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Interface for module Ptset

1. Sets of integers implemented as Patricia trees. The following signature is exactly
Set .S with type elt = int , with the same specifications. This is a purely functional data-
structure. The performances are similar to those of the standard library’s module Set . The
representation is unique and thus structural comparison can be performed on Patricia trees.

include Set .S with type elt = int

2. Warning: min elt and max elt are linear w.r.t. the size of the set. In other words,
min elt t is barely more efficient than fold min t (choose t).

3. Additional functions not appearing in the signature Set .S from ocaml standard library.
intersect u v determines if sets u and v have a non-empty intersection.

val intersect : t → t → bool

4. Big-endian Patricia trees

module Big : sig
include Set .S with type elt = int
val intersect : t → t → bool

end

5. Big-endian Patricia trees with non-negative elements. Changes: - add and singleton
raise Invalid arg if a negative element is given - mem is slightly faster (the Patricia tree is
now a search tree) - min elt and max elt are now O(log(N)) - elements returns a list with
elements in ascending order

module BigPos : sig
include Set .S with type elt = int
val intersect : t → t → bool

end

Module Ptset

6. Sets of integers implemented as Patricia trees, following Chris Okasaki and Andrew Gill’s
paper Fast Mergeable Integer Maps (http://www.cs.columbia.edu/~cdo/papers.html#ml98maps).
Patricia trees provide faster operations than standard library’s module Set , and especially
very fast union, subset , inter and diff operations.
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7. The idea behind Patricia trees is to build a trie on the binary digits of the elements,
and to compact the representation by branching only one the relevant bits (i.e. the ones for
which there is at least on element in each subtree). We implement here little-endian Patricia
trees: bits are processed from least-significant to most-significant. The trie is implemented
by the following type t . Empty stands for the empty trie, and Leaf k for the singleton k .
(Note that k is the actual element.) Branch (m, p, l , r) represents a branching, where p is
the prefix (from the root of the trie) and m is the branching bit (a power of 2). l and r
contain the subsets for which the branching bit is respectively 0 and 1. Invariant: the trees
l and r are not empty.

type t =
| Empty
| Leaf of int
| Branch of int × int × t × t

8. Example: the representation of the set {1, 4, 5} is

Branch (0, 1, Leaf 4, Branch (1, 4, Leaf 1, Leaf 5))

The first branching bit is the bit 0 (and the corresponding prefix is 02, not of use here), with
{4} on the left and {1, 5} on the right. Then the right subtree branches on bit 2 (and so has
a branching value of 22 = 4), with prefix 012 = 1.

9. Empty set and singletons.

let empty = Empty

let is empty = function Empty → true | → false

let singleton k = Leaf k

10. Testing the occurrence of a value is similar to the search in a binary search tree, where
the branching bit is used to select the appropriate subtree.

let zero bit k m = (k land m) ≡ 0

let rec mem k = function
| Empty → false
| Leaf j → k ≡ j
| Branch ( , m, l , r) → mem k (if zero bit k m then l else r)

let find k s = if mem k s then k else raise Not found

11. The following operation join will be used in both insertion and union. Given two
non-empty trees t0 and t1 with longest common prefixes p0 and p1 respectively, which are
supposed to disagree, it creates the union of t0 and t1 . For this, it computes the first bit m
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where p0 and p1 disagree and create a branching node on that bit. Depending on the value
of that bit in p0 , t0 will be the left subtree and t1 the right one, or the converse. Computing
the first branching bit of p0 and p1 uses a nice property of twos-complement representation
of integers.

let lowest bit x = x land (−x )

let branching bit p0 p1 = lowest bit (p0 lxor p1 )

let mask p m = p land (m − 1)

let join (p0 , t0 , p1 , t1 ) =
let m = branching bit p0 p1 in
if zero bit p0 m then

Branch (mask p0 m, m, t0 , t1 )
else

Branch (mask p0 m, m, t1 , t0 )

