Refining Rely/Guarantee:
a (more) algebraic presentation

Cliff Jones

Newcastle University
Joint work with lan Hayes and Rob Colvin (Queensland)

WG 1.9
Vienna
2014-07-14

Refining R/G Cliff Jones [1]

Basic Rely/Guarantee (R/G) idea (presupposed)

face interference (in specifications and design process)

pre rely

= ——

0'0 ... O—ia—i+1 o . O—jo—j+1 LY O'f
—

guar

post

assumptions pre/rely

commitments guar/post
can debate specific form of R/G conditions
many variants/applications — cf. HJJ [HJJ03, JHJO7]

Refining R/G Cliff Jones [2]

Our aim is to pull apart R/G (and maybe SL)

looking at the issues they cover (rather than the notation per se)

e instead of a fixed 5-tuple: {P,R} S {G, Q}

e separate the concepts

¢ one presentation in “refinement calculus” style [P, Q]

e also allow “framing” as in s: [s' = s — C]

e but reservation on refinement calculus presentation below
e allowguarGec,relyRec

e see [HJC14] (replaces [HJC13))

e preliminary work on SL [JHC14] (replaces [Jon12])

Refining R/G Cliff Jones [3]

Examples

guarx <x' e X =x+ I Cxi=x+1
guarx <x' e[X¥ =x+2]Cx=x+Lx=x+1
relyx=xe[x =x+1

(rely

(relyx < x' o [x+ 1 <X])

[90/\q1] E (guargg e (relyg; [go])) || (Quarg; e (rely go e [4/]))

Refining R/G Cliff Jones [4]

Some intuitive Laws

(guartrue e c) = ¢

Nested-G: (guarg; e (quarg; ec)) = (guarg; A g2 e ¢)
Intro-G: ¢ C (guargec)
Trading-G-Q: (guarg e [¢* A g]) = (guarg e [¢])

guarg e (c;d) = (quarg e c); (guarg e d)

guarge (c || d) = (guargec) || (guarg e d)

Refining R/G Cliff Jones [5]

The (actually “a”) key Law

Intro-multi-Par: Ailgi] E [li (quargr e (rely gr e [4i]))

This is symmetric (in gr) — many cases are not

Other variants include rules for two operands to ||

Refining R/G Cliff Jones [6]

Example: Prime sieve
REM(2)

| 2 3 45 6 7 8 9101112 ..

REM(3)

Refining R/G Cliff Jones [7]

Example: Prime sieve
illustrates pattern of splitting Q to (weaker) O and R

SIEVE
wr s: X-set
post s =s—C

C=Ufe|2<i< |V}
ci={i*j|2 <jn(ix)) <n)

SIEVE is satisfied by
do i = 2 to |\/n|] REM(i)

REM(i)
post s’ =5 —¢;

Refining R/G Cliff Jones [8]

Example: Concurrent prime sieve
... as a conjuring trick (with rabbits)

REM(i)

post s’ =5 —c¢;
va

SIEVE is satisfied by || REM(i)
i=2

REM(i)

rely s/ Cs

guar s — 5 Cc;As Css
post s’ Nc;={}

Refining R/G Cliff Jones [9]

Refinement calculus style development

Set s initially contains all (?) natural numbers up to some n

[ff =s—Cl=[CsAs—s CCASNC={}]
C by Intro-G
guars CsAs—s CCAsSNC={}e
[ff CsAs—s CCAsSNC={}]
C by Trading-G-Q
guars CsAs—s CCe[s'NC=1{}
C by Intro-muti-Par
guars CsAs—s CCe
(liguars’ Cserelys Cse[s'Nc;i={}])
C Nested-G
guars —s' CCAs Cse(|;relys’ Cse s Nci={1}])

Refining R/G Cliff Jones [10]

Reservations

RC is very pretty, but industrial specs are not one-liners

Refining R/G Cliff Jones [11]

Possible values

e aversion to “history” (aka “ghost”) variables [Jon10]

¢ “possible values” might offer a new concept in
specifications
e we needed something like post:x =y vV x =y
e ... but multiple changes to y possible!

e entery

Refining R/G Cliff Jones [12]

possible values

{P}x < y{x €3}
remember y is a set

The original one (in developing Simpson’s 4-slot):

post-start-Read: hold-r € fresh-w

Refining R/G Cliff Jones [13]

