Spec</td>
<td>Approximate, w/ Cost Function</td>
</tr>
<tr>
<td>Oracle-Guidance</td>
<td>Common (can control Oracle)</td>
<td>Rare (black-box oracles)</td>
</tr>
</tbody>
</table>

* Between typical inductive synthesizer and machine learning algo
Active Learning: Key Elements

1. **Search Strategy**: How to search the space of candidate concepts?
2. **Example Selection**: Which examples to learn from?
Counterexample-Guidance: A Successful Paradigm for Synthesis and Learning

- **Active Learning** from Queries and Counterexamples [Angluin ’87a,’87b]
- Counterexample-Guided Abstraction-Refinement (CEGAR) [Clarke et al., ’00]
- Counterexample-Guided Inductive Synthesis (CEGIS) [Solar-Lezama et al., ’06]

...

- All rely heavily on **Verification Oracle**
- Choice of Verification Oracle determines **Sample Complexity** of Learning
 - # of examples (counterexamples) needed to converge (learn a concept)
Questions

- Fix a concept class
 - abstract domain, template, etc.

1. Suppose Countexample-Guided Learning is guaranteed to terminate. What are lower/upper bounds on sample complexity?
2. Suppose termination is not guaranteed. Is it possible for the procedure to terminate on some problems with one verifier but not another?
 - Learner (synthesizer) just needs to be consistent with examples; e.g. SMT solver
 - Sensitivity to type of counterexample
Problem 1: Bounds on Sample Complexity
Teaching Dimension

[Goldman & Kearns, ‘90, ‘95]

- The *minimum* number of (labeled) examples a teacher must reveal to *uniquely* identify any concept from a concept class
Teaching a 2-dimensional Box

What about N dimensions?
Teaching Dimension

The *minimum* number of (labeled) examples a teacher must reveal to *uniquely* identify any concept from a concept class

\[
TD(C) = \max_{c \in C} \min_{\sigma \in \Sigma(c)} |\sigma|
\]

where

- \(C \) is a concept class
- \(c \) is a concept
- \(\sigma \) is a teaching sequence (uniquely identifies concept \(c \))
- \(\Sigma \) is the set of all teaching sequences
Theorem: $TD(C)$ is lower bound on Sample Complexity

- Counterexample-Guided Learning: TD gives a lower bound on \#counterexamples needed to learn any concept

- Finite TD is necessary for termination
 - If C is finite, $TD(C) \leq |C|-1$

- Finding Optimal Teaching Sequence is NP-hard (in size of concept class)
 - But heuristic approach works well (“learning from distinguishing inputs”)

- Finite TD may not be sufficient for termination!
 - Termination may depend on verification oracle

[some results appear in Jha et al., ICSE 2010]
Problem 2: Termination of Counterexample-guided loop
Query Types for CEGIS

LEARNER

Positive Witness

\(x \in \phi, \text{ if one exists, else } \perp \)

ORACLE

Equivalence: Is \(f = \phi \)?

Yes / No + \(x \in \phi \oplus f \)

Subsumption: Is \(f \subseteq \phi \)?

Yes / No + \(x \in f \setminus \phi \)

• Finite memory vs Infinite memory

• Type of counter-example given

Concept class: Any set of recursive languages
Learning $-1 \leq x \leq 1 \land -1 \leq y \leq 1$

($C = \text{Boxes around origin}$)

Arbitrary Counterexamples may not work for Arbitrary Learners
Learning \(-1 \leq x, y \leq 1\) from Minimum Counterexamples (dist from origin)
Types of Counterexamples

Assume there is a function \(\text{size}: D \rightarrow \mathbb{N} \)
- Maps each example \(x \) to a natural number
- Imposes total order amongst examples

- **CEGIS**: Arbitrary counterexamples
 - Any element of \(f \oplus \phi \)

- **MinCEGIS**: Minimal counterexamples
 - A least element of \(f \oplus \phi \) according to size
 - Motivated by debugging methods that seek to find small counterexamples to explain errors & repair
Assume there is a function \(\text{size}: D \rightarrow N \)

- **CBCEGIS**: Constant-bounded counterexamples (bound \(B \))
 - An element \(x \) of \(f \oplus \phi \) s.t. \(\text{size}(x) < B \)
 - Motivation: Bounded Model Checking, Input Bounding, Context bounded testing, etc.

- **PBCEGIS**: Positive-bounded counterexamples
 - An element \(x \) of \(f \oplus \phi \) s.t. \(\text{size}(x) \) is no larger than that of any positive example seen so far
 - Motivation: bug-finding methods that mutate a correct execution in order to find buggy behaviors
Summary of Results

[Jha & Seshia, SYNT’14; TR‘15]

Finite Memory Inductive Synthesis

Infinite Memory Inductive Synthesis

CBCEGIS

PBCEGIS

CEGIS=MINCEGIS

mincegis = cegis

pbcegis

cbcegis

Lnotpb

Lnotcb

Lcbnotpb

Lpb
Summary

- Verification by reduction to Synthesis
- Counterexample-guided Synthesis is Inductive Learning
- Teaching Dimension relevant for analyzing counterexample-guided learning
- Termination analysis for CEGIS can be non-trivial for infinite domains (concept classes)
- Lots of scope for future work in understanding efficiency / termination behavior of inductive learners based on deductive/verification oracles