Interface for module Ptset

1. Sets of integers implemented as Patricia trees. The following signature is exactly Set. S with type elt $=$ int, with the same specifications. This is a purely functional datastructure. The performances are similar to those of the standard library's module Set. The representation is unique and thus structural comparison can be performed on Patricia trees.
include Set. S with type elt $=$ int
2. Warning: min_elt and max_elt are linear w.r.t. the size of the set. In other words, \min _elt t is barely more efficient than fold $\min t($ choose $t)$.
3. Additional functions not appearing in the signature Set.S from ocaml standard library. intersect $u v$ determines if sets u and v have a non-empty intersection.
val intersect : $t \rightarrow t \rightarrow$ bool
4. Big-endian Patricia trees
module Big : sig
include Set.S with type elt $=$ int
val intersect $: t \rightarrow t \rightarrow$ bool
end
5. Big-endian Patricia trees with non-negative elements. Changes: - add and singleton raise Invalid_arg if a negative element is given - mem is slightly faster (the Patricia tree is now a search tree) - min_elt and max_elt are now $\mathrm{O}(\log (\mathrm{N}))$ - elements returns a list with elements in ascending order
```
module BigPos : sig
    include Set. \(S\) with type elt \(=\) int
    val intersect \(: t \rightarrow t \rightarrow\) bool
end
```


Module Ptset

6. Sets of integers implemented as Patricia trees, following Chris Okasaki and Andrew Gill's paper Fast Mergeable Integer Maps (http://www.cs.columbia.edu/~cdo/papers.html\#m198maps). Patricia trees provide faster operations than standard library's module Set, and especially very fast union, subset, inter and diff operations.
7. The idea behind Patricia trees is to build a trie on the binary digits of the elements, and to compact the representation by branching only one the relevant bits (i.e. the ones for which there is at least on element in each subtree). We implement here little-endian Patricia trees: bits are processed from least-significant to most-significant. The trie is implemented by the following type t. Empty stands for the empty trie, and Leaf k for the singleton k. (Note that k is the actual element.) Branch (m, p, l, r) represents a branching, where p is the prefix (from the root of the trie) and m is the branching bit (a power of 2). l and r contain the subsets for which the branching bit is respectively 0 and 1. Invariant: the trees l and r are not empty.
```
type t=
    | Empty
    | Leaf of int
    | Branch of int }\times\mathrm{ int }\timest\times
```

8. Example: the representation of the set $\{1,4,5\}$ is
```
Branch (0, 1, Leaf 4, Branch (1, 4, Leaf 1, Leaf 5))
```

The first branching bit is the bit 0 (and the corresponding prefix is 0_{2}, not of use here), with $\{4\}$ on the left and $\{1,5\}$ on the right. Then the right subtree branches on bit 2 (and so has a branching value of $2^{2}=4$), with prefix $01_{2}=1$.
9. Empty set and singletons.
let empty $=$ Empty
let $i s_{\text {_ empty }}=$ function Empty \rightarrow true $\mid \quad \rightarrow$ false
let singleton $k=$ Leaf k
10. Testing the occurrence of a value is similar to the search in a binary search tree, where the branching bit is used to select the appropriate subtree.
let zero_bit $k m=(k$ land $m) \equiv 0$
let rec mem $k=$ function
\mid Empty \rightarrow false
| Leaf $j \rightarrow k \equiv j$
$\mid \operatorname{Branch}(-, m, l, r) \rightarrow$ mem k (if zero_bit $k m$ then l else r)
let find $k s=$ if mem $k s$ then k else raise Not_found
11. The following operation join will be used in both insertion and union. Given two non-empty trees $t 0$ and $t 1$ with longest common prefixes $p 0$ and $p 1$ respectively, which are supposed to disagree, it creates the union of $t 0$ and $t 1$. For this, it computes the first bit m
where $p 0$ and $p 1$ disagree and create a branching node on that bit. Depending on the value of that bit in $p 0$, $t 0$ will be the left subtree and $t 1$ the right one, or the converse. Computing the first branching bit of $p 0$ and $p 1$ uses a nice property of twos-complement representation of integers.

```
let lowest_bit x = x land (-x)
let branching_bit p0 p1 = lowest_bit (p0 Ixor p1)
let mask pm=p land (m-1)
let join (p0,t0, p1,t1) =
    let m = branching_bit p0 p1 in
    if zero_bit p0 m}\mathrm{ then
        Branch (mask p0 m, m, t0, t1)
    else
        Branch (mask p0 m, m, t1, t0)
```

12. Then the insertion of value k in set t is easily implemented using join. Insertion in a singleton is just the identity or a call to join, depending on the value of k. When inserting in a branching tree, we first check if the value to insert k matches the prefix p : if not, join will take care of creating the above branching; if so, we just insert k in the appropriate subtree, depending of the branching bit.
```
let match_prefix \(k\) p \(m=(\) mask \(k m) \equiv p\)
let \(a d d k t=\)
    let rec ins \(=\) function
        \(\mid\) Empty \(\rightarrow\) Leaf \(k\)
        L Leaf \(j\) as \(t \rightarrow\)
            if \(j \equiv k\) then \(t\) else join \((k\), Leaf \(k, j, t)\)
        | Branch ( \(p, m, t 0, t 1\) ) as \(t \rightarrow\)
            if match_prefix \(k p m\) then
                if zero_bit \(k m\) then
                    Branch ( \(p\), m, ins t0, t1)
                else
                    Branch ( \(p, m\), t0, ins t1)
                else
                        join ( \(k\), Leaf \(k, p, t\) )
    in
    ins \(t\)
let of_list \(=\) List.fold_left (fun \(s x \rightarrow a d d x\) s) empty
```