12. Then the insertion of value k in set t is easily implemented using join. Insertion in a
singleton is just the identity or a call to join, depending on the value of k . When inserting in
a branching tree, we first check if the value to insert k matches the prefix p: if not, join will
take care of creating the above branching; if so, we just insert k in the appropriate subtree,
depending of the branching bit.

let match prefix k p m = (mask k m) ≡ p

let add k t =
let rec ins = function
| Empty → Leaf k
| Leaf j as t →

if j ≡ k then t else join (k , Leaf k , j , t)
| Branch (p,m, t0 , t1 ) as t →

if match prefix k p m then
if zero bit k m then

Branch (p, m, ins t0 , t1 )
else

Branch (p, m, t0 , ins t1 )
else

join (k , Leaf k , p, t)
in
ins t

let of list = List .fold left (fun s x → add x s) empty

13. The code to remove an element is basically similar to the code of insertion. But since
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we have to maintain the invariant that both subtrees of a Branch node are non-empty, we
use here the “smart constructor” branch instead of Branch.

let branch = function
| ( , ,Empty , t) → t
| ( , , t ,Empty) → t
| (p,m, t0 , t1 ) → Branch (p,m, t0 , t1 )

let remove k t =
let rec rmv = function
| Empty → Empty
| Leaf j as t → if k ≡ j then Empty else t
| Branch (p,m, t0 , t1 ) as t →

if match prefix k p m then
if zero bit k m then

branch (p, m, rmv t0 , t1 )
else

branch (p, m, t0 , rmv t1 )
else

t
in
rmv t

14. One nice property of Patricia trees is to support a fast union operation (and also
fast subset, difference and intersection operations). When merging two branching trees we
examine the following four cases: (1) the trees have exactly the same prefix; (2/3) one prefix
contains the other one; and (4) the prefixes disagree. In cases (1), (2) and (3) the recursion
is immediate; in case (4) the function join creates the appropriate branching.

When comparing branching bits, one has to be careful with the leftmost bit (which is
negative), so we introduce function unsigned lt below.

let unsigned lt n m = n ≥ 0 ∧ (m < 0 ∨ n < m)

let rec merge = function
| Empty , t → t
| t , Empty → t
| Leaf k , t → add k t
| t , Leaf k → add k t
| (Branch (p,m, s0 , s1 ) as s), (Branch (q , n, t0 , t1 ) as t) →

if m ≡ n ∧ match prefix q p m then
(∗ The trees have the same prefix. Merge the subtrees. ∗)
Branch (p, m, merge (s0 , t0 ), merge (s1 , t1 ))

else if unsigned lt m n ∧ match prefix q p m then
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(∗ q contains p. Merge t with a subtree of s . ∗)
if zero bit q m then

Branch (p, m, merge (s0 , t), s1 )
else

Branch (p, m, s0 , merge (s1 , t))
else if unsigned lt n m ∧ match prefix p q n then

(∗ p contains q . Merge s with a subtree of t . ∗)
if zero bit p n then

Branch (q , n, merge (s , t0 ), t1 )
else

Branch (q , n, t0 , merge (s , t1 ))
else

(∗ The prefixes disagree. ∗)
join (p, s , q , t)

let union s t = merge (s , t)

15. When checking if s1 is a subset of s2 only two of the above four cases are relevant:
when the prefixes are the same and when the prefix of s1 contains the one of s2 , and then
the recursion is obvious. In the other two cases, the result is false.

