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Basic Rely/Guarantee (R/G) idea (presupposed)

face interference (in specifications and design process)

pre rely

= ——

0'0 ... O—ia—i+1 o . O—jo—j+1 LY O'f
—

guar

post

assumptions pre/rely

commitments guar/post
can debate specific form of R/G conditions
many variants/applications — cf. HJJ [HJJ03, JHJO7]
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Our aim is to pull apart R/G (and maybe SL)

looking at the issues they cover (rather than the notation per se)

e instead of a fixed 5-tuple: {P,R} S {G, Q}

e separate the concepts

¢ one presentation in “refinement calculus” style [P, Q]

e also allow “framing” as in s: [s' = s — C]

e but reservation on refinement calculus presentation below
e allowguarGec,relyRec

e see [HJC14] (replaces [HJC13))

e preliminary work on SL [JHC14] (replaces [Jon12])
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Examples

guarx <x' e X =x+ I Cxi=x+1
guarx <x' e[X¥ =x+2]Cx=x+Lx=x+1
relyx=xe[x =x+1

(rely

(relyx < x' o [x+ 1 <X])

[90/\q1] E (guargg e (relyg;  [go])) || (Quarg; e (rely go e [4/]))
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Some intuitive Laws

(guartrue e c) = ¢

Nested-G: (guarg; e (quarg; ec)) = (guarg; A g2 e ¢)
Intro-G: ¢ C (guargec)
Trading-G-Q: (guarg e [¢* A g]) = (guarg e [¢])

guarg e (c;d) = (quarg e c); (guarg e d)

guarge (c || d) = (guargec) || (guarg e d)
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The (actually “a”) key Law

Intro-multi-Par: Ailgi] E [li (quargr e (rely gr e [4i]))

This is symmetric (in gr) — many cases are not

Other variants include rules for two operands to ||
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Example: Prime sieve
REM(2)

| 2 3 45 6 7 8 9101112 ..

REM(3)
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Example: Prime sieve
illustrates pattern of splitting Q to (weaker) O and R

SIEVE
wr s: X-set
post s =s—C

C=Ufe|2<i< |V}
ci={i*j|2 <jn(ix)) <n)

SIEVE is satisfied by
do i = 2 to |\/n|] REM(i)

REM(i)
post s’ =5 —¢;
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Example: Concurrent prime sieve
... as a conjuring trick (with rabbits)

REM(i)

post s’ =5 —c¢;
va

SIEVE is satisfied by || REM(i)
i=2

REM(i)

rely s/ Cs

guar s — 5 Cc;As Css
post s’ Nc;={}
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Refinement calculus style development

Set s initially contains all (?) natural numbers up to some n

[ff =s—Cl=[CsAs—s CCASNC={}]
C by Intro-G
guars CsAs—s CCAsSNC={}e
[ff CsAs—s CCAsSNC={}]
C by Trading-G-Q
guars CsAs—s CCe[s'NC=1{}
C by Intro-muti-Par
guars CsAs—s CCe
(liguars’ Cserelys Cse[s'Nc;i={}])
C Nested-G
guars —s' CCAs Cse(|;relys’ Cse s Nci={1}])
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Reservations

RC is very pretty, but industrial specs are not one-liners
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Possible values

e aversion to “history” (aka “ghost”) variables [Jon10]

¢ “possible values” might offer a new concept in
specifications
e we needed something like post:x =y vV x =y
e ... but multiple changes to y possible!

e entery
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possible values

{P}x < y{x €3}
remember y is a set

The original one (in developing Simpson’s 4-slot):

post-start-Read: hold-r € fresh-w
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SIEVE again

a useful check at the beginning of REM (i) is whether i € s

but only of use if the “threads” are launched in sequence

a better check might be to test i € s frequently

but the specification here could be delicate
rely-REM 2 i ¢ s = multiples of i will be deleted
but with posvals:

post-REM 2 (Vpos €5 -i € pos) = s' Nc;={}
remember guar-REM
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possible values: good uses
y< I
) xeyll (v«
x < y could have a rely
rely:y C {1,3,4}

pre: is-odd(y)
rely:y 5 = is-odd(y)
or:

rely:Yv €y - is-odd(v)

—

rely:p((y,z))
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“Towards” reasoning about posvals

{true} whiley # 0do x < x+ 7/ od {0 €y}
{true} 1+ ]V 1{3sel-hds =y}

or:
guarx # x = x =y C satisifies [x €5V x = x|

with x owned:
(if y = 7 then x < false) satisfies [x = true,7 ¢ y = x = true]
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Refining R/G

FINDP

classic problem from Owicki’s thesis

illustrates preservation of a property (if it holds)
guar-invp e ¢ £ (guar(p = p’) e ¢)

(in both the sequential and concurrent development)

repeats experience that data abstraction/reification
intimately linked to R/G

and ...
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FINDP: [HJC14] goes through development of
with:
satp(v,t) 2t € dom (v) A p(v(t))
notp(v,s,t) & (Vi- € s @i <t = —p(v(i)))

r:relyid({v,t}) o [(f = len(v) + 1V satp(v, 1)) Anotp(v,dom(v), )]
C

var ot, et e
ot:=len(v) +1;
et:=len(v)+1;

var oc e var ec e
oc:=1; ec:=2;
while oc < of A oc < etdo while ec < ot N\ ec < etdo
ifp(v(oc)) then ot := oc ifp(v(ec)) then et :=ec
else oc:=oc + 2 else ec:=ec + 2

t:=min(ot, et)

NB tests: use shared variables

are not assumed to be executed atomically
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Other on-going work

e semantics (difficult)
e even more abstract R/G — invite lan to describe (cf. CKAs)

e data abstraction/reification is everywhere — working on
best style/fit

e review some of the older extensions to R/G
e “separation as an abstraction” — [JHC14]
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Where are we heading?

R/G has spawned a lot of ideas

2 new projects (EPSRC, ARC)
e aim: (“pull apart” R/G and SL) start from issues

separation

ownership

interference

progress

do once (cf. Linearisability (vs. splitting atoms))

e don’t take position:
“my notation (aka “hammer”) solves every problem”

e balance expressive strength/weakness against tractability
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