13. The code to remove an element is basically similar to the code of insertion. But since
we have to maintain the invariant that both subtrees of a Branch node are non-empty, we use here the "smart constructor" branch instead of Branch.
```
let branch \(=\) function
    \(\mid(-,-\), Empty, \(t) \rightarrow t\)
    \(\mid(-,-, t\), Empty \() \rightarrow t\)
    \(\mid(p, m, t 0, t 1) \rightarrow \operatorname{Branch}(p, m, t 0, t 1)\)
let remove \(k t=\)
    let rec \(r m v=\) function
        \(\mid\) Empty \(\rightarrow\) Empty
        |Leaf \(j\) as \(t \rightarrow\) if \(k \equiv j\) then Empty else \(t\)
        | Branch ( \(p, m, t 0, t 1\) ) as \(t \rightarrow\)
            if match_prefix \(k p m\) then
                if zero_bit \(k m\) then
                    branch ( \(p, m\), rmv t0, t1)
                else
                        branch ( \(p, m, t 0, r m v t 1\) )
            else
                \(t\)
    in
```

 \(r m v t\)
 14. One nice property of Patricia trees is to support a fast union operation (and also fast subset, difference and intersection operations). When merging two branching trees we examine the following four cases: (1) the trees have exactly the same prefix; $(2 / 3)$ one prefix contains the other one; and (4) the prefixes disagree. In cases (1), (2) and (3) the recursion is immediate; in case (4) the function join creates the appropriate branching.

When comparing branching bits, one has to be careful with the leftmost bit (which is negative), so we introduce function unsigned_lt below.

```
let unsigned_lt \(n m=n \geq 0 \wedge(m<0 \vee n<m)\)
let rec merge \(=\) function
    \(\mid\) Empty, \(t \rightarrow t\)
    \(\mid t\), Empty \(\rightarrow t\)
    \(\mid\) Leaf \(k, t \rightarrow\) add \(k t\)
    \(\mid t\), Leaf \(k \rightarrow\) add \(k t\)
    \(\mid(\operatorname{Branch}(p, m, s 0, s 1)\) as \(s),(\operatorname{Branch}(q, n, t 0, t 1)\) as \(t) \rightarrow\)
        if \(m \equiv n \wedge\) match_prefix \(q\) p \(m\) then
            (* The trees have the same prefix. Merge the subtrees. *)
            Branch ( \(p, m\), merge \((s 0, t 0\) ), merge \((s 1, t 1)\) )
        else if unsigned_lt \(m n \wedge\) match_prefix \(q p m\) then
```

```
    (* \(q\) contains \(p\). Merge \(t\) with a subtree of \(s . *\) )
    if zero_bit \(q m\) then
    Branch ( \(p, m\), merge \((s 0, t), s 1)\)
    else
    Branch ( \(p, m\), s0, merge \((s 1, t)\) )
else if unsigned_lt \(n m \wedge\) match_prefix \(p q n\) then
    (* \(p\) contains \(q\). Merge \(s\) with a subtree of \(t . *\) )
    if zero_bit \(p n\) then
        Branch ( \(q, n\), merge \((s, t 0), t 1\) )
    else
        Branch ( \(q, n\), t0, merge \((s, t 1)\) )
else
    (* The prefixes disagree. \(*\) )
    join ( \(p, s, q, t\) )
let union \(s t=\) merge \((s, t)\)
```

15. When checking if $s 1$ is a subset of $s 2$ only two of the above four cases are relevant: when the prefixes are the same and when the prefix of $s 1$ contains the one of $s 2$, and then the recursion is obvious. In the other two cases, the result is false.
```
let rec subset s1 s2 \(=\operatorname{match}(s 1, s 2)\) with
    | Empty, _ \(\rightarrow\) true
    \(\mid\) _, Empty \(\rightarrow\) false
    | Leaf k1, _ \(\rightarrow\) mem k1 s2
    | Branch _, Leaf _ \(\rightarrow\) false
    | Branch ( \(p 1, m 1, l 1, r 1\) ), Branch ( \(p 2, m 2,12, r 2\) ) \(\rightarrow\)
        if \(m 1 \equiv m 2 \wedge p 1 \equiv p 2\) then
            subset l1 l2 \(\wedge\) subset r1 r2
        else if unsigned_lt m2 m1 ^ match_prefix p1 p2 m2 then
            if zero_bit p1 m2 then
                subset l1 l2 \(\wedge\) subset r1 l2
            else
            subset l1 r2 \(\wedge\) subset r1 r2
        else
            false
```

