
The 2014 Verified Software Competition

N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller)

Computer Science Laboratory
SRI International
Menlo Park, CA

July 15, 2014

Overview

Competitions are becoming popular as
1 Buzz-generating events
2 Long-running experiments to monitor progress
3 Mechanisms to communicate success stories to non-experts

Most competitions, e.g., CASC, SMT-COMP, SATLive, etc.,
measure performance of programs on a set of benchmark
problems.

The Verified Software Competition (VSComp) is unique in
that it measures the effectiveness with which modern
verification tools can be used to formalize and solve problems.

Like a Formula I race that measures the effectiveness of the
vehicle and the driver. (V. Klebanov)

N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller) VSComp 2014 2/22

History of VSComp

First VSComp was organized with Peter Müller at VSTTE
2010 in Edinburgh.

J-C. Filliâtre, Andrei Paskevich, and Aaron Stump organized
one in 2011.

The third one was organized by Joe Kiniry in 2013, but there
was only one (partial) submission.

At the Orlando WG 1.9 meeting, Peter Müller, Marcelo Frias,
Ernie Cohen and I volunteered to organize the 2014 event.

We decided to craft five problems spanning a range of
challenges: algorithms, heaps, debugging, and concurrency.

Need more discussion on what constitutes a useful
competition.

N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller) VSComp 2014 3/22

The 2014 VSComp

The competition took place during the weekend of June
14-15, 2014 starting at 9AM GMT on Saturday and ending at
9AM GMT on Monday.

Teams could consist of at most three members.

The test consisted of five verification problems that had to be
solved with the aid of mechanized tools.

Teams could employ multiple verification tools .

The solutions were made available for peer review at the end
of the competition.

The competition was hosted at the website vscomp.org.

N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller) VSComp 2014 4/22

vscomp.org

Problem 1: Patience Solitaire

Patience Solitaire is played by taking cards one-by-one from a
deck of cards and arranging them face up in a sequence of
stacks arranged from left to right.

The very first card from the deck is kept face up to form a
singleton stack.

Each subsequent card is placed on the leftmost stack where its
card value is no greater than the topmost card on that stack.

If there is no such stack, then a new stack is started to right
of the other stacks.

N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller) VSComp 2014 5/22

Patience Solitaire

If the input sequence is 9, 7, 10, 9, 5, 4, and 10, then the
stacks develop as 〈[9]〉

〈[7, 9]〉
〈[7, 9], [10]〉
〈[7, 9], [9, 10]〉
〈[5, 7, 9], [9, 10]〉
〈[4, 5, 7, 9], [9, 10]〉
〈[4, 5, 7, 9], [9, 10], 〈10〉〉

Verify the claim is that the number of stacks at the end of the
game is the length of the longest (strictly) increasing
subsequence in the input sequence. In the above example, the
subsequence is 7, 9, 10, i.e., the second, fourth, and last
elements of the sequence.

N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller) VSComp 2014 6/22

Problem 2: Partition Refinement

A set S can be represented by an array A of distinct elements.

A partition P of S splits S into a disjoint subsets
S0, . . . ,Sm−1.

By rearranging the array elements in A, we can maintain each
Si as a set of contiguous elements of the array A, where each
subset Si is represented by a structure pi that maintains first
and last index in A for Si .

P

3322 100 55 44 11

0 2 3 5

A

N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller) VSComp 2014 7/22

Refining a Partition

Now, given a subset X of S , we want to refine the partition
S0, . . . ,Sm−1 so that we refine each Si into two sets Si ∩ X
and Si \ X .

The program should take the set S represented by A, the
partition S0, . . . ,Sm−1 represented as indicated below, and the
set X , and return a representation of a new partition of S that
refines each Si into one or two nonempty subsets representing
Si ∩ X and Si \ X .

N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller) VSComp 2014 8/22

Partition Refinement: State

The state of the algorithm consists of

1 The array A of size N represents a set S of positive integers. The
elements in A can be rearranged as long as the set of integers is
unchanged.

2 The input partitioning set X is given as a list of positive integers.

3 The partial map D represents an “inverse” of A so that D(A(i)) = i
for 0 ≤ i < N. It is needed to determine the position in array A of a
given element of the S .

4 The partition P is an aggregate of intervals, e.g., a sequence, where
each interval p contains fields first and last representing a
contiguous segment of the array A. Each such partition p represents
the subset [[p]]A defined as
{x ∈ S |∃i : p.first ≤ i ≤ p.last : A(i) = x}. The algorithm also
adds a field p.count (with a default value of 0) that is used in
implementing the refinement algorithm.

5 A map F from the indices of A to partitions in P capturing the
relationship that index i is in partition p = P(F (i)), i.e.,
p.first ≤ i ≤ p.last.

