
§1 1

1. Hash tables for hash consing.
The technique is described in this paper: Sylvain Conchon and Jean-Christophe FilliÃtre.

Type-Safe Modular Hash-Consing. In ACM SIGPLAN Workshop on ML, Portland, Oregon,
September 2006. https://www.lri.fr/ filliatr/ftp/publis/hash-consing2.pdf

Note: a different, more elaborated hash-consing library can be found in Why3 sources at
http://why3.lri.fr/

Hash consed values are of the following type hash consed . The field tag contains a unique
integer (for values hash consed with the same table). The field hkey contains the hash key of
the value (without modulo) for possible use in other hash tables (and internally when hash
consing tables are resized). The field node contains the value itself.

Hash consing tables are using weak pointers, so that values that are no more referenced
from anywhere else can be erased by the GC.

type +α hash consed = private {
hkey : int ;
tag : int ;
node : α }

2. Generic part, using ocaml generic equality and hash function.

type α t

val create : int → α t
(∗* create n creates an empty table of initial size n. The table will grow as needed. ∗)

val clear : α t → unit
(∗* Removes all elements from the table. ∗)

val hashcons : α t → α → α hash consed
(∗* hashcons t n hash-cons the value n using table t i.e. returns any existing value in t

equal to n, if any; otherwise, allocates a new one hash-consed value of node n and returns
it. As a consequence the returned value is physically equal to any equal value already hash-
consed using table t . ∗)
val iter : (α hash consed → unit) → α t → unit

(∗* iter f t iterates f over all elements of t . ∗)
val stats : α t → int × int × int × int × int × int

(∗* Return statistics on the table. The numbers are, in order: table length, number of
entries, sum of bucket lengths, smallest bucket length, median bucket length, biggest bucket
length. ∗)

3. Functorial interface.



§3 2

module type HashedType =
sig
type t
val equal : t → t → bool
val hash : t → int

end

module type S =
sig
type key
type t
val create : int → t
val clear : t → unit
val hashcons : t → key → key hash consed
val iter : (key hash consed → unit) → t → unit
val stats : t → int × int × int × int × int × int

end

module Make(H : HashedType) : (S with type key = H .t)