16. To compute the intersection and the difference of two sets, we still examine the same four cases as in merge. The recursion is then obvious.
```
let rec inter s1 s2 \(=\) match \((s 1, s 2)\) with
    \(\mid\) Empty, _ \(\rightarrow\) Empty
    \(\mid-\) Empty \(\rightarrow\) Empty
    | Leaf k1, _ \(\rightarrow\) if mem k1 s2 then s1 else Empty
    \(\mid \quad\), Leaf \(k 2 \rightarrow\) if mem k2 s1 then s2 else Empty
    Branch ( \(p 1, m 1, l 1, r 1\) ), Branch ( \(p 2, m 2,12, r 2\) ) \(\rightarrow\)
        if \(m 1 \equiv m 2 \wedge p 1 \equiv p 2\) then
            merge (inter l1 l2, inter r1 r2)
        else if unsigned_lt m1 m2 \(\wedge\) match_prefix p2 p1 m1 then
            inter (if zero_bit p2 \(m 1\) then \(l 1\) else r1) s2
        else if unsigned_lt m2 m1 \(\wedge\) match_prefix p1 p2 m2 then
            inter s1 (if zero_bit p1 m2 then 12 else r2)
        else
            Empty
let rec diff s1 \(s 2=\) match \((s 1, s 2)\) with
    \(\mid\) Empty, _ \(\rightarrow\) Empty
    \(\mid\) _, Empty \(\rightarrow\) s1
    | Leaf k1, _ \(\rightarrow\) if mem k1 s2 then Empty else s1
    \(\mid \quad\) _, Leaf k2 \(\rightarrow\) remove k2 s1
    Branch ( \(p 1, m 1, l 1, r 1\) ), Branch ( \(p 2, m 2,12, r 2\) ) \(\rightarrow\)
        if \(m 1 \equiv m 2 \wedge p 1 \equiv p 2\) then
            merge (diff l1 l2, diff r1 r2)
        else if unsigned_lt m1 m2 \(\wedge\) match_prefix p2 p1 m1 then
            if zero_bit p2 m1 then
                    merge (diff l1 s2, r1)
            else
            merge (l1, diff r1 s2)
        else if unsigned_lt m2 m1 ^ match_prefix p1 p2 m2 then
            if zero_bit p1 m2 then diff s1 l2 else diff s1 r2
        else
            s1
```

17. All the following operations (cardinal, iter, fold, for_all, exists, filter, partition, choose, elements) are implemented as for any other kind of binary trees.
let rec cardinal $=$ function
\mid Empty $\rightarrow 0$
| Leaf _ $\rightarrow 1$
\mid Branch $(-,,, t 0, t 1) \rightarrow$ cardinal $t 0+$ cardinal t1
let rec iter $f=$ function
\mid Empty \rightarrow ()
| Leaf $k \rightarrow f k$
$\mid \operatorname{Branch}\left(-,{ }_{-}, t 0, t 1\right) \rightarrow \operatorname{iter} f t 0 ;$ iter $f t 1$
let rec fold $f s$ accu $=$ match s with
\mid Empty \rightarrow accu
| Leaf $k \rightarrow f k$ accu
\mid Branch (,- , $, t 0, t 1$) \rightarrow fold f t0 (fold f t1 accu)
let rec for_all $p=$ function
\mid Empty \rightarrow true
| Leaf $k \rightarrow p k$
\mid Branch $\left({ }_{-},{ }_{-}, t 0, t 1\right) \rightarrow$ for_all pt0 \wedge for_all $p t 1$
let rec exists $p=$ function
| Empty \rightarrow false
| Leaf $k \rightarrow p k$
\mid Branch $\left({ }_{-},{ }_{-}, t 0, t 1\right) \rightarrow$ exists p t0 \vee exists p t1
let rec filter $p r=$ function
\mid Empty \rightarrow Empty
| Leaf k as $t \rightarrow$ if $p r k$ then t else Empty
Branch ($p, m, t 0, t 1$) \rightarrow branch (p, m, filter pr t0, filter pr t1)
let partition $p s=$
let rec part $(t, f$ as acc) $=$ function
\mid Empty \rightarrow acc
| Leaf $k \rightarrow$ if $p k$ then (add $k t, f)$ else $(t, a d d k f)$
\mid Branch $\left(-,{ }_{-}, t 0, t 1\right) \rightarrow$ part (part acc t0) t1
in
part (Empty, Empty) s
let rec choose $=$ function
\mid Empty \rightarrow raise Not_found
| Leaf $k \rightarrow k$
\mid Branch (-, _, t0, _) \rightarrow choose t0 (* we know that t0 is non-empty *)
let elements $s=$
let rec elements_aux acc $=$ function
\mid Empty \rightarrow acc
\mid Leaf $k \rightarrow k::$ acc
\mid Branch $\left(-,{ }_{-}, l, r\right) \rightarrow$ elements_aux (elements_aux acc l) r
in
(* unfortunately there is no easy way to get the elements in ascending order with little-
```
endian Patricia trees *)
    List.sort Pervasives.compare (elements_aux [] s)
let split x s =
    let coll k (l, b,r) =
        if k<x then add kl, b,r
        else if }k>x\mathrm{ then l,b,add kr
        else l, true, r
    in
    fold coll s (Empty, false, Empty)
```

18. There is no way to give an efficient implementation of min_elt and max_elt, as with binary search trees. The following implementation is a traversal of all elements, barely more efficient than fold min t (choose t) (resp. fold $\max t$ (choose t)). Note that we use the fact that there is no constructor Empty under Branch and therefore always a minimal (resp. maximal) element there.
```
let rec min_elt \(=\) function
    | Empty \(\rightarrow\) raise Not_found
    | Leaf \(k \rightarrow k\)
    \(\mid \operatorname{Branch}(-,, s, t) \rightarrow \min (\) min_elt \(s)(\) min_elt \(t)\)
let rec max_elt \(=\) function
    | Empty \(\rightarrow\) raise Not_found
    | Leaf \(k \rightarrow k\)
    \(\mid \operatorname{Branch}\left({ }_{-},{ }_{\mathrm{L}}, s, t\right) \rightarrow \max (\) max_elt \()(\) max_elt \(t)\)
```