SIEVE again

a useful check at the beginning of REM (i) is whether i € s

but only of use if the “threads” are launched in sequence

a better check might be to test i € s frequently

but the specification here could be delicate
rely-REM 2 i ¢ s = multiples of i will be deleted
but with posvals:

post-REM 2 (Vpos €5 -i € pos) = s' Nc;={}
remember guar-REM

Refining R/G Cliff Jones [14]

possible values: good uses
y< I
) xeyll (v«
x < y could have a rely
rely:y C {1,3,4}

pre: is-odd(y)
rely:y 5 = is-odd(y)
or:

rely:Yv €y - is-odd(v)

—

rely:p((y,z))

Refining R/G Cliff Jones [15]

“Towards” reasoning about posvals

{true} whiley # 0do x < x+ 7/ od {0 €y}
{true} 1+]V 1{3sel-hds =y}

or:
guarx # x = x =y C satisifies [x €5V x = x|

with x owned:
(if y = 7 then x < false) satisfies [x = true,7 ¢ y = x = true]

Refining R/G Cliff Jones [16]

Refining R/G

FINDP

classic problem from Owicki’s thesis

illustrates preservation of a property (if it holds)
guar-invp e ¢ £ (guar(p = p’) e ¢)

(in both the sequential and concurrent development)

repeats experience that data abstraction/reification
intimately linked to R/G

and ...

Cliff Jones [17]

FINDP: [HJC14] goes through development of
with:
satp(v,t) 2t € dom (v) A p(v(t))
notp(v,s,t) & (Vi- € s @i <t = —p(v(i)))

r:relyid({v,t}) o [(f = len(v) + 1V satp(v, 1)) Anotp(v,dom(v),)]
C

var ot, et e
ot:=len(v) +1;
et:=len(v)+1;

var oc e var ec e
oc:=1; ec:=2;
while oc < of A oc < etdo while ec < ot N\ ec < etdo
ifp(v(oc)) then ot := oc ifp(v(ec)) then et :=ec
else oc:=oc + 2 else ec:=ec + 2

t:=min(ot, et)

NB tests: use shared variables

are not assumed to be executed atomically
Refining R/G Cliff Jones [18]

Other on-going work

e semantics (difficult)
e even more abstract R/G — invite lan to describe (cf. CKAs)

e data abstraction/reification is everywhere — working on
best style/fit

e review some of the older extensions to R/G
e “separation as an abstraction” — [JHC14]

Refining R/G Cliff Jones [19]

Where are we heading?

R/G has spawned a lot of ideas

2 new projects (EPSRC, ARC)
e aim: (“pull apart” R/G and SL) start from issues

separation

ownership

interference

progress

do once (cf. Linearisability (vs. splitting atoms))

e don’t take position:
“my notation (aka “hammer”) solves every problem”

e balance expressive strength/weakness against tractability

Refining R/G Cliff Jones [20]

B & B B W

=)

Refining R/G

lan J. Hayes, Cliff B. Jones, and Robert J. Colvin.

Reasoning about concurrent programs: Refining rely-guarantee thinking.
Technical Report CS-TR-1395, Newcastle University, September 2013.

lan J. Hayes, Cliff B. Jones, and Robert J. Colvin.

Laws and semantics for rely-guarantee refinement.
Technical Report CS-TR-1425, Newcastle University, July 2014.

lan Hayes, Michael Jackson, and Cliff Jones.

Determining the specification of a control system from that of its environment.
In Keijiro Araki, Stefani Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods, volume 2805 of
Lecture Notes in Computer Science, pages 154—169. Springer Verlag, 2003.

Cliff B. Jones, lan J. Hayes, and Robert J. Colvin.

Balancing expressiveness in formal approaches to concurrency.
Formal Aspects of Computing, (in press), 2014.

Cliff B. Jones, lan J. Hayes, and Michael A. Jackson.

Deriving specifications for systems that are connected to the physical world.

In Cliff B. Jones, Zhiming Liu, and Jim Woodcock, editors, Formal Methods and Hybrid Real-Time Systems:
Essays in Honour of Dines Bjerner and Zhou Chaochen on the Occasion of Their 70th Birthdays, volume
4700 of Lecture Notes in Computer Science, pages 364—-390. Springer Verlag, 2007.

C. B. Jones.

The role of auxiliary variables in the formal development of concurrent programs.
In Cliff B. Jones, A. W. Roscoe, and Kenneth Wood, editors, Reflections on the work of C.A.R. Hoare,
chapter 8, pages 167—188. Springer, 2010.

Cliff B. Jones.

Abstraction as a unifying link for formal approaches to concurrency.
In G. Eleftherakis, M. Hinchey, and M. Holcombe, editors, Software Engineering and Formal Methods,
volume 7504 of Lecture Notes in Computer Science, pages 1—15, October 2012.

Cliff Jones

[20]

