
Computing the
Littlewood-Richardson coefficients

Jean-Christophe Filliâtre and Florent Hivert

LRI / Université Paris Sud / CNRS

IFIP WG 1.9/2.15, July 2015

outline

1 what are Littlewood-Richardson coefficients

2 how do we compute them: the Littlewood-Richardson rule

3 a Coq proof of the rule (previous work by Florent Hivert)

4 an efficient program and its proof

symmetric polynomials

Definition (Symmetric polynomial)

A polynomial is symmetric if it is invariant under any permutation
of the variables: for all σ ∈ Sn,

P(x0, x1, . . . , xn−1) = P(xσ(0), xσ(1), . . . , xσ(n−1))

P(a, b, c) = a2b + a2c + b2c + ab2 + ac2 + bc2

Q(a, b, c) = 5abc + 3a2bc + 3ab2c + 3abc2

integer partitions

different ways of decomposing an integer n ∈ N as a sum:

5 = 5 = 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1

Definition

A partition of n is a non-increasing sequence
λ := (λ0 ≥ λ1 ≥ · · · ≥ λl−1 > 0) such that
n = λ0 + λ1 + · · ·+ λl−1. We pose `(λ) := l .

Young diagram of a partition:

(5, 3, 2, 2) ↔

tableau

Definition (semistandard Young tableau of shape λ)

A Young diagram of shape λ filled with integers

• non decreasing along the rows (left to right)

• strictly increasing along the columns (bottom up)

example:

3
2 3
1 2 2
0 0 1 1 2

Schur symmetric polynomials

Definition (Schur symmetric polynomial)

Given a partition λ := (λ0 ≥ λ1 ≥ · · · ≥ λl−1) with l ≤ n
(set λi := 0 for i ≥ l)

sλ(x0, . . . , xn−1) =
∑
T

x t0
0 · · · x

tn−1

n−1

where the sum is over all semistandard Young tableaux of shape λ
and ti is the number of occurrences of i in T .

example

n = 3, λ = (2, 1)

1
0 0

2
0 0

1
0 1

a2b a2c ab2

2
0 1

1
0 2

2abc

2
1 1

2
0 2

2
1 2

b2c ac2 bc2

s(2,1)(a, b, c) = a2b + ab2 + a2c + 2abc + b2c + ac2 + bc2

Littlewood-Richardson coefficients

Proposition

The family (sλ(Xn))`(λ)≤n is a (linear) basis of the ring of
symmetric polynomials on Xn.

Definition (Littlewood-Richardson coefficients)

Coefficients cνλ,µ of the expansion of the product:

sλsµ =
∑
ν

cνλ,µsν .

Fact: cνλ,µ are independent of the number of variables.

how to compute the Littlewood-Richardson coefficients

skew shapes

Definition (Skew shape)

A skew shape ν/λ is a pair of partitions such that the Young
diagram of ν contains the Young diagram of λ.

example:

(5, 4, 3, 2)/(3, 3, 1) =

skew tableau

Definition (Skew semistandard Young tableau)

A skew shape ν/λ filled with integers

• non decreasing along the rows (left to right)

• strictly increasing along the columns (bottom up)

example:

0 2
0 1

1
0 0

row reading

Definition (row reading of a tableau)

the word obtained by concatenating the rows of a skew tableau,
from top to bottom

example:

0 2
0 1

1
0 0

= 0201100

Yamanouchi words

notation: |w |x = number of occurrence of x in w .

Definition (Yamanouchi word)

A word w0, . . . ,wl−1 of integers such that for all k , i ,

|wi , . . . ,wl−1|k ≥|wi , . . . ,wl−1|k+1

Consequence: the evaluation (|w |i)i≤max(w) is a partition.

ε, 0, 00, 10, 000, 100, 010, 210,

0000, 1010, 1100, 0010, 0100, 1000, 0210, 2010, 2100, 3210, etc .

the rule

Theorem (Littlewood-Richardson rule)

cνλ,µ is the number of skew semistandard tableaux of shape ν/λ,
whose row reading is a Yamanouchi word of evaluation µ.