19. Another nice property of Patricia trees is to be independent of the order of insertion. As a consequence, two Patricia trees have the same elements if and only if they are structurally equal.
```
let equal \(=(=)\)
let compare \(=\) compare
```

20. Additional functions w.r.t to Set.S.
```
let rec intersect s1 s2 = match (s1,s2) with
    | Empty, _ -> false
    | _, Empty }->\mathrm{ false
    Leaf k1, _ }->\mathrm{ mem k1 s2
    | _, Leaf k2 -> mem k2 s1
    | Branch (p1,m1,l1,r1), Branch (p2,m2, l2, r2) }
        if m1 \equivm2 ^ p1 \equivp2 then
```

intersect l1 l2 \vee intersect r1 r2 else if unsigned_lt m1 m2 \wedge match_prefix p2 p1 m1 then intersect (if zero_bit p2 m1 then l1 else r1) s2 else if unsigned_lt m2 m1 \wedge match_prefix p1 p2 m2 then intersect s1 (if zero_bit p1 m2 then l2 else r2)
else
false
21. Big-endian Patricia trees
module Big = struct
type elt $=$ int
type $t_{-}=t$
type $t=t_{-}$
let empty $=$ Empty
let $i s_{-}$empty $=$function Empty \rightarrow true $\mid \quad \rightarrow$ false
let singleton $k=$ Leaf k
let zero_bit $k m=(k$ land $m) \equiv 0$
let rec mem $k=$ function
\mid Empty \rightarrow false
\mid Leaf $j \rightarrow k \equiv j$
\mid Branch ($, ~ m, l, r) \rightarrow$ mem k (if zero_bit $k m$ then l else r)
let find $k s=$ if mem $k s$ then k else raise Not_found
let mask $k m=(k$ lor $(m-1))$ land (lnot m)
we first write a naive implementation of highest_bit only has to work for bytes
let naive_highest_bit $x=$
assert ($x<256$);
let rec loop $i=$
if $i=0$ then 1 else if x |sr $i=1$ then $1 \mathbf{I s |} i$ else loop $(i-1)$
in
loop 7
then we build a table giving the highest bit for bytes
let hbit $=$ Array.init 256 naive_highest_bit
to determine the highest bit of x we split it into bytes
let highest_bit_32 $x=$ let $n=x$ Isr 24 in if $n \not \equiv 0$ then hbit.(n) Isl 24 else let $n=x$ Isr 16 in if $n \not \equiv 0$ then hbit.(n) Isl 16 else let $n=x$ Isr 8 in if $n \not \equiv 0$ then hbit.(n) Isl 8 else hbit. (x)
let highest_bit_64 $x=$ let $n=x$ Isr 32 in if $n \not \equiv 0$ then (highest_bit_32 n) Isl 32 else highest_bit_32 x
let highest_bit $=$ match Sys.word_size with

```
        | 32 -> highest_bit_32
    | 64 -> highest_bit_64
    | _ -> assert false
```

let branching_bit p0 p1 = highest_bit (p0 |xor p1)
let $\operatorname{join}(p 0, t 0, p 1, t 1)=$
let $m=$ branching_bit p0 p1 $(* \operatorname{EXP}(\mathrm{mt} 0)(\mathrm{mt} 1) *)$ in
if zero_bit p0 m then
Branch (mask p0 m, m, t0, t1)
else
Branch (mask p0 m, m, t1, t0)
let match_prefix $k p m=($ mask $k m) \equiv p$
let add $k t=$
let rec ins $=$ function
\mid Empty \rightarrow Leaf k
| Leaf j as $t \rightarrow$
if $j \equiv k$ then t else join (k, Leaf k, j, t)
$\mid \operatorname{Branch}(p, m, t 0, t 1)$ as $t \rightarrow$
if match_prefix $k p m$ then
if zero_bit $k m$ then
Branch (p, m, ins t0, t1)
else
Branch (p, m, t0, ins t1)
else
join (k, Leaf k, p, t)
in
ins t
let $o f_{-} l i s t=$ List.fold_left (fun $s x \rightarrow$ add x s) empty

```
let remove k t=
    let rec rmv = function
        Empty }->\mathrm{ Empty
        L Leaf j as t -> if k\equivj then Empty else t
        | Branch ( }p,m,t0,t1) as t
            if match_prefix k pm}\mathrm{ then
                    if zero_bit k m}\mathrm{ then
                        branch (p, m, rmv t0, t1)
                    else
                            branch (p,m,t0,rmv t1)
                else
                    t
    in
    rmv t
let rec merge = function
    |mpty, t -> t
    | t, Empty }->
    Leaf k, t -> add k t
    | t, Leaf k -> add kt
    | (Branch (p,m,s0,s1) as s),( Branch (q,n,t0,t1) as t) }
        if m \equivn ^ match_prefix q p m then
            (* The trees have the same prefix. Merge the subtrees. *)
            Branch (p,m, merge (s0,t0), merge (s1,t1))
            else if unsigned_lt n m ^ match_prefix q p m then
                    (* q contains p. Merge t with a subtree of s.*)
                    if zero_bit q m}\mathrm{ then
                    Branch (p,m, merge (s0,t), s1)
                    else
                    Branch (p,m, s0, merge (s1,t))
            else if unsigned_lt m n ^ match_prefix p q n then
                    (* p contains q. Merge s with a subtree of t.*)
                    if zero_bit p n then
                    Branch (q, n, merge (s,t0), t1)
            else
                    Branch (q, n, t0, merge (s,t1))
        else
            (* The prefixes disagree. *)
            join (p,s,q, t)
let union s t = merge (s,t)
```

```
let rec subset s1 s2 \(=\) match \((s 1, s 2)\) with
    | Empty, _ \(\rightarrow\) true
    \(\left.\right|_{-,}\)Empty \(\rightarrow\) false
    | Leaf k1, _ \(\rightarrow\) mem k1 s2
    | Branch _, Leaf _ \(\rightarrow\) false
    | Branch ( \(p 1, m 1, l 1, r 1\) ), Branch \((p 2, m 2, l 2, r 2) \rightarrow\)
        if \(m 1 \equiv m 2 \wedge p 1 \equiv p 2\) then
            subset l1 l2 \(\wedge\) subset r1 r2
        else if unsigned_lt m1 m2 \(\wedge\) match_prefix p1 p2 m2 then
            if zero_bit p1 m2 then
                subset l1 l2 \(\wedge\) subset r1 l2
            else
                subset l1 r2 \(\wedge\) subset r1 r2
                else
                    false
```