let rec subset s1 s2 = match (s1 , s2 ) with
| Empty , → true
| , Empty → false
| Leaf k1 , → mem k1 s2
| Branch , Leaf → false
| Branch (p1 ,m1 , l1 , r1 ), Branch (p2 ,m2 , l2 , r2 ) →

if m1 ≡ m2 ∧ p1 ≡ p2 then
subset l1 l2 ∧ subset r1 r2

else if unsigned lt m2 m1 ∧ match prefix p1 p2 m2 then
if zero bit p1 m2 then

subset l1 l2 ∧ subset r1 l2
else

subset l1 r2 ∧ subset r1 r2
else
false

16. To compute the intersection and the difference of two sets, we still examine the same
four cases as in merge. The recursion is then obvious.
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let rec inter s1 s2 = match (s1 , s2 ) with
| Empty , → Empty
| , Empty → Empty
| Leaf k1 , → if mem k1 s2 then s1 else Empty
| , Leaf k2 → if mem k2 s1 then s2 else Empty
| Branch (p1 ,m1 , l1 , r1 ), Branch (p2 ,m2 , l2 , r2 ) →

if m1 ≡ m2 ∧ p1 ≡ p2 then
merge (inter l1 l2 , inter r1 r2 )

else if unsigned lt m1 m2 ∧ match prefix p2 p1 m1 then
inter (if zero bit p2 m1 then l1 else r1 ) s2

else if unsigned lt m2 m1 ∧ match prefix p1 p2 m2 then
inter s1 (if zero bit p1 m2 then l2 else r2 )

else
Empty

let rec diff s1 s2 = match (s1 , s2 ) with
| Empty , → Empty
| , Empty → s1
| Leaf k1 , → if mem k1 s2 then Empty else s1
| , Leaf k2 → remove k2 s1
| Branch (p1 ,m1 , l1 , r1 ), Branch (p2 ,m2 , l2 , r2 ) →

if m1 ≡ m2 ∧ p1 ≡ p2 then
merge (diff l1 l2 , diff r1 r2 )

else if unsigned lt m1 m2 ∧ match prefix p2 p1 m1 then
if zero bit p2 m1 then

merge (diff l1 s2 , r1 )
else

merge (l1 , diff r1 s2 )
else if unsigned lt m2 m1 ∧ match prefix p1 p2 m2 then
if zero bit p1 m2 then diff s1 l2 else diff s1 r2

else
s1

17. All the following operations (cardinal , iter , fold , for all , exists , filter , partition,
choose, elements) are implemented as for any other kind of binary trees.

let rec cardinal = function
| Empty → 0
| Leaf → 1
| Branch ( , , t0 , t1 ) → cardinal t0 + cardinal t1
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let rec iter f = function
| Empty → ()
| Leaf k → f k
| Branch ( , , t0 , t1 ) → iter f t0 ; iter f t1

let rec fold f s accu = match s with
| Empty → accu
| Leaf k → f k accu
| Branch ( , , t0 , t1 ) → fold f t0 (fold f t1 accu)

let rec for all p = function
| Empty → true
| Leaf k → p k
| Branch ( , , t0 , t1 ) → for all p t0 ∧ for all p t1

let rec exists p = function
| Empty → false
| Leaf k → p k
| Branch ( , , t0 , t1 ) → exists p t0 ∨ exists p t1

let rec filter pr = function
| Empty → Empty
| Leaf k as t → if pr k then t else Empty
| Branch (p,m, t0 , t1 ) → branch (p, m, filter pr t0 , filter pr t1 )

let partition p s =
let rec part (t , f as acc) = function
| Empty → acc
| Leaf k → if p k then (add k t , f ) else (t , add k f )
| Branch ( , , t0 , t1 ) → part (part acc t0 ) t1

in
part (Empty , Empty) s

let rec choose = function
| Empty → raise Not found
| Leaf k → k
| Branch ( , , t0 , ) → choose t0 (∗ we know that t0 is non-empty ∗)

let elements s =
let rec elements aux acc = function
| Empty → acc
| Leaf k → k :: acc
| Branch ( , , l , r) → elements aux (elements aux acc l) r

in
(∗ unfortunately there is no easy way to get the elements in ascending order with little-
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endian Patricia trees ∗)
List .sort Pervasives .compare (elements aux [ ] s)

let split x s =
let coll k (l , b, r) =
if k < x then add k l , b, r
else if k > x then l , b, add k r
else l , true, r

in
fold coll s (Empty , false, Empty)

