
Functory: Distributed Computing

for the Common Man∗

Jean-Christophe Filliâtre K. Kalyanasundaram
CNRS, LRI, Univ Paris-Sud 11, Orsay F-91405

INRIA Saclay - Île-de-France, ProVal, Orsay, F-91893

filliatr@lri.fr,kalyan.krishnamani@inria.fr

December 2, 2010

Abstract

We present Functory, a distributed computing library for functional program-
ming languages. The main features of this library include (1) a polymorphic API,
(2) several implementations to adapt to different computing environments such as
sequential, multi-core or network, and (3) a reliable fault-tolerance mechanism.
This paper describes the motivation behind this work, as well as the design and
implementation of the library. It also demonstrates the potential of the library
using realistic experiments.

1 Introduction

This paper introduces a generic library for distributed computing, targeted at functional
programming. This work was initially motivated by the computing needs that exist in our
own research team. Our applications include large-scale deductive program verification,
which amounts to checking the validity of a large number of logical formulas using a
variety of automated theorem provers [7]. Our computing infrastructure consists of a few
powerful multi-core machines (typically 8 to 16 cores) and several desktop PCs (typically
dual-core). However, for our application needs, there is no library that helps in exploiting
such a computing infrastructure in our favorite functional programming language. Hence
we designed and implemented such a library, which is the subject of this paper. This
library is implemented in OCaml, but the implementation should be straightforward in
any functional programming language.

The distributed computing library presented in this paper is not a library that helps in
parallelizing computations. Rather, it provides facilities for reliable, distributed execution
of parallelizable computations. In particular, it provides a set of APIs that allows the
execution of large-scale parallelizable computations, very relevant to our application needs

∗This research was partly supported by the French national project U3CAT (Unification of Critical

C Code Analysis Techniques, ANR-08-SEGI-021).

1

(and actually relevant to a variety of real-world applications), over multiple cores in the
same machine or over a network of machines. The most important features of our library
are the following:

• Genericity : it allows various patterns of polymorphic computations;

• Simplicity : switching between multiple cores on the same machine and a network
of machines is as simple as changing a couple of lines of code;

• Task distribution and fault-tolerance: it provides automatic task distribution and
a robust fault-tolerance mechanism, thereby relieving the user from implementing
such routines.

The application domain of such a distributed computing library is manyfold. It is worth
noting that the library is not targeted at applications running on server farms, crunching
enormous amounts of data, mostly due to the lack of data locality. It is rather more
relevant for research labs, to make use of available computing resources efficiently. It
serves a variety of users and a wide spectrum of needs, from desktop PCs to networks
of machines, and hence the title. Typical applications would involve a large number
of computation expensive tasks. This is the case in our research endeavours, that is
validating thousands of verification conditions using automated theorem provers.

The remainder of this section introduces our approach to distributed computing in a
functional programming setting.

Distributed Computing. A typical distributed computing library, as Functory, pro-
vides the following (we borrow some terminology from Google’s MapReduce [6]):

• A notion of tasks which denote atomic computations to be performed in a dis-
tributed manner;

• A set of processes (possibly executing on remote machines) called workers that
perform the tasks, producing results;

• A single process called a master which is in charge of distributing the tasks among
the workers and managing results produced by the workers.

In addition to the above, distributed computing environments also implement mecha-
nisms for fault tolerance, efficient storage, and distribution of tasks. This is required to
handle network failures that may occur, as well as to optimize the usage of machines
in the network. Another concern of importance is the transmission of messages over
the network. This requires efficient marshalling of data, that is encoding and decod-
ing of data for transmission over different computing environments. It is desirable to
maintain architecture independence while transmitting marshalled data, as machines in
a distributed computing environment often run on different hardware architectures and
make use of different software platforms. For example, machine word size or endianness
may be different across machines on the network.

2

A Functional Programming Approach. Our work was initially inspired by Google’s
MapReduce1. However, our functional programming environment allows us to be more
generic. The main idea behind our approach is that workers may implement any poly-
morphic function:

worker: α → β

where α denotes the type of tasks and β the type of results. Then the master is a function
to handle the results together with a list of initial tasks:

master: (α → β → α list) → α list → unit

The function passed to the master is applied whenever a result is available and may in
turn generate new tasks (hence the return type α list). The master is executed as long
as there are pending tasks.

Our library makes use of OCaml’s marshalling capabilities as much as possible. When-
ever master and worker executables are exactly the same, we can marshal polymorphic
values and closures. However, it is not always possible to have master and workers run-
ning the same executable. In this case, we cannot marshal closures anymore but we can
still marshal polymorphic values as long as the same version of OCaml is used to compile
master and workers. When different versions of OCaml are used, we can no longer mar-
shal values but we can still transmit strings between master and workers. Our library
adapts to all these situations, by providing several APIs.

The paper is organized as follows. In Section 2, we describe the main idea behind
the generic API, and introduce master and worker programs. In Section 3, we present
some additional functions provided by Functory, which are derived from the generic API.
Section 4 illustrates the API usage with several case studies. Section 5 delves into the
implementation details of our library, while Section 6 illustrates the potential of the pre-
sented library through experimental evaluation. We compare our approach with relevant
related work in Section 7 and outline our future work.

2 API

In this section, we describe the generic API which we shall extend with several specialized
functions in the next section. The main function in our API follows the idea sketched in
the introduction. It has the following signature:

val compute :
worker:(α → β) →
master:(α × γ → β → (α × γ) list) →
(α × γ) list → unit

Tasks are pairs, of type α × γ, where the first component is passed to the worker and
the second component is local to the master. The worker function should be pure2 and is
executed in parallel in all worker processes. The function master, on the contrary, can be
impure and is only executed in the master process. The master function typically stores

1Ironically, Google’s approach itself was inspired by functional programming primitives.
2We mean observationally pure here