let rec inter s1 s2 $=$ match $(s 1, s 2)$ with
\mid Empty, _ \rightarrow Empty
\mid _, Empty \rightarrow Empty
Leaf $k 1, \quad \rightarrow$ if mem $k 1$ s2 then s1 else Empty
${ }_{-}$, Leaf $k 2 \rightarrow$ if mem $k 2$ s1 then s2 else Empty
Branch ($p 1, m 1, l 1, r 1$), Branch ($p 2, m 2,12, r 2$) \rightarrow
if $m 1 \equiv m 2 \wedge p 1 \equiv p 2$ then
merge (inter l1 l2, inter r1 r2)
else if unsigned_lt m2 m1 ^ match_prefix p2 p1 m1 then
inter (if zero_bit p2 $m 1$ then $l 1$ else $r 1$) $s 2$
else if unsigned_lt m1 m2 \wedge match_prefix p1 p2 m2 then
inter s1 (if zero_bit p1 m2 then 12 else r2)
else
Empty
let rec diff s1 s2 $=$ match $(s 1, s \mathcal{Q})$ with
\mid Empty, _ \rightarrow Empty
\mid-, Empty \rightarrow s1
Leaf k1, _ \rightarrow if mem k1 s2 then Empty else s1
-, Leaf $k 2 \rightarrow$ remove $k 2$ s1
Branch ($p 1, m 1, l 1, r 1$), Branch ($p 2, m 2,12, r 2$) \rightarrow
if $m 1 \equiv m 2 \wedge p 1 \equiv p 2$ then
merge (diff l1 l2, diff r1 r2)
else if unsigned_lt m2 m1 \wedge match_prefix p2 p1 m1 then
if zero_bit p2 m1 then

```
        merge (diff l1 s2, r1)
    else
        merge (l1, diff r1 s2)
else if unsigned_lt m1 m2 ^ match_prefix p1 p2 m2 then
    if zero_bit p1 m2 then diff s1 l2 else diff s1 r2
else
    s1
```

same implementation as for little-endian Patricia trees
let cardinal $=$ cardinal
let iter $=$ iter
let fold $=$ fold
let for_all $=$ for_all
let exists $=$ exists
let filter $=$ filter
let partition $p s=$ let rec $\operatorname{part}(t, f$ as $a c c)=$ function
\mid Empty \rightarrow acc
| Leaf $k \rightarrow$ if $p k$ then (add $k t, f)$ else $(t, a d d k f)$
$\mid \operatorname{Branch}\left(-,{ }_{-}, t 0, t 1\right) \rightarrow \operatorname{part}($ part acc t0) t1
in
part (Empty, Empty) s
let choose $=$ choose
let elements $s=$
let rec elements_aux acc = function
\mid Empty \rightarrow acc
| Leaf $k \rightarrow k::$ acc
\mid Branch (_, _, l, r) \rightarrow elements_aux (elements_aux acc r) l
in
(* we still have to sort because of possible negative elements *)
List.sort Pervasives.compare (elements_aux [] s)
let split x s =
let coll $k(l, b, r)=$
if $k<x$ then add $k l, b, r$
else if $k>x$ then l, b, add $k r$
else l, true, r
in
fold coll s (Empty, false, Empty)
could be slightly improved (when we now that a branch contains only positive or only negative integers)

```
    let min_elt \(=\) min_elt
    let max_elt \(=\) max_elt
    let equal \(=(=)\)
    let compare \(=\) compare
    let make l = List.fold_right add l empty
    let rec intersect s1 s2 \(=\) match \((s 1, s 2)\) with
    \(\mid\) Empty, _ \(\rightarrow\) false
    \(\left.\right|_{-,}\)Empty \(\rightarrow\) false
    | Leaf k1, _ \(\rightarrow\) mem k1 s2
    \(\mid \quad\) _, Leaf k2 \(\rightarrow\) mem k2 s1
    Branch ( \(p 1, m 1, l 1, r 1\) ), Branch \((p 2, m 2,12, r 2) \rightarrow\)
        if \(m 1 \equiv m 2 \wedge p 1 \equiv p 2\) then
            intersect l1 l2 \(\vee\) intersect r1 r2
            else if unsigned_lt m2 m1 \(\wedge\) match_prefix p2 p1 m1 then
                intersect (if zero_bit p2 m1 then l1 else r1) s2
            else if unsigned_lt m1 m2 \(\wedge\) match_prefix p1 p2 m2 then
                intersect s1 (if zero_bit p1 m2 then l2 else r2)
            else
                false
```