N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller) VSComp 2014 9/22

The Partition Refinement Algorithm

refine(A,D,P,F ,X): First, successively invoke
refineOne(A,D,P,F , x) over each x in X , then apply
makeNewPartitions(P,F) to the structures P and F returned
by the first phase to spawn new intervals from the ones that
have been refined.

r e f i n e O n e (A, D, P , F , x){
l e t i = D(x) ,

p = F (i) ,
j = p . f i r s t + p . count

i n i f (i >= j){
swap (A(i) , A(j)) ;
D(A(i)) := i ;
D(A(j)) := j ;
p . count++;

}
}

N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller) VSComp 2014 10/22

Create New Partitions

makeNewPart i t ions (P , F){
f o r (j = 0 ; j < N u m P a r t i t i o n s ; j ++){

l e t p = P(j)
i n i f (p . count > 0 &&

p . count < p . l a s t − p . f i r s t + 1){
newp := new P a r t i t i o n ;
newp . f i r s t := p . f i r s t + p . count ;
newp . l a s t := p . l a s t ;
newp . count := 0 ;
P(N u m P a r t i t i o n s) := newp ;
p . l a s t := p . f i r s t + p . count − 1 ;
p . count := 0 ;
f o r (i=newp . f i r s t ; i <= newp . l a s t ; i ++){

F (i) := N u m P a r t i t i t i o n s ;
} ;
N u m P a r t i t i o n s++;

}
}

}
N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller) VSComp 2014 11/22

Example

For example, if

1 A is 〈0 7→ 22, 1 7→ 33, 2 7→ 100, 3 7→ 55, 4 7→ 44, 5 7→ 11〉
2 D is the inverse of A and is
〈100 7→ 2, 11 7→ 5, 22 7→ 0, 33 7→ 1, 44 7→ 4, 55 7→ 3〉

3 P is 〈0 7→ 〈first 7→ 0, last 7→ 2〉, 1 7→ 〈first 7→ 3, last 7→ 5〉〉
4 F is 〈0 7→ 0, 1 7→ 0, 2 7→ 0, 3 7→ 1, 4 7→ 1, 5 7→ 1〉
5 X , the input, is {11, 22, 44}.

Processing each element of the input X yields a state where A is

〈0 7→ 22, 1 7→ 11, 2 7→ 55, 3 7→ 33, 4 7→ 100, 5 7→ 44〉,

D is 〈100 7→ 4, 11 7→ 1, 22 7→ 0, 33 7→ 3, 44 7→ 5, 55 7→ 2〉, P is

〈 0 7→ 〈first 7→ 0, last 7→ 0〉,
1 7→ 〈first 7→ 1, last 7→ 2〉,
2 7→ 〈first 7→ 3, last 7→ 4〉,
3 7→ 〈first 7→ 5, last 7→ 5〉

〉
, and

F is 〈0 7→ 0, 1 7→ 1, 2 7→ 1, 3 7→ 2, 4 7→ 2, 5 7→ 3〉.
N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller) VSComp 2014 12/22

Verification Tasks

1 The algorithm always terminates returning an output state
A′,D ′,P ′,F ′.

2 The output partition given by A′,D ′,P ′,F ′ is a refinement of
the input partition A,D,P,F so that

1 For any i < N, P ′(F ′(i)) is an interval containing i .
2 For any p′ in P ′, there exists a p in P such that

[[p′]]A′ = [[p]]A ∩ X or [[p′]]A′ = [[p]]A \ X

N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller) VSComp 2014 13/22

Problem 3: A Lock-free Log-based Set Algorithm

Given an implementation of lock-free set maintenance for
ThreadCnt number of threads.
Data structures are

atomic<i n t > l o g [s i z e] ; // l o g o f o p e r a t i o n s
atomic<s i z e t > gc , t l , hd ; // i n i t i a l l y a l l z e r o
atomic<s i z e t > ht [t h r e a d C n t] ; // i n i t i a l l y a l l s i z e

log maintains the set with entries e (for adding e to the set), 0
(for unused entry), -e (for deleting e).
hd is the latest entry visible to readers.
gc is the head of the entries that have been garbage collected.
tl is the head of entries that can be marked as redundant.
ht[t] is the index where thread t blocks the garbage collector.
me() is the identity of the calling thread.

N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller) VSComp 2014 14/22

Lock-free operations

#d e f i n e doReturn (v) { ht [me ()] = s i z e ; r e t u r n v ; }
#d e f i n e advance (l o c , v a r) { l o c a l = v a r ; ht [me ()] = l o c a l ;}
#d e f i n e grab (l o c a l , v a r) { advance (l o c a l , v a r) ;

advance (l o c a l , v a r) ; }

v o i d update (i n t v a l) { // a t o m i c a l l y add or remove
// abs (v a l) from t he s e t

s i z e t h ;
grab (h , hd)
w h i l e (t r u e) {

b o o l s u c c e s s = ! cmpXchg<i n t >(l o g+h , 0 , v a l) ;
cmpXchg<s i z e t >(&hd , h , h +1);
i f (s u c c e s s) doReturn () ;
advance (h , hd) ;

