
Synthesis, Verification, and  
Inductive Learning

Synthesis, Verification, and  
Inductive Learning

Sanjit A. Seshia

EECS Department
UC Berkeley

Dagstuhl Seminar  Verified SW Working Group
August 2014  July 15, 2015

Joint work with Susmit Jha (UTC)



– 2 –

Messages of this TalkMessages of this Talk

1. Synthesis Everywhere
– Many (verification) tasks involve synthesis

2. Effective Approach to Synthesis:                    
Induction + Deduction + Structure 
– Induction: Learning from examples
– Deduction: Logical inference and constraint solving
– Structure: Hypothesis on syntactic form of artifact 

to be synthesized
– “Syntax-Guided Synthesis” [Alur et al., FMCAD’13]

 Counterexample-guided inductive synthesis (CEGIS) [Solar-Lezama et 
al., ASPLOS’06]

3. Analysis of Counterexample-Guided Synthesis
– Counterexample-driven learning
– Sample Complexity

[Seshia DAC’12; Jha & Seshia, SYNT’14, ArXiV’15]



– 3 –

Artifacts Synthesized in VerificationArtifacts Synthesized in Verification

 Inductive invariants
 Auxiliary specifications (e.g., pre/post-conditions, 

function summaries)
 Environment assumptions / Env model / interface 

specifications
 Abstraction functions / abstract models
 Interpolants
 Ranking functions
 Intermediate lemmas for compositional proofs 
 Theory lemma instances in SMT solving
 Patterns for Quantifier Instantiation
 …



– 4 –

Formal Verification as SynthesisFormal Verification as Synthesis

 Inductive Invariants

 Abstraction Functions



– 7 –

One Reduction from Verification to 
Synthesis
One Reduction from Verification to 
Synthesis

SYNTHESIS PROBLEM
Synthesize  s.t.

I    
      ’  ’ 

VERIFICATION PROBLEM
Does M satisfy ?

NOTATION
Transition system M = (I, ) 
Safety property  =  G()



– 8 –

Two Reductions from Verification to 
Synthesis
Two Reductions from Verification to 
Synthesis

NOTATION
Transition system M = (I, ),  S = set of states 
Safety property  =  G()

SYNTHESIS PROBLEM #1
Synthesize  s.t.

I    
      ’  ’ 

VERIFICATION PROBLEM
Does M satisfy ?

SYNTHESIS PROBLEM #2
Synthesize  : S  Ŝ where

(M) = (I, ) 
s.t.

(M) satisfies 
iff

M satisfies 

ˆ ˆ



– 9 –

Common Approach for both: 
“Inductive” Synthesis
Common Approach for both: 
“Inductive” Synthesis

Synthesis of:-

 Inductive Invariants
– Choose templates for invariants
– Infer likely invariants from tests (examples)
– Check if any are true inductive invariants, possibly 

iterate

 Abstraction Functions
– Choose an abstract domain
– Use Counter-Example Guided Abstraction 

Refinement (CEGAR)



– 10 –

Counterexample-Guided Abstraction 
Refinement is Inductive Synthesis
Counterexample-Guided Abstraction 
Refinement is Inductive Synthesis

Invoke 
Model 

Checker
Done

Valid

Counter-
example

Check
Counterexample: 

Spurious?
Spurious 

Counterexample

YES

Abstract 
Domain

System 
+Property

Initial 
Abstraction 

Function

Done
NO

Generate 
Abstraction

Abstract Model        
+ Property

Refine 
Abstraction 

Function

New Abstraction Function

Fail

SYNTHESIS VERIFICATION

[Anubhav Gupta, ‘06]



– 11 –

CEGAR = Counterexample-Guided 
Inductive Synthesis (of Abstractions)
CEGAR = Counterexample-Guided 
Inductive Synthesis (of Abstractions)

INITIALIZE

SYNTHESIZE VERIFY

Candidate
Artifact

Counterexample

Verification SucceedsSynthesis Fails

Structure Hypothesis (“Syntax-Guidance”), 
Initial Examples



– 12 –

Lazy SMT Solving performs 
Inductive Synthesis (of Lemmas)
Lazy SMT Solving performs 
Inductive Synthesis (of Lemmas)

Invoke 
SAT 

Solver
Done

UNSAT

SAT  
(model)

Invoke Theory 
Solver“Spurious 

Model”

UNSAT

SMT 
Formula

Initial 
Boolean 

Abstraction

Done
SAT

Generate 
SAT 

Formula

SAT Formula

Proof 
Analysis

Blocking Clause/Lemma

SYNTHESIS VERIFICATION

(“Counter-
example”)



– 13 –

CEGAR = CEGIS = Learning from 
(Counter)Examples
CEGAR = CEGIS = Learning from 
(Counter)Examples

INITIALIZE

LEARNING
ALGORITHM

VERIFICATION
ORACLE

Candidate
Concept

Counterexample

Learning SucceedsLearning Fails

“Concept Class”, Initial Examples

What’s different from std learning theory: Learning Algorithm 
and Verification Oracle are typically general Solvers



– 14 –

Comparison*Comparison*

Feature Formal Inductive 
Synthesis

Machine
Learning

Concept/Program 
Classes

Programmable, 
Complex Fixed, Simple

Learning 
Algorithms

General-Purpose 
Solvers Specialized

Learning Criteria Exact, w/ Formal 
Spec

Approximate, w/ 
Cost Function

Oracle-Guidance Common (can 
control Oracle)