end
22. Big-endian Patricia trees with non-negative elements only
module BigPos $=$ struct
include Big
let singleton $x=$ if $x<0$ then invalid_arg "BigPos.singleton"; singleton x
let $a d d x s=$ if $x<0$ then invalid_arg "BigPos.add"; add $x s$
let of_list $=$ List.fold_left (fun $s x \rightarrow a d d x$ s) empty
Patricia trees are now binary search trees!
let rec mem $k=$ function
\mid Empty \rightarrow false
\mid Leaf $j \rightarrow k \equiv j$
$\mid \operatorname{Branch}\left(p,,_{,} l, r\right) \rightarrow$ if $k \leq p$ then mem $k l$ else mem $k r$

```
let rec min_elt = function
    | Empty }->\mathrm{ raise Not_found
    | Leaf k }->
    | Branch (-,_, s, _) }->\mathrm{ min_elt s
let rec max_elt = function
    | Empty }->\mathrm{ raise Not_found
    | Leaf k }->
    | Branch (-,_,_,t) -> max_elt t
we do not have to sort anymore
let elements \(s=\)
let rec elements_aux acc \(=\) function
\(\mid\) Empty \(\rightarrow\) acc
| Leaf \(k \rightarrow k::\) acc
\(\mid\) Branch \(\left(-,{ }_{-}, l, r\right) \rightarrow\) elements_aux (elements_aux acc r) \(l\)
in
elements_aux [] s
```

end
23. EXPERIMENT: Big-endian Patricia trees with swapped bit sign
module Bigo $=$ struct
include Big
swaps the sign bit
let swap $x=$ if $x<0$ then x land max_int else x lor min_int
let mem $x s=$ mem $($ swap $x) s$
let $a d d x s=a d d(\operatorname{swap} x) s$
let of_list $=$ List.fold_left (fun $s x \rightarrow$ add x s) empty
let singleton $x=$ singleton $($ swap $x)$
let remove $x s=$ remove $($ swap $x) s$
let elements $s=$ List.map swap (elements s)
let choose $s=$ swap (choose s)
let iter $f=\operatorname{iter}($ fun $x \rightarrow f($ swap $x))$
let fold $f=$ fold (fun $x a \rightarrow f(\operatorname{swap} x) a)$
let for_all $f=$ for_all $($ fun $x \rightarrow f($ swap $x))$

```
    let exists f = exists (fun x }->f(\mathrm{ swap x))
```



```
    let partition f}=\mathrm{ partition (fun x }->f(\mathrm{ swap x))
    let split x s = split (swap x) s
    let rec min_elt = function
        | Empty }->\mathrm{ raise Not_found
        | Leaf k }->\mathrm{ swap k
        | Branch (-,_, s,_) -> min_elt s
    let rec max_elt = function
        | Empty }->\mathrm{ raise Not_found
        | Leaf k }->\mathrm{ swap k
        | Branch (-,_,_,t) -> max_elt t
end
let test empty add mem =
    let seed = Random.int max_int in
    Random.init seed;
    let s=
        let rec loop s i =
            if i = 1000 then s else loop (add (Random.int max_int) s) (succ i)
        in
        loop empty 0
    in
    Random.init seed;
    for i = 0 to 999 do assert (mem (Random.int max_int) s) done
```


Interface for module Ptmap

24. Maps over integers implemented as Patricia trees. The following signature is exactly Map.S with type key $=$ int, with the same specifications.
include Map.S with type key $=$ int
25. Warning: min_binding and max_binding are linear w.r.t. the size of the map. They are barely more efficient than a straightforward implementation using fold.

Module Ptmap

26. Maps of integers implemented as Patricia trees, following Chris Okasaki and Andrew Gill's paper Fast Mergeable Integer Maps (http://www.cs.columbia.edu/~cdo/papers.html\#ml98maps). See the documentation of module Ptset which is also based on the same data-structure.
```
type key = int
type \alphat=
    | Empty
    | Leaf of int }\times
    | Branch of int }\times\mathrm{ int }\times\alphat\times\alpha
let empty = Empty
let is_empty t= t= Empty
let zero_bit k m = (k land m) \equiv0
let rec mem k = function
    | Empty }->\mathrm{ false
    |eaf (j,_) -> k \equivj
    | Branch (_, m,l,r) -> mem k (if zero_bit k m then l else r)
let rec find k = function
    | Empty }->\mathrm{ raise Not_found
    LLeaf (j,x) -> if k \equivj then x else raise Not_found
    | Branch (-, m, l, r) -> find k (if zero_bit k m then l else r)
let find_opt k m = try Some (find k m) with Not_found }->\mathrm{ None
let lowest_bit x = x land ( }-x\mathrm{ )
let branching_bit p0 p1 = lowest_bit (p0 Ixor p1)
let mask p m = p land (m-1)
let join (p0,t0, p1,t1)=
    let m = branching_bit p0 p1 in
    if zero_bit p0 m then
        Branch (mask p0 m, m, t0, t1)
    else
        Branch (mask p0 m, m, t1, t0)
let match_prefix k pm=(mask k m) \equivp
```

```
let \(a d d k x t=\)
    let rec ins \(=\) function
        \(\mid\) Empty \(\rightarrow \operatorname{Leaf}(k, x)\)
        \(\mid \operatorname{Leaf}\left(j,,_{)}\right.\)as \(t \rightarrow\)
            if \(j \equiv k\) then Leaf \((k, x)\) else join \((k\), Leaf \((k, x), j, t)\)
        | Branch ( \(p, m, t 0, t 1\) ) as \(t \rightarrow\)
            if match_prefix \(k p m\) then
                if zero_bit \(k m\) then
                    Branch ( \(p\), m, ins t0, t1)
                        else
                            Branch ( \(p\), m, t0, ins t1)
            else
                        join ( \(k, \operatorname{Leaf}(k, x), p, t)\)
    in
    ins \(t\)
let singleton \(k v=\)
    add \(k v\) empty
let branch \(=\) function
    \(\mid(-,\), Empty, \(t) \rightarrow t\)
    \(\mid(-,-, t\), Empty \() \rightarrow t\)
    \(\mid(p, m, t 0, t 1) \rightarrow\) Branch \((p, m, t 0, t 1)\)
let remove \(k t=\)
    let rec \(r m v=\) function
        \(\mid\) Empty \(\rightarrow\) Empty
        | Leaf \(\left(j,{ }_{-}\right)\)as \(t \rightarrow\) if \(k \equiv j\) then Empty else \(t\)
        | Branch ( \(p, m, t 0, t 1\) ) as \(t \rightarrow\)
            if match_prefix \(k p m\) then
                if zero_bit \(k m\) then
                    branch ( \(p, m, r m v t 0, t 1\) )
                    else
                        branch ( \(p, m, t 0, r m v t 1\) )
                else
                        \(t\)
    in
    \(r m v t\)
let rec cardinal \(=\) function
    \(\mid\) Empty \(\rightarrow 0\)
    | Leaf _ \(\rightarrow 1\)
    \(\mid\) Branch \(\left(-,{ }_{-}, t 0, t 1\right) \rightarrow\) cardinal t0 + cardinal t1
```