}
}

N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller) VSComp 2014 15/22

More Operations

b o o l l o o k u p (i n t v a l) { // a t o m i c a l l y check i f p o s i t i v e
// i n t v a l i s i n th e s e t

s i z e t t , i ;
i n t x ;
grab (t , t l) ;
f o r (i = hd ; i != t && abs (x = h [i −1]) != v a l ; i −−);
doReturn (i != t && 0 < x) ;

}

v o i d c o l l e c t () { // t r y to c o l l e c t garbage ; s e m a n t i c no−op
s i z e t t = t l ;
f o r (s i z e t i = 0 ; i < t h r e a d C n t ; i ++)

t = min (t , ht [i]) ;
s i z e t g = gc ;
i f (g < t) cmpXchg<s i z e t >(&gc , g , t) ;

}

N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller) VSComp 2014 16/22

Proof Obligations

Prove the program is memory-safe, i.e. no thread accesses log
entries below gc.

Define, for every state, the abstract state of the set in that
state. (You can do this using ghost variables or using an
abstraction map, or any other reasonable method.) This
abstract value should be consistent with the obvious
intentions of the problem.

Prove that lookup is linearizable, i.e. that if it returns
true/false, val was/(was not) in the abstract set at some
point between when the call started and when it returned.

N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller) VSComp 2014 17/22

Problem 4: Graph Cloning

Given graph G with nodes represented as heap-allocated objects,
each storing a natural number.
Each node contains a map from labels l to references (pointers) to
nodes.
G contains an edge from n1 to n2 with label l if and only if n1’s
map maps l to n2 as shown

p u b l i c c l a s s Node {
Map<I n t e g e r , Node> edges ;
i n t v a l u e ; // a n a t u r a l number

p u b l i c Node (i n t v a l u e) {
edges = new HashMap<I n t e g e r , Node >() ;

t h i s . v a l u e = v a l u e ;
}
. . .

}

N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller) VSComp 2014 18/22

Tasks

Implement a copy method that takes a node and copies the graph
structure reachable from that node.
Prove the following properties of your copy method:

1 Provided that the argument node is non-null, the method will
not cause a run-time errors including null-pointer
dereferencing and precondition violations.

2 The method terminates for all non-null inputs.

3 The result of the method and all objects reachable from it are
fresh, that is, are allocated and have not been allocated in the
pre-state of the method.

4 The method has no observable side effects, that is, does not
modify or de-allocate any object that was allocated in the
pre-state.

5 For any valid call to n.copy(), the subgraph reachable from
the n before the call is isomorphic to the subgraph reachable
from the result after the call.

N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller) VSComp 2014 19/22

More tasks

Implement an eval method that takes a non-null node and a finite
sequence of integers (labels) and returns an integer so that if there
are suitable edges for all labels in the sequence, eval returns the
natural number stored in the final node; otherwise, it returns -1.
You should prove the following properties of your eval method:

1 Provided that the arguments are non-null, the method will not
cause a run-time error (as defined in the previous task).

2 The method terminates for all non-null inputs (assuming the
label sequence is finite).

3 The method satisfies the functional specification given above.

4 For all non-null nodes n and sequences path, n. eval (path)
and n.copy(). eval (path) yield the same result.

N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller) VSComp 2014 20/22

Problem 5: Binomial Heaps

Given classes BinomialHeap and BinomialHeapNode modeling
binomial heaps and defining a faulty extractMin that does not
preserve the class invariant

1 Find and describe the above-mentioned fault.

2 Provide an input binomial heap that exercises this fault, and
describe the technique used to find the input (automated
techniques are preferred to human inspection).

3 Provide a correct version of method extractMin.

4 Provide a suitable class invariant.

5 Verify that method extractMin indeed preserves the provided
class invariant or at least a meaningful subset of properties
from the class invariant.

N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller) VSComp 2014 21/22

Teams

Cha-cha-cha (Maria Christakis, Rustan Leino, Dan Rosen +
Dafny): 1, 2, 4

IncreMentally Challenged (Nadia Polikarpova, Julian
Tschannen, Scott West + Dafny): 1, 2, 4

ProofInUse (David Mentre, Claude Marche, Yannick Moy +
Why3 + Spark 2014): 1, 2

SPARK 2014 (Johannes Kanig, Julien Thierry, Zhi Zhang +
Coq + Spark 2014): 1, 2

Team KIV (Gidon Ernst, Jrg Pfhler, Bogdan Tofan + KIF): 1,
2, 4

VerCors (Stefan Blom, Saeed Darbari + Blom’s verification
tool): 1

VeriFast (Bart Jacobs + VeriFast): 3, 4

Viorel Prioteasa (Viorel Proteasa + Isabelle): 2, 4

N. Shankar (with Ernie Cohen, Marcelo Frias, and Peter Müller) VSComp 2014 22/22