18. There is no way to give an efficient implementation of min elt and max elt , as with
binary search trees. The following implementation is a traversal of all elements, barely more
efficient than fold min t (choose t) (resp. fold max t (choose t)). Note that we use the
fact that there is no constructor Empty under Branch and therefore always a minimal (resp.
maximal) element there.

let rec min elt = function
| Empty → raise Not found
| Leaf k → k
| Branch ( , , s , t) → min (min elt s) (min elt t)

let rec max elt = function
| Empty → raise Not found
| Leaf k → k
| Branch ( , , s , t) → max (max elt s) (max elt t)

19. Another nice property of Patricia trees is to be independent of the order of insertion. As
a consequence, two Patricia trees have the same elements if and only if they are structurally
equal.

let equal = (=)

let compare = compare

20. Additional functions w.r.t to Set .S .

let rec intersect s1 s2 = match (s1 , s2 ) with
| Empty , → false
| , Empty → false
| Leaf k1 , → mem k1 s2
| , Leaf k2 → mem k2 s1
| Branch (p1 ,m1 , l1 , r1 ), Branch (p2 ,m2 , l2 , r2 ) →

if m1 ≡ m2 ∧ p1 ≡ p2 then
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intersect l1 l2 ∨ intersect r1 r2
else if unsigned lt m1 m2 ∧ match prefix p2 p1 m1 then

intersect (if zero bit p2 m1 then l1 else r1 ) s2
else if unsigned lt m2 m1 ∧ match prefix p1 p2 m2 then

intersect s1 (if zero bit p1 m2 then l2 else r2 )
else
false

21. Big-endian Patricia trees

module Big = struct

type elt = int

type t = t
type t = t

let empty = Empty

let is empty = function Empty → true | → false

let singleton k = Leaf k

let zero bit k m = (k land m) ≡ 0

let rec mem k = function
| Empty → false
| Leaf j → k ≡ j
| Branch ( , m, l , r) → mem k (if zero bit k m then l else r)

let find k s = if mem k s then k else raise Not found

let mask k m = (k lor (m − 1)) land (lnot m)

we first write a naive implementation of highest bit only has to work for bytes

let naive highest bit x =
assert (x < 256);
let rec loop i =
if i = 0 then 1 else if x lsr i = 1 then 1 lsl i else loop (i − 1)

in
loop 7

then we build a table giving the highest bit for bytes

let hbit = Array .init 256 naive highest bit

to determine the highest bit of x we split it into bytes
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let highest bit 32 x =
let n = x lsr 24 in if n 6≡ 0 then hbit .(n) lsl 24
else let n = x lsr 16 in if n 6≡ 0 then hbit .(n) lsl 16
else let n = x lsr 8 in if n 6≡ 0 then hbit .(n) lsl 8
else hbit .(x )

let highest bit 64 x =
let n = x lsr 32 in if n 6≡ 0 then (highest bit 32 n) lsl 32
else highest bit 32 x

let highest bit = match Sys .word size with
| 32 → highest bit 32
| 64 → highest bit 64
| → assert false

let branching bit p0 p1 = highest bit (p0 lxor p1 )

let join (p0 , t0 , p1 , t1 ) =
let m = branching bit p0 p1 (∗EXP (m t0) (m t1) ∗) in

if zero bit p0 m then
Branch (mask p0 m, m, t0 , t1 )

else
Branch (mask p0 m, m, t1 , t0 )

