
Refining Rely/Guarantee:
a (more) algebraic presentation

Cliff Jones

Newcastle University
Joint work with Ian Hayes and Rob Colvin (Queensland)

WG 1.9
Vienna

2014-07-14

Refining R/G Cliff Jones [1]

Basic Rely/Guarantee (R/G) idea (presupposed)
face interference (in specifications and design process)

pre︷︸︸︷
σ0 · · ·

rely︷ ︸︸ ︷
σi σi+1 · · · σj σj+1︸ ︷︷ ︸

guar

· · · σf

︸ ︷︷ ︸
post

• assumptions pre/rely
• commitments guar/post
• can debate specific form of R/G conditions
• many variants/applications — cf. HJJ [HJJ03, JHJ07]

Refining R/G Cliff Jones [2]

Our aim is to pull apart R/G (and maybe SL)
looking at the issues they cover (rather than the notation per se)

• instead of a fixed 5-tuple: {P,R} S {G,Q}
• separate the concepts
• one presentation in “refinement calculus” style [P,Q]

• also allow “framing” as in s: [s′ = s− C]

• but reservation on refinement calculus presentation below
• allow guar G • c, rely R • c
• see [HJC14] (replaces [HJC13])
• preliminary work on SL [JHC14] (replaces [Jon12])

Refining R/G Cliff Jones [3]

Examples

guar x < x′ • [x′ = x + 1] v x: = x + 1

guar x < x′ • [x′ = x + 2] v x: = x + 1; x: = x + 1

(rely x = x′ • [x′ = x + 1])

(rely x < x′ • [x + 1 ≤ x′])

[q0∧q1] v (guar g0 • (rely g1 • [q0])) ‖ (guar g1 • (rely g0 • [q1]))

Refining R/G Cliff Jones [4]

Some intuitive Laws

(guar true • c) = c

Nested-G: (guar g1 • (guar g2 • c)) = (guar g1 ∧ g2 • c)

Intro-G: c v (guar g • c)

Trading-G-Q: (guar g • [g∗ ∧ q]) = (guar g • [q])

guar g • (c; d) = (guar g • c); (guar g • d)

guar g • (c ‖ d) = (guar g • c) ‖ (guar g • d)

Refining R/G Cliff Jones [5]

The (actually “a”) key Law

Intro-multi-Par: ∧i[qi] v ‖i (guar gr • (rely gr • [qi]))

This is symmetric (in gr) — many cases are not

Other variants include rules for two operands to ||

Refining R/G Cliff Jones [6]

Example: Prime sieve

1 2 3 4 5 6 7 8 9 10 11 12 ...

REM(2)

REM(3)

Refining R/G Cliff Jones [7]

Example: Prime sieve
illustrates pattern of splitting Q to (weaker) Q and R

SIEVE
wr s:X-set
post s′ = s− C

C =
⋃{ci | 2 ≤ i ≤ b√nc}

ci = {i ∗ j | 2 ≤ j ∧ (i ∗ j) ≤ n}

SIEVE is satisfied by
do i = 2 to b√nc REM(i)

REM(i)
post s′ = s− ci

Refining R/G Cliff Jones [8]

Example: Concurrent prime sieve
. . . as a conjuring trick (with rabbits)

REM(i)
post s′ = s− ci

SIEVE is satisfied by
b
√

ncn

i=2

REM(i)

REM(i)
rely s′ ⊆ s
guar s− s′ ⊆ ci ∧ s′ ⊆ s
post s′ ∩ ci = { }

Refining R/G Cliff Jones [9]

Refinement calculus style development

Set s initially contains all (?) natural numbers up to some n

[s′ = s− C] = [s′ ⊆ s ∧ s− s′ ⊆ C ∧ s′ ∩ C = { }]
v by Intro-G

guar s′ ⊆ s ∧ s− s′ ⊆ C ∧ s′ ∩ C = { } •
[s′ ⊆ s ∧ s− s′ ⊆ C ∧ s′ ∩ C = { }]

v by Trading-G-Q
guar s′ ⊆ s ∧ s− s′ ⊆ C • [s′ ∩ C = { }]

v by Intro-muti-Par
guar s′ ⊆ s ∧ s− s′ ⊆ C •

(‖i guar s′ ⊆ s • rely s′ ⊆ s • [s′ ∩ ci = { }])
v Nested-G

guar s− s′ ⊆ C ∧ s′ ⊆ s • (‖i rely s′ ⊆ s • [s′ ∩ ci = { }])

Refining R/G Cliff Jones [10]

Reservations

RC is very pretty, but industrial specs are not one-liners

Refining R/G Cliff Jones [11]

Possible values

• aversion to “history” (aka “ghost”) variables [Jon10]
• “possible values” might offer a new concept in

specifications
• we needed something like post: x = y ∨ x = y′

• . . . but multiple changes to y possible!

