# Synthesis, Verification, and Inductive Learning

Sanjit A. Seshia

EECS Department UC Berkeley

Joint work with Susmit Jha (UTC)

Dagstuhl Seminar → Verified SW Working Group August 2014 → July 15, 2015

# **Messages of this Talk**

[Seshia DAC'12; Jha & Seshia, SYNT'14, ArXiV'15]

- 1. Synthesis Everywhere
  - Many (verification) tasks involve synthesis
- 2. Effective Approach to Synthesis: Induction + Deduction + Structure
  - Induction: Learning from examples
  - Deduction: Logical inference and constraint solving
  - Structure: Hypothesis on syntactic form of artifact to be synthesized
  - "Syntax-Guided Synthesis" [Alur et al., FMCAD'13]
    - Counterexample-guided inductive synthesis (CEGIS) [Solar-Lezama et al., ASPLOS'06]

#### 3. Analysis of Counterexample-Guided Synthesis

- Counterexample-driven learning
- Sample Complexity

# **Artifacts Synthesized in Verification**

#### Inductive invariants

- Auxiliary specifications (e.g., pre/post-conditions, function summaries)
- Environment assumptions / Env model / interface specifications
- Abstraction functions / abstract models
- Interpolants
- Ranking functions
- Intermediate lemmas for compositional proofs
- Theory lemma instances in SMT solving
- Patterns for Quantifier Instantiation



# **Formal Verification as Synthesis**

Inductive Invariants

Abstraction Functions

## One Reduction from Verification to Synthesis

NOTATION Transition system M = (I,  $\delta$ ) Safety property  $\Psi$  = G( $\psi$ )

VERIFICATION PROBLEM Does M satisfy  $\Psi$ ?

SYNTHESIS PROBLEM Synthesize  $\phi$  s.t.  $I \Rightarrow \phi \land \psi$  $\phi \land \psi \land \delta \Rightarrow \phi' \land \psi'$ 

# **Two Reductions from Verification to Synthesis**

NOTATION Transition system M = (I,  $\delta$ ), S = set of states Safety property  $\Psi$  = G( $\psi$ )

VERIFICATION PROBLEMDoes M satisfy  $\Psi$ ?

SYNTHESIS PROBLEM #1 Synthesize  $\phi$  s.t.  $I \Rightarrow \phi \land \psi$  $\phi \land \psi \land \delta \Rightarrow \phi' \land \psi'$  SYNTHESIS PROBLEM #2 Synthesize  $\alpha : S \rightarrow \hat{S}$  where  $\alpha(M) = (\hat{I}, \hat{\delta})$ s.t.  $\alpha(M)$  satisfies  $\Psi$ iff M satisfies  $\Psi$ 

# Common Approach for both: "Inductive" Synthesis

### Synthesis of:-

#### Inductive Invariants

- Choose templates for invariants
- Infer likely invariants from tests (examples)
- Check if any are true inductive invariants, possibly iterate

#### Abstraction Functions

- Choose an abstract domain
- Use Counter-Example Guided Abstraction Refinement (CEGAR)

# **Counterexample-Guided Abstraction Refinement is Inductive Synthesis**



# CEGAR = Counterexample-Guided Inductive Synthesis (of Abstractions)



# Lazy SMT Solving performs Inductive Synthesis (of Lemmas)



# CEGAR = CEGIS = Learning from (Counter)Examples

What's different from std learning theory: Learning Algorithm and Verification Oracle are typically general Solvers



# **Comparison\***

| Feature                    | Formal Inductive<br>Synthesis | Machine<br>Learning              |
|----------------------------|-------------------------------|----------------------------------|
| Concept/Program<br>Classes | Programmable,<br>Complex      | Fixed, Simple                    |
| Learning<br>Algorithms     | General-Purpose<br>Solvers    | Specialized                      |
| Learning Criteria          | Exact, w/ Formal<br>Spec      | Approximate, w/<br>Cost Function |
| Oracle-Guidance            | Common (can control Oracle)   | Rare (black-box oracles)         |

\* Between typical inductive synthesizer and machine learning algo

# **Active Learning: Key Elements**



 Search Strategy: How to search the space of candidate concepts?
Example Selection: Which examples to learn from?