let match prefix k p m = (mask k m) ≡ p

let add k t =
let rec ins = function
| Empty → Leaf k
| Leaf j as t →

if j ≡ k then t else join (k , Leaf k , j , t)
| Branch (p,m, t0 , t1 ) as t →

if match prefix k p m then
if zero bit k m then

Branch (p, m, ins t0 , t1 )
else

Branch (p, m, t0 , ins t1 )
else

join (k , Leaf k , p, t)
in
ins t

let of list = List .fold left (fun s x → add x s) empty
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let remove k t =
let rec rmv = function
| Empty → Empty
| Leaf j as t → if k ≡ j then Empty else t
| Branch (p,m, t0 , t1 ) as t →

if match prefix k p m then
if zero bit k m then

branch (p, m, rmv t0 , t1 )
else

branch (p, m, t0 , rmv t1 )
else

t
in
rmv t

let rec merge = function
| Empty , t → t
| t , Empty → t
| Leaf k , t → add k t
| t , Leaf k → add k t
| (Branch (p,m, s0 , s1 ) as s), (Branch (q , n, t0 , t1 ) as t) →

if m ≡ n ∧ match prefix q p m then
(∗ The trees have the same prefix. Merge the subtrees. ∗)
Branch (p, m, merge (s0 , t0 ), merge (s1 , t1 ))

else if unsigned lt n m ∧ match prefix q p m then
(∗ q contains p. Merge t with a subtree of s . ∗)
if zero bit q m then

Branch (p, m, merge (s0 , t), s1 )
else

Branch (p, m, s0 , merge (s1 , t))
else if unsigned lt m n ∧ match prefix p q n then

(∗ p contains q . Merge s with a subtree of t . ∗)
if zero bit p n then

Branch (q , n, merge (s , t0 ), t1 )
else

Branch (q , n, t0 , merge (s , t1 ))
else

(∗ The prefixes disagree. ∗)
join (p, s , q , t)

let union s t = merge (s , t)
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let rec subset s1 s2 = match (s1 , s2 ) with
| Empty , → true
| , Empty → false
| Leaf k1 , → mem k1 s2
| Branch , Leaf → false
| Branch (p1 ,m1 , l1 , r1 ), Branch (p2 ,m2 , l2 , r2 ) →

if m1 ≡ m2 ∧ p1 ≡ p2 then
subset l1 l2 ∧ subset r1 r2

else if unsigned lt m1 m2 ∧ match prefix p1 p2 m2 then
if zero bit p1 m2 then

subset l1 l2 ∧ subset r1 l2
else

subset l1 r2 ∧ subset r1 r2
else
false

let rec inter s1 s2 = match (s1 , s2 ) with
| Empty , → Empty
| , Empty → Empty
| Leaf k1 , → if mem k1 s2 then s1 else Empty
| , Leaf k2 → if mem k2 s1 then s2 else Empty
| Branch (p1 ,m1 , l1 , r1 ), Branch (p2 ,m2 , l2 , r2 ) →

if m1 ≡ m2 ∧ p1 ≡ p2 then
merge (inter l1 l2 , inter r1 r2 )

else if unsigned lt m2 m1 ∧ match prefix p2 p1 m1 then
inter (if zero bit p2 m1 then l1 else r1 ) s2

else if unsigned lt m1 m2 ∧ match prefix p1 p2 m2 then
inter s1 (if zero bit p1 m2 then l2 else r2 )

else
Empty

let rec diff s1 s2 = match (s1 , s2 ) with
| Empty , → Empty
| , Empty → s1
| Leaf k1 , → if mem k1 s2 then Empty else s1
| , Leaf k2 → remove k2 s1
| Branch (p1 ,m1 , l1 , r1 ), Branch (p2 ,m2 , l2 , r2 ) →

if m1 ≡ m2 ∧ p1 ≡ p2 then
merge (diff l1 l2 , diff r1 r2 )

else if unsigned lt m2 m1 ∧ match prefix p2 p1 m1 then
if zero bit p2 m1 then
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merge (diff l1 s2 , r1 )
else