• enter Ûy
Refining R/G Cliff Jones [12]

possible values

{P}x← y{x ∈ Ûy}
remember Ûy is a set

The original one (in developing Simpson’s 4-slot):

post-start-Read: hold-r ∈˚�fresh-w

Refining R/G Cliff Jones [13]

SIEVE again

• a useful check at the beginning of REM(i) is whether i ∈ s
• but only of use if the “threads” are launched in sequence
• a better check might be to test i ∈ s frequently
• but the specification here could be delicate

rely-REM 4 i /∈ s⇒ multiples of i will be deleted
• but with posvals:

post-REM 4 (∀pos ∈ Ûs · i ∈ pos)⇒ s′ ∩ ci = { }
• remember guar-REM

Refining R/G Cliff Jones [14]

possible values: good uses

y← 1;
(y← 3) || x← y || (y← 4)

x← y could have a rely

rely:Ûy ⊆ {1, 3, 4}
pre: is-odd(y)
rely: y 6=↼−y ⇒ is-odd(y)

or:

rely: ∀v ∈ Ûy · is-odd(v)

rely: p((̆y, z))

Refining R/G Cliff Jones [15]

“Towards” reasoning about posvals

{true} while y 6= 0 do x← x + 1 od {0 ∈ Ûy}
{true} l← [v]y l {∃s ∈ Ûl · hd s = v}

or:
guar x 6=↼−x ⇒ x = y · C satisifies [x ∈ Ûy ∨ x =↼−x]

with x owned:
(if y = 7 then x← false) satisfies [x = true, 7 /∈ Ûy⇒ x = true]

Refining R/G Cliff Jones [16]

FINDP

• classic problem from Owicki’s thesis
• illustrates preservation of a property (if it holds)
• guar-inv p • c 4 (guar(p⇒ p′) • c)
• (in both the sequential and concurrent development)
• repeats experience that data abstraction/reification

intimately linked to R/G
• and . . .

Refining R/G Cliff Jones [17]

FINDP: [HJC14] goes through development of
with:
satp(v, t) 4 t ∈ dom (v) ∧ p(v(t))

notp(v, s, t) 4 (∀i· ∈ s • i < t⇒ ¬p(v(i)))

t: rely id({v, t}) • [(t′ = len(v)+ 1∨ satp(v, t′))∧ notp(v, dom(v), t′)]

v

Rely-guarantee refinement - July 9, 2014 47

The specification of the loop body only involves variables which are stable under interference.

v by Law 4.15 (weaken-rely)
oc, ot : rely id({oc, ot, v}) •

⇥
oc < ot, �1 ot0 � oc0 < ot � oc

⇤
C

At this stage one could use Law 7.6 (rely-uses) to introduce a “uses” clause and allow a sequential refine-
ment to be used; we follow an alternative path in order to illustrate other laws. The refinement is now
similar to that used in Sect. 3.10 but uses Law 10.2 (rely-conditional).

v if p(v(oc)) then oc, ot : rely id({oc, ot, v}) •
⇥
p(v(oc)) ^ oc < ot, �1 ot0 � oc0 < ot � oc

⇤

else oc, ot : rely id({oc, ot, v}) •
⇥¬ p(v(oc)) ^ oc < ot, �1 ot0 � oc0 < ot � oc

⇤

Finally, Law 7.7 (assignment-rely-guarantee) can be applied to each of the branches. Each assignment
ensures the guarantee invariant (min(ot, et) = len(v) + 1 _ satp(v, min(ot, et)) ^ notp(v, odds(v), oc) ^
bnd(oc, v) is maintained.

v if p(v(oc)) then ot := oc else oc := oc + 2

11.5 Collected code
The development of the “evens” branch of the parallel composition follows the same pattern as that of the
“odds” branch given above. The collected code follows.