let rec iter $f=$ function
\mid Empty \rightarrow ()
$\mid \operatorname{Leaf}(k, x) \rightarrow f k x$
\mid Branch $\left(-,{ }_{-}, t 0, t 1\right) \rightarrow$ iter f t0; iter $f t 1$
let rec $\operatorname{map} f=$ function
\mid Empty \rightarrow Empty
$\mid \operatorname{Leaf}(k, x) \rightarrow$ Leaf $(k, f x)$
$\mid \operatorname{Branch}(p, m, t 0, t 1) \rightarrow \operatorname{Branch}(p, m, \operatorname{map} f t 0, \operatorname{map} f t 1)$
let rec mapi $f=$ function
\mid Empty \rightarrow Empty
$\mid \operatorname{Leaf}(k, x) \rightarrow \operatorname{Leaf}(k, f k x)$
$\mid \operatorname{Branch}(p, m, t 0, t 1) \rightarrow \operatorname{Branch}(p, m$, mapi $f t 0$, mapift1)
let rec fold $f s$ accu $=$ match s with
\mid Empty \rightarrow accu
$\mid \operatorname{Leaf}(k, x) \rightarrow f k x$ accu
$\mid \operatorname{Branch}\left(-,{ }_{-}, t 0, t 1\right) \rightarrow$ fold f t0 (fold f t1 accu)
let rec for_all $p=$ function
| Empty \rightarrow true
$\mid \operatorname{Leaf}(k, v) \rightarrow p k v$
\mid Branch ($\left.-,{ }_{-}, t 0, t 1\right) \rightarrow$ for_all p t0 \wedge for_all $p t 1$
let rec exists $p=$ function
\mid Empty \rightarrow false
$\mid \operatorname{Leaf}(k, v) \rightarrow p k v$
\mid Branch $\left(-,{ }_{-}, t 0, t 1\right) \rightarrow$ exists p t0 \vee exists $p t 1$
let rec filter $p r=$ function
\mid Empty \rightarrow Empty
| Leaf (k, v) as $t \rightarrow$ if $p r k v$ then t else Empty
$\mid \operatorname{Branch}(p, m, t 0, t 1) \rightarrow$ branch $(p, m$, filter pr t0, filter pr t1)
let partition $p s=$
let rec $\operatorname{part}(t, f$ as acc) $=$ function
\mid Empty \rightarrow acc
| Leaf $(k, v) \rightarrow$ if $p k v$ then (add $k v t, f)$ else $(t, a d d k v f)$
$\mid \operatorname{Branch}\left(-,{ }_{-}, t 0, t 1\right) \rightarrow \operatorname{part}($ part acc t0) t1
in
part (Empty, Empty) s

```
let rec choose = function
    | Empty }->\mathrm{ raise Not_found
    | Leaf (k,v) -> (k,v)
    | Branch (_, _, t0, _) }->\mathrm{ choose t0 (* we know that t0 is non-empty *)
let split x m =
    let coll k v (l, b, r)=
            if }k<x\mathrm{ then add kv l,b,r
            else if }k>x\mathrm{ then l, b, add kvr
            else l, Some v,r
    in
    fold coll m (empty,None, empty)
let rec min_binding = function
    | Empty }->\mathrm{ raise Not_found
    | Leaf (k,v) -> (k,v)
    | Branch (-, , s,t) }
                let (ks,_) as bs = min_binding s in
                let (kt,_) as bt = min_binding t in
                if ks < kt then bs else bt
let rec max_binding = function
    | Empty }->\mathrm{ raise Not_found
    | Leaf (k,v) -> (k,v)
    | Branch (-, , , s,t) }
                let (ks,_) as bs = max_binding s in
                let (kt,_) as bt = max_binding t in
                if ks > kt then bs else bt
let bindings m=
    fold (fun k v acc }->(k,v)::: acc) m[
```