merge (l1 , diff r1 s2 )
else if unsigned lt m1 m2 ∧ match prefix p1 p2 m2 then
if zero bit p1 m2 then diff s1 l2 else diff s1 r2

else
s1

same implementation as for little-endian Patricia trees

let cardinal = cardinal
let iter = iter
let fold = fold
let for all = for all
let exists = exists
let filter = filter

let partition p s =
let rec part (t , f as acc) = function
| Empty → acc
| Leaf k → if p k then (add k t , f ) else (t , add k f )
| Branch ( , , t0 , t1 ) → part (part acc t0 ) t1

in
part (Empty , Empty) s

let choose = choose

let elements s =
let rec elements aux acc = function
| Empty → acc
| Leaf k → k :: acc
| Branch ( , , l , r) → elements aux (elements aux acc r) l

in
(∗ we still have to sort because of possible negative elements ∗)
List .sort Pervasives .compare (elements aux [ ] s)

let split x s =
let coll k (l , b, r) =
if k < x then add k l , b, r
else if k > x then l , b, add k r
else l , true, r

in
fold coll s (Empty , false, Empty)
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could be slightly improved (when we now that a branch contains only positive or only
negative integers)

let min elt = min elt
let max elt = max elt

let equal = (=)

let compare = compare

let make l = List .fold right add l empty

let rec intersect s1 s2 = match (s1 , s2 ) with
| Empty , → false
| , Empty → false
| Leaf k1 , → mem k1 s2
| , Leaf k2 → mem k2 s1
| Branch (p1 ,m1 , l1 , r1 ), Branch (p2 ,m2 , l2 , r2 ) →

if m1 ≡ m2 ∧ p1 ≡ p2 then
intersect l1 l2 ∨ intersect r1 r2

else if unsigned lt m2 m1 ∧ match prefix p2 p1 m1 then
intersect (if zero bit p2 m1 then l1 else r1 ) s2

else if unsigned lt m1 m2 ∧ match prefix p1 p2 m2 then
intersect s1 (if zero bit p1 m2 then l2 else r2 )

else
false

end

22. Big-endian Patricia trees with non-negative elements only

module BigPos = struct

include Big

let singleton x = if x < 0 then invalid arg "BigPos.singleton"; singleton x

let add x s = if x < 0 then invalid arg "BigPos.add"; add x s

let of list = List .fold left (fun s x → add x s) empty

Patricia trees are now binary search trees!

let rec mem k = function
| Empty → false
| Leaf j → k ≡ j
| Branch (p, , l , r) → if k ≤ p then mem k l else mem k r
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let rec min elt = function
| Empty → raise Not found
| Leaf k → k
| Branch ( , , s , ) → min elt s

let rec max elt = function
| Empty → raise Not found
| Leaf k → k
| Branch ( , , , t) → max elt t

we do not have to sort anymore

let elements s =
let rec elements aux acc = function
| Empty → acc
| Leaf k → k :: acc
| Branch ( , , l , r) → elements aux (elements aux acc r) l

in
elements aux [ ] s

end

23. EXPERIMENT: Big-endian Patricia trees with swapped bit sign

module Bigo = struct

include Big

swaps the sign bit

let swap x = if x < 0 then x land max int else x lor min int

let mem x s = mem (swap x ) s

let add x s = add (swap x ) s

let of list = List .fold left (fun s x → add x s) empty

let singleton x = singleton (swap x )

let remove x s = remove (swap x ) s

let elements s = List .map swap (elements s)

let choose s = swap (choose s)

let iter f = iter (fun x → f (swap x ))

let fold f = fold (fun x a → f (swap x ) a)

let for all f = for all (fun x → f (swap x ))
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let exists f = exists (fun x → f (swap x ))

let filter f = filter (fun x → f (swap x ))

let partition f = partition (fun x → f (swap x ))

let split x s = split (swap x ) s

let rec min elt = function
| Empty → raise Not found
| Leaf k → swap k
| Branch ( , , s , ) → min elt s

let rec max elt = function
| Empty → raise Not found
| Leaf k → swap k
| Branch ( , , , t) → max elt t

end

let test empty add mem =
let seed = Random.int max int in
Random.init seed ;
let s =
let rec loop s i =
if i = 1000 then s else loop (add (Random.int max int) s) (succ i)

in
loop empty 0

in
Random.init seed ;
for i = 0 to 999 do assert (mem (Random.int max int) s) done