C 5432
331,421 = 3

1 2
0 0

1
0 0

0 2
0 1

1
0 0

0 1
0 2

1
0 0

C 7542
431,4321 = 4

2 3
1 1 2

0 1
0 0 0

2 3
0 1 2

1 1
0 0 0

1 3
0 2 2

1 1
0 0 0

0 3
1 2 2

1 1
0 0 0

C 7542
4321,431 = 4

2
1 1

0 1
0 0 0

1
1 2

0 1
0 0 0

1
0 2

1 1
0 0 0

0
1 2

1 1
0 0 0

for a proof, see Lascoux, Leclerc, and Thibon, The Plactic monoid,
in M. Lothaire, Algebraic combinatorics on words, CUP.

history

• stated (1934) by D. E. Littlewood and A. R. Richardson,
wrong proof, wrong example

• Robinson (1938), wrong completed proof

• First correct proof: Schützenberger (1977)

• Dozens of theses and papers about this proof (Zelevinsky
1981, Macdonald 1995, Gasharov 1998, Duchamp-H-Thibon
2001, van Leeuwen 2001, Stembridge 2002)

Wikipedia: The Littlewood–Richardson rule is notorious
for the number of errors that appeared prior to its complete,
published proof. Several published attempts to prove it are
incomplete, and it is particularly difficult to avoid errors when
doing hand calculations with it: even the original example in D.
E. Littlewood and A. R. Richardson (1934) contains an error.

• #-P complete (Narayanan, 2005)

applications

• multiplicity of induction or restriction of irreducible
representations of the symmetric groups

• multiplicity of the tensor product of the irreducible
representations of linear groups

• geometry: number of intersections in a Grassmanian variety,
cup product of the cohomology

• Horn problem: eigenvalues of the sum of two Hermitian
matrices

• extension of Abelian groups (Hall algebra)

• application in quantum physics (spectrum rays of the
Hydrogen atoms)

a Coq proof of the Littlewood–Richardson rule

a Coq proof of the Littlewood–Richardson rule

• author: Florent Hivert

• uses the Ssreflect extension of Coq
and the Mathematical Components libraries

• 15,000 lines of script

• available at https://github.com/hivert/Coq-Combi

https://github.com/hivert/Coq-Combi

outline of the proof

first introduce Schur functions and coefficients cνλ,µ

Schur P1 * Schur P2 =

\sum_P (Schur P) *+ LRtab_coeff P1 P2 P

then introduce tableaux, Yamanouchi words, and define

Definition LRyam_set P1 P2 P :=

[set y : yameval_finType P2 |

is_skew_reshape_tableau P P1 y].

Definition LRyam_coeff P1 P2 P :=

#|LRyam_set P1 P2 P|.

finally, prove

Theorem LR_coeff_yamP:

forall P1 P2 P, included P1 P →
LRtab_coeff P1 P2 P = LRyam_coeff P1 P2 P.

an implementation

the Coq proof also includes an implementation, i.e. a function that
uses backtracking to compute the coefficients

LRcoeff: seq nat → seq nat → seq nat → nat

it comes with a proof of correctness

Theorem LR_yamtabE:

forall P1 P2 P, included P1 P →
LRyam_coeff P1 P2 P = LRcoeff P1 P2 P.

an OCaml program

using Coq extraction mechanism, we get an OCaml code

type nat = O | S of nat

...

val lRcoeff: nat list → nat list → nat list → nat

with glue code to parse the command line, we can play with it

./lrcoeff 11 10 9 8 7 6 5 4 3 2 1 - 7 6 5 5 4 3 2 1 -

7 6 5 5 4 3 2 1

268484

efficiency

this program is rather inefficient
(2 orders of magnitude slower than the C library lrcalc)

because

• it uses unary Peano numbers for
• partitions
• tableaux indices
• tableaux values
• solution count

• it uses linear time nth/upd functions on lists everywhere

in particular, the OCaml GC is heavily solicited

an efficient program and its proof

goal

an efficient OCaml implementation using

• arrays instead of lists

• efficient arithmetic instead of type nat

• either arbitrary-precision arithmetic with GMP
• or even better machine arithmetic

we use Why3 to do this

Why3 in a nutshell

a program verifier featuring

• a first-order polymorphic logic with recursive definitions,
algebraic data types, inductive predicates

• support for many theorem provers, both automated and
interactive (Z3, Alt-Ergo, Coq, etc.)

• an ML-like programming language with behavioral
specifications, a VCgen, and an automatic translation to
OCaml

data structures

four arrays

outer (ν) 7 5 4 2

inner (λ) 4 3 1 0 (same length as outer)

eval (µ) 4 3 2 1 0 (ends with a 0 sentinel)

innev 3 1 0 0 0

a matrix for the tableau under construction

work 1
0 0 0

backtracking algorithm

count(row, idx) =
if row = length(outer) then return 1 // found one solution

if idx < 0 then return count(row + 1, ...) // move to next row

s ← 0
for v in the range of possible values for work[row, idx]
work[row, idx]← v
innev[v]← innev[v] + 1
s ← s + count(row, idx− 1) // move to next cell

innev[v]← innev[v]− 1
return s

idx

↓

row→ 1
0 0 0

proof

we prove

• termination

• absence of array access out of bounds

• absence of arithmetic overflow

• correctness: computes the Littlewood–Richardson coefficient

proof: termination

immediate: as we make progress in the tableau, the quantity

(length(outer)− row, idx)

decreases lexicographically

proof: absence of array access out of bounds

not very difficult, but requires

• the 0 sentinel in eval

• some invariants
(e.g. values in work are smaller than length(eval))

• some frame properties

proof: absence of arithmetic overflow

• with arbitrary precision arithmetic
⇒ nothing to do
⇒ but will translate to arbitrary precision arithmetic (GMP)

• with 64-bit machine arithmetic
• array indices and tableaux values indeed fit in 64 bits

(both bounded by some array length, itself a 64-bit integer)
⇒ all VCs easily discharged

• but what about the value returned (the total count)?