var ot, et •
ot := len(v) + 1 ;
et := len(v) + 1 ;0
BBBB@

var oc •
oc := 1 ;
while oc < ot ^ oc < et do

if p(v(oc)) then ot := oc
else oc := oc + 2

����������

����������

var ec •
ec := 2 ;
while ec < ot ^ ec < et do

if p(v(ec)) then et := ec
else ec := ec + 2

1
CCCCA

;

t := min(ot, et)

The two branches (odds/evens) step through their respective subsets of the indices of v looking for the
first element that satisfies p. The efficiency gain over a sequential implementation comes from allowing
one of the processes to exit its loop early if the other has found an index i such that p(v(i)) that is lower
than the remaining indexes that the first process has yet to consider. The extra complications for reasoning
about this interprocess communication manifests itself particularly in the steps that introduce concurrency
and the while loop because the interference affects variables mentioned in the test of the loop.

This implementation is guaranteed to satisfy the original specification due to its use at every step of
the refinement laws. In many ways, this mirrors the development in [CJ07]. In particular, the use of
Law 6.3 (introduce-parallel-spec-weaken-relies) in Section 11.3 mirrors the main thrust of “traditional”
rely/guarantee thinking. What is novel in the new development is both the use of a guarantee invariant and
the fact that there are rules for every construct used. Moreover, because all of the results are derived from a
small number of basic lemmas, it is possible to add new styles of development without needing to go back
to the semantics.

12 Conclusions

12.1 Summary
The current paper shows how the sort of explicit reasoning about interference that underlies rely-guarantee
thinking can be recast into a refinement calculus mould. It transpires that there is a very good fit of ba-
sic objectives. This includes the simple observation that the refinement calculus also embraced relations

NB tests: use shared variables
are not assumed to be executed atomically

Refining R/G Cliff Jones [18]

Other on-going work

• semantics (difficult)
• even more abstract R/G — invite Ian to describe (cf. CKAs)
• data abstraction/reification is everywhere — working on

best style/fit
• review some of the older extensions to R/G
• “separation as an abstraction” — [JHC14]

Refining R/G Cliff Jones [19]

Where are we heading?

• R/G has spawned a lot of ideas
• 2 new projects (EPSRC, ARC)
• aim: (“pull apart” R/G and SL) start from issues

• separation
• ownership
• interference
• progress
• do once (cf. Linearisability (vs. splitting atoms))

• don’t take position:
“my notation (aka “hammer”) solves every problem”

• balance expressive strength/weakness against tractability

Refining R/G Cliff Jones [20]

Ian J. Hayes, Cliff B. Jones, and Robert J. Colvin.
Reasoning about concurrent programs: Refining rely-guarantee thinking.
Technical Report CS-TR-1395, Newcastle University, September 2013.

Ian J. Hayes, Cliff B. Jones, and Robert J. Colvin.
Laws and semantics for rely-guarantee refinement.
Technical Report CS-TR-1425, Newcastle University, July 2014.

Ian Hayes, Michael Jackson, and Cliff Jones.
Determining the specification of a control system from that of its environment.
In Keijiro Araki, Stefani Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods, volume 2805 of
Lecture Notes in Computer Science, pages 154–169. Springer Verlag, 2003.

Cliff B. Jones, Ian J. Hayes, and Robert J. Colvin.
Balancing expressiveness in formal approaches to concurrency.
Formal Aspects of Computing, (in press), 2014.

Cliff B. Jones, Ian J. Hayes, and Michael A. Jackson.
Deriving specifications for systems that are connected to the physical world.
In Cliff B. Jones, Zhiming Liu, and Jim Woodcock, editors, Formal Methods and Hybrid Real-Time Systems:
Essays in Honour of Dines Bjørner and Zhou Chaochen on the Occasion of Their 70th Birthdays, volume
4700 of Lecture Notes in Computer Science, pages 364–390. Springer Verlag, 2007.

C. B. Jones.
The role of auxiliary variables in the formal development of concurrent programs.
In Cliff B. Jones, A. W. Roscoe, and Kenneth Wood, editors, Reflections on the work of C.A.R. Hoare,
chapter 8, pages 167–188. Springer, 2010.

Cliff B. Jones.
Abstraction as a unifying link for formal approaches to concurrency.
In G. Eleftherakis, M. Hinchey, and M. Holcombe, editors, Software Engineering and Formal Methods,
volume 7504 of Lecture Notes in Computer Science, pages 1–15, October 2012.

Refining R/G Cliff Jones [20]