Interface for module Ptmap

24. Maps over integers implemented as Patricia trees. The following signature is exactly
Map.S with type key = int , with the same specifications.

include Map.S with type key = int

25. Warning: min binding and max binding are linear w.r.t. the size of the map. They
are barely more efficient than a straightforward implementation using fold .
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Module Ptmap

26. Maps of integers implemented as Patricia trees, following Chris Okasaki and Andrew
Gill’s paper Fast Mergeable Integer Maps (http://www.cs.columbia.edu/~cdo/papers.html#ml98maps).
See the documentation of module Ptset which is also based on the same data-structure.

type key = int

type α t =
| Empty
| Leaf of int × α
| Branch of int × int × α t × α t

let empty = Empty

let is empty t = t = Empty

let zero bit k m = (k land m) ≡ 0

let rec mem k = function
| Empty → false
| Leaf (j , ) → k ≡ j
| Branch ( , m, l , r) → mem k (if zero bit k m then l else r)

let rec find k = function
| Empty → raise Not found
| Leaf (j , x ) → if k ≡ j then x else raise Not found
| Branch ( , m, l , r) → find k (if zero bit k m then l else r)

let find opt k m = try Some (find k m) with Not found → None

let lowest bit x = x land (−x )

let branching bit p0 p1 = lowest bit (p0 lxor p1 )

let mask p m = p land (m − 1)

let join (p0 , t0 , p1 , t1 ) =
let m = branching bit p0 p1 in
if zero bit p0 m then

Branch (mask p0 m, m, t0 , t1 )
else

Branch (mask p0 m, m, t1 , t0 )

let match prefix k p m = (mask k m) ≡ p
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let add k x t =
let rec ins = function
| Empty → Leaf (k , x )
| Leaf (j , ) as t →

if j ≡ k then Leaf (k , x ) else join (k , Leaf (k , x ), j , t)
| Branch (p,m, t0 , t1 ) as t →

if match prefix k p m then
if zero bit k m then

Branch (p, m, ins t0 , t1 )
else

Branch (p, m, t0 , ins t1 )
else

join (k , Leaf (k , x ), p, t)
in
ins t

let singleton k v =
add k v empty

let branch = function
| ( , ,Empty , t) → t
| ( , , t ,Empty) → t
| (p,m, t0 , t1 ) → Branch (p,m, t0 , t1 )

let remove k t =
let rec rmv = function
| Empty → Empty
| Leaf (j , ) as t → if k ≡ j then Empty else t
| Branch (p,m, t0 , t1 ) as t →

if match prefix k p m then
if zero bit k m then

branch (p, m, rmv t0 , t1 )
else

branch (p, m, t0 , rmv t1 )
else

t
in
rmv t

let rec cardinal = function
| Empty → 0
| Leaf → 1
| Branch ( , , t0 , t1 ) → cardinal t0 + cardinal t1
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let rec iter f = function
| Empty → ()
| Leaf (k , x ) → f k x
| Branch ( , , t0 , t1 ) → iter f t0 ; iter f t1

let rec map f = function
| Empty → Empty
| Leaf (k , x ) → Leaf (k , f x )
| Branch (p,m, t0 , t1 ) → Branch (p, m, map f t0 , map f t1 )

let rec mapi f = function
| Empty → Empty
| Leaf (k , x ) → Leaf (k , f k x )
| Branch (p,m, t0 , t1 ) → Branch (p, m, mapi f t0 , mapi f t1 )