Peano arithmetic

to implement the counter, we use a different, abstract type of
integers, with limited operations

type peano

constant zero: peano

function succ (p:peano) : peano

compiled into OCaml’s type of 64-bit integers

see: Martin Clochard, Jean-Christophe Filliâtre, Andrei Paskevich.
How to avoid proving the absence of integer overflows. VSTTE
2015

efficiency

ν = 24, 24, 22, 20, 18, 18, 16, 16, 15, 13, 10, 8, 8, 7, 5, 5, 5, 3, 2, 1
λ = 20, 18, 18, 18, 18, 16, 15, 13, 13, 11, 10, 8, 7, 6, 5, 5, 3, 2, 2, 0
µ = 10, 8, 5, 4, 3, 2, 0

cνλ,µ = 13, 911, 775

extracted extracted from Why3 C library
from Coq ZArith machine arith lrcalc

31.6 26.7 1.18 0.35

proof of correctness

specification 1/3

predicate is_part (a: array int) =

... a is a partition ...

predicate valid_input (outer inner: array int) =

... inner and outer are partitions ... ∧

... inner is included in outer ...

predicate valid_eval (eval: array int) =

... eval is a partition ... ∧

... ends with at least a 0 ...

specification 2/3

ghost code stores solutions within a global (ghost) array s

predicate is_solution work =

...

predicate good_solutions s =

... s is sorted ... ∧

... s contains only solutions ... ∧

... s contains all solutions ...

s

...

next

specification 3/3

let lrrule (outer inner eval: array int) : int =

requires { valid_input outer inner }

requires { valid_eval eval }

requires { sum_array eval =

sum_array outer - sum_array inner }

requires { s.next = 0 }

ensures { result = s.next }

ensures { good_solutions outer inner eval s }

note: the proof is not yet completed

connection with the Coq proof

a legitimate question

are the Why3 and Coq programs computing the same thing?

Coq

algebra
cνλ,µ

⇔ combinatorics
LRcoeff

Why3

let lrrule =

. . .

OCaml OCaml

after all, we have

• distinct data structures (nats/lists vs ints/arrays)

• different specifications (partition, tableau, Yamanouchi word)

• different algorithms

the big picture

let us show the equivalence, using Coq

Coq

algebra
cνλ,µ

⇔ combinatorics
LRcoeff

Why3

let lrrule =

. . .

OCaml OCaml

all Why3 definitions are translated into Coq, automatically
(for Why3, Coq is a prover like any other)

proof of equivalence

in Coq, we define two functions part and partw to convert
partitions from one type to the other

part: array int → seq nat

partw: nat → seq nat → array int

(the first argument is the length)

proof of equivalence

Coq from Why3

inner innerpartw−→
outer outer

eval eval
part←−

inputSpec valid input

valid eval

outputSpec is solution

LRcoeff good solutions

proof of equivalence

Theorem Why3Correct:

forall innerw outerw evalw: array int,

valid_input outerw innerw →
valid_eval evalw →
sum_array evalw =

sum_array outerw - sum_array innerw →
forall s, good_solutions innerw outerw evalw s →
s.next =

LRcoeff (part innerw) (part outerw) (part evalw)

proof of equivalence

the other way round

Theorem Why3complete:

forall inner outer eval: seq nat,

inputSpec inner eval outer →
let l = max (1 + size eval)

(max (size inner) (size outer)) in

forall s,

good_solutions (partw l inner)

(partw l outer) (partw l eval) s →
s.next = LRcoeff inner outer eval

what is the TCB?

• the Coq definitions and statements

• the definition of partw

Definition partw (l: nat) (p: seq nat) : array int :=

mkseq (fun i => Posz (nth 0 p i)) l.

in particular, you don’t have to read any Why3 definition

summary

we have presented

• an efficient program to compute the Littlewood–Richardson
coefficients

• its proof of safety, including absence of arithmetic overflows

• its proof of correctness (WIP)

• its equivalence, at the specification level, with another
program already proved correct

long-term goal: have such verified software integrated in SageMath
(Florent is one of the main developers of SageMath)

	The rule