## **Counterexample-Guidance:** A Successful Paradigm for Synthesis and Learning

- Active Learning from Queries and Counterexamples [Angluin '87a,'87b]
- Counterexample-Guided Abstraction-Refinement (CEGAR) [Clarke et al., '00]
- Counterexample-Guided Inductive Synthesis (CEGIS) [Solar-Lezama et al., '06]
- All rely heavily on Verification Oracle

Choice of Verification Oracle determines Sample Complexity of Learning

 # of examples (counterexamples) needed to converge (learn a concept)

## Questions

#### Fix a concept class

abstract domain, template, etc.

- 1. Suppose Countexample-Guided Learning is guaranteed to terminate. What are lower/upper bounds on sample complexity?
- 2. Suppose termination is not guaranteed. Is it possible for the procedure to terminate on some problems with one verifier but not another?
  - Learner (synthesizer) just needs to be consistent wth examples; e.g. SMT solver
  - Sensitivity to type of counterexample

# Problem 1: Bounds on Sample Complexity

# **Teaching Dimension**

[Goldman & Kearns, '90, '95]

The minimum number of (labeled) examples a teacher must reveal to uniquely identify any concept from a concept class

## **Teaching a 2-dimensional Box**



## **Teaching Dimension**

The minimum number of (labeled) examples a teacher must reveal to uniquely identify any concept from a concept class

 $TD(C) = \max_{c \in C} \min_{\sigma \in \Sigma(c)} |\sigma|$ 

where

- *C* is a concept class
- c is a concept
- $\sigma$  is a teaching sequence (uniquely identifies concept *c*)
- $\Sigma$  is the set of all teaching sequences

# Theorem: *TD*(*C*) is lower bound on Sample Complexity

- Counterexample-Guided Learning: TD gives a lower bound on #counterexamples needed to learn any concept
- Finite TD is necessary for termination

- If C is finite,  $TD(C) \leq |C|/-1$ 

- Finding Optimal Teaching Sequence is NP-hard (in size of concept class)
  - But heuristic approach works well ("learning from distinguishing inputs")
- Finite TD may not be sufficient for termination!
  - Termination may depend on verification oracle

[some results appear in Jha et al., ICSE 2010] -22-

# Problem 2: Termination of Counterexample-guided loop

# **Query Types for CEGIS**



 Finite memory vs Infinite memory

 Type of counterexample given

Concept class: Any set of recursive languages

- 24 -



# Learning $-1 \le x, y \le 1$ from Minimum Counterexamples (dist from origin)



### **Types of Counterexamples**

Assume there is a function size:  $D \rightarrow N$ 

- Maps each example x to a natural number
- Imposes total order amongst examples

■ CEGIS: Arbitrary counterexamples – Any element of f ⊕ φ

MinCEGIS: Minimal counterexamples

- A least element of  $f \oplus \phi$  according to size
- Motivated by debugging methods that seek to find small counterexamples to explain errors & repair

## **Types of Counterexamples**

Assume there is a function size:  $D \rightarrow N$ 

- CBCEGIS: Constant-bounded counterexamples (bound B)
  - An element x of  $f \oplus \phi$  s.t. size(x) < B
  - Motivation: Bounded Model Checking, Input Bounding, Context bounded testing, etc.

#### **PBCEGIS:** Positive-bounded counterexamples

- An element x of  $f \oplus \phi$  s.t. size(x) is no larger than that of any positive example seen so far
- Motivation: bug-finding methods that mutate a correct execution in order to find buggy behaviors

- 28 -

# **Summary of Results**

#### [Jha & Seshia, SYNT'14; TR'15]



## Summary

- Verification by reduction to Synthesis
- Counterexample-guided Synthesis is Inductive Learning
- Teaching Dimension relevant for analyzing counterexample-guided learning
- Termination analysis for CEGIS can be nontrivial for infinite domains (concept classes)
- Lots of scope for future work in understanding efficiency / termination behavior of inductive learners based on deductive/verification oracles