we order constructors as Empty i Leaf ; Branch
let compare cmp t1 t2 $=$
let rec compare_aux t1 t2 $=$ match $t 1$, t2 with
| Empty, Empty $\rightarrow 0$
Empty, $\rightarrow-1$
$\mid-$, Empty $\rightarrow 1$
\mid Leaf $(k 1, x 1)$, Leaf $(k 2, x 2) \rightarrow$
let $c=$ compare $k 1 k 2$ in
if $c \neq 0$ then c else $c m p x 1 \times 2$
$\left.\right|_{\text {Leaf _, Branch }} \rightarrow-1$
| Branch _, Leaf _ $\rightarrow 1$
\mid Branch ($p 1, m 1, l 1, r 1$), Branch ($p 2$, m2, l2, r2) \rightarrow
let $c=$ compare $p 1 p 2$ in
if $c \neq 0$ then c else
let $c=$ compare $m 1 \mathrm{mz}$ in
if $c \neq 0$ then c else
let $c=$ compare_aux l1 l2 in
if $c \neq 0$ then c else
compare_aux r1 r2
in
compare_aux t1 t2
let equal eq t1 t2 $=$
let rec equal_aux t1 t2 $=$ match $t 1$, t2 with
| Empty, Empty \rightarrow true
$\mid \operatorname{Leaf}(k 1, x 1)$, Leaf $(k 2, x 2) \rightarrow k 1=k 2 \wedge e q x 1 x 2$
| Branch (p1, m1, l1, r1), Branch (p2,m2,l2, r2) \rightarrow
$p 1=p 2 \wedge m 1=m 2 \wedge$ equal_aux l1 l2 \wedge equal_aux r1 r2
$\mid-\rightarrow$ false
in
equal_aux t1 t2
let merge $f m 1 m 2=$
let $a d d m k=$ function None $\rightarrow m \mid$ Some $v \rightarrow$ add $k v m$ in ($*$ first consider all bindings in $\mathrm{m} 1 *$)
let $m=$ fold
(fun $k 1 v 1 m \rightarrow a d d m k 1(f k 1$ (Some v1) (find_opt $k 1 m 2))) m 1$ empty in ($*$ then bindings in m 2 that are not in $\mathrm{m} 1 *$)
fold (fun k2 v2 $m \rightarrow$ if mem $k 2 m 1$ then m else add $m k 2(f k 2$ None (Some v2))) m2 m

Index

add, 12, 21-23, 26, 12, 14, 17, 19, 21-23, 26
Big (module), 4, 21, 22, 23
Bigo (module), 23
BigPos (module), 5, 22
bindings, 26
branch, 13, 26, 13, 17, 21, 26
Branch, 7, 26, 11-14, 21, 26
branching_bit, 11, 21, 26, 11, 21, 26
cardinal, 17, 21, 26, 17, 21, 26
choose, 17, 21, 23, 26, 17, 21, 23, 26
compare, 19, 21, 26, 17, 19, 21, 26
diff, 16, 21, 16, 21
elements, 17, 21-23, 23
elt (type), 7, 21, 1, 4, 5
empty, 9, 21, 26, 12, 19, 21-23, 26
Empty, 7, 26, 9, 13, 16, 17, 21, 26
equal, 19, 21, 26
exists, $\mathbf{1 7}, \mathbf{2 1}, \mathbf{2 3}, \mathbf{2 6}, 17,21,23,26$
filter, 17, 21, 23, 26, 17, 21, 23, 26
find, 10, 21, 26, 26
find_opt, 26, 26
fold, 17, 21, 23, 26, 17, 21, 23, 26
for_all, 17, 21, 23, 26, 17, 21, 23, 26
hbit, 21, 21
highest_bit, 21, 21
highest_bit_32, 21, 21
highest_bit_64, 21, 21
inter, 16, 21, 16, 21
intersect, 3-5, 20, 21, 20, 21
is_empty, 9, 21, 26
iter, 17, 21, 23, 26, 17, 21, 23, 26
join, 11, 21, 26, 12, 14, 21, 26
key (type), 26, 24
Leaf, 7, 26, 9, 12, 21, 26
lowest_bit, 11, 26, 11, 26
make, 19, 21
map, 26, 23, 26
mapi, 26, 26
mask, 11, 21, 26, 11, 12, 21, 26
match_prefix, 12, 21, 26, 12-16, 20, 21, 26
max_binding, 26, 26
max_elt, 18, 21-23, 18, 21-23
meт, 10, 21-23, 26, 10, 15, 16, 20-23, 26
merge, $\mathbf{1 4}, \mathbf{2 1}, \mathbf{2 6}, 14,16,21$
min_binding, 26, 26
min_elt, 18, 21-23, 18, 21-23
naive_highest_bit, 21, 21
of_list, 12, 21-23
partition, 17, 21, 23, 26, 23
Ptmap (module), 24, $\mathbf{2 6}$
Ptset (module), 1, 6
remove, 13, 21, 23, 26, 16, 21, 23
singleton, 9, 21-23, 26, 22, 23
split, 17, 21, 23, 26, 23
subset, 15, 21, 15, 21
swap, 23, 23
t (type), 7, 21, 26, 3-5, 7, 21, 26
test, 23
t_{-}(type), 21, 21
union, 14, 21
unsigned_lt, 14, 14-16, 20, 21
zero_bit, 10, 21, 26, 10-16, 20, 21, 26