Rare (black-box
oracles)

* Between typical inductive synthesizer and machine learning algo



– 15 –

Active Learning: Key ElementsActive Learning: Key Elements

ACTIVE
LEARNING

ALGORITHM

1. Search Strategy: How to search the space of  
candidate concepts?

2. Example Selection: Which examples to learn from?

Examples

Search Strategy

Selection
Strategy



– 16 –

Counterexample-Guidance: A Successful 
Paradigm for Synthesis and Learning
Counterexample-Guidance: A Successful 
Paradigm for Synthesis and Learning
 Active Learning from Queries and 

Counterexamples [Angluin ’87a,’87b]

 Counterexample-Guided Abstraction-Refinement 
(CEGAR) [Clarke et al., ’00]

 Counterexample-Guided Inductive Synthesis 
(CEGIS) [Solar-Lezama et al., ’06]

…

 All rely heavily on Verification Oracle
 Choice of Verification Oracle determines    

Sample Complexity of Learning
– # of examples (counterexamples) needed to 

converge (learn a concept) 



– 17 –

QuestionsQuestions

 Fix a concept class 
– abstract domain, template, etc. 

1. Suppose Countexample-Guided Learning is 
guaranteed to terminate. What are lower/upper 
bounds on sample complexity?

2. Suppose termination is not guaranteed.                  
Is it possible for the procedure to terminate      
on some problems with one verifier but not 
another?
– Learner (synthesizer) just needs to be consistent 

wth examples; e.g. SMT solver
– Sensitivity to type of counterexample



– 18 –

Problem 1: Bounds on                
Sample Complexity

Problem 1: Bounds on                
Sample Complexity



– 19 –

Teaching DimensionTeaching Dimension

 The minimum number of (labeled) examples a 
teacher must reveal to uniquely identify any 
concept from a concept class

[Goldman & Kearns, ‘90, ‘95]



– 20 –

Teaching a 2-dimensional BoxTeaching a 2-dimensional Box

+

+

-

-

-

-

What about N dimensions?



– 21 –

Teaching DimensionTeaching Dimension

 The minimum number of (labeled) examples a 
teacher must reveal to uniquely identify any 
concept from a concept class

TD(C) = max c  C min   (c) ||
where

C is a concept class
c is a concept
 is a teaching sequence (uniquely identifies concept c)
 is the set of all teaching sequences



– 22 –

Theorem: TD(C) is lower bound on 
Sample Complexity
Theorem: TD(C) is lower bound on 
Sample Complexity
 Counterexample-Guided Learning: TD gives a 

lower bound on #counterexamples needed to 
learn any concept

 Finite TD is necessary for termination
– If C is finite, TD(C)   |C|-1

 Finding Optimal Teaching Sequence is NP-hard 
(in size of concept class)
– But heuristic approach works well (“learning from 

distinguishing inputs”)
 Finite TD may not be sufficient for termination!

– Termination may depend on verification oracle

[some results appear in Jha et al., ICSE 2010]



– 23 –

Problem 2: Termination of 
Counterexample-guided loop

Problem 2: Termination of 
Counterexample-guided loop



– 24 –

Query Types for CEGISQuery Types for CEGIS

LEARNER ORACLE
Positive Witness

x  , if one exists, else 

Equivalence: Is f = ?
Yes / No + x  f

Subsumption: Is f ⊆ ?
Yes / No + x  f \ 

• Finite memory vs
Infinite memory

• Type of counter-
example given

Concept class: Any set of recursive languages



– 25 –

Learning -1  x  1 /\ -1  y  1
(C = Boxes around origin)
Learning -1  x  1 /\ -1  y  1
(C = Boxes around origin)

(0,0)

Arbitrary Counterexamples may not work 
for Arbitrary Learners



– 26 –

Learning -1  x,y  1 from Minimum 
Counterexamples (dist from origin)
Learning -1  x,y  1 from Minimum 
Counterexamples (dist from origin)

(0,0)

-

-

-

-



– 27 –

Types of CounterexamplesTypes of Counterexamples

Assume there is a function size: D  N
– Maps each example x to a natural number
– Imposes total order amongst examples

 CEGIS:  Arbitrary counterexamples
– Any element of f  

 MinCEGIS: Minimal counterexamples
– A least element of f   according to size
– Motivated by debugging methods that seek to find 

small counterexamples to explain errors & repair



– 28 –

Types of CounterexamplesTypes of Counterexamples

Assume there is a function size: D  N

 CBCEGIS: Constant-bounded counterexamples 
(bound B)
– An element x of f   s.t. size(x) < B
– Motivation: Bounded Model Checking, Input 

Bounding, Context bounded testing, etc.

 PBCEGIS: Positive-bounded counterexamples
– An element x of f   s.t. size(x) is no larger than 

that of any positive example seen so far
– Motivation: bug-finding methods that mutate a 

correct execution in order to find buggy behaviors



– 29 –

Summary of ResultsSummary of Results
[Jha & Seshia, SYNT’14; TR‘15]



– 31 –

SummarySummary

 Verification by reduction to Synthesis
 Counterexample-guided Synthesis is Inductive 

Learning
 Teaching Dimension relevant for analyzing 

counterexample-guided learning
 Termination analysis for CEGIS can be non-

trivial for infinite domains (concept classes)

 Lots of scope for future work in understanding 
efficiency / termination behavior of inductive 
learners based on deductive/verification oracles