let rec fold f s accu = match s with
| Empty → accu
| Leaf (k , x ) → f k x accu
| Branch ( , , t0 , t1 ) → fold f t0 (fold f t1 accu)

let rec for all p = function
| Empty → true
| Leaf (k , v) → p k v
| Branch ( , , t0 , t1 ) → for all p t0 ∧ for all p t1

let rec exists p = function
| Empty → false
| Leaf (k , v) → p k v
| Branch ( , , t0 , t1 ) → exists p t0 ∨ exists p t1

let rec filter pr = function
| Empty → Empty
| Leaf (k , v) as t → if pr k v then t else Empty
| Branch (p,m, t0 , t1 ) → branch (p, m, filter pr t0 , filter pr t1 )

let partition p s =
let rec part (t , f as acc) = function
| Empty → acc
| Leaf (k , v) → if p k v then (add k v t , f ) else (t , add k v f )
| Branch ( , , t0 , t1 ) → part (part acc t0 ) t1

in
part (Empty , Empty) s
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let rec choose = function
| Empty → raise Not found
| Leaf (k , v) → (k , v)
| Branch ( , , t0 , ) → choose t0 (∗ we know that t0 is non-empty ∗)

let split x m =
let coll k v (l , b, r) =
if k < x then add k v l , b, r
else if k > x then l , b, add k v r
else l , Some v , r

in
fold coll m (empty , None, empty)

let rec min binding = function
| Empty → raise Not found
| Leaf (k , v) → (k , v)
| Branch ( , , s , t) →

let (ks , ) as bs = min binding s in
let (kt , ) as bt = min binding t in
if ks < kt then bs else bt

let rec max binding = function
| Empty → raise Not found
| Leaf (k , v) → (k , v)
| Branch ( , , s , t) →

let (ks , ) as bs = max binding s in
let (kt , ) as bt = max binding t in
if ks > kt then bs else bt

let bindings m =
fold (fun k v acc → (k , v) :: acc) m [ ]

we order constructors as Empty ¡ Leaf ¡ Branch

let compare cmp t1 t2 =
let rec compare aux t1 t2 = match t1 , t2 with
| Empty , Empty → 0
| Empty , → − 1
| , Empty → 1
| Leaf (k1 , x1 ), Leaf (k2 , x2 ) →

let c = compare k1 k2 in
if c 6= 0 then c else cmp x1 x2

| Leaf , Branch → − 1
| Branch , Leaf → 1
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| Branch (p1 ,m1 , l1 , r1 ), Branch (p2 ,m2 , l2 , r2 ) →
let c = compare p1 p2 in
if c 6= 0 then c else
let c = compare m1 m2 in
if c 6= 0 then c else
let c = compare aux l1 l2 in
if c 6= 0 then c else
compare aux r1 r2

in
compare aux t1 t2

let equal eq t1 t2 =
let rec equal aux t1 t2 = match t1 , t2 with
| Empty , Empty → true
| Leaf (k1 , x1 ), Leaf (k2 , x2 ) → k1 = k2 ∧ eq x1 x2
| Branch (p1 ,m1 , l1 , r1 ), Branch (p2 ,m2 , l2 , r2 ) →

p1 = p2 ∧ m1 = m2 ∧ equal aux l1 l2 ∧ equal aux r1 r2
| → false

in
equal aux t1 t2

let merge f m1 m2 =
let add m k = function None → m | Some v → add k v m in
(∗ first consider all bindings in m1 ∗)
let m = fold

(fun k1 v1 m → add m k1 (f k1 (Some v1 ) (find opt k1 m2 ))) m1 empty in
(∗ then bindings in m2 that are not in m1 ∗)
fold (fun k2 v2 m → if mem k2 m1 then m else add m k2 (f k2 None (Some v2 )))

m2 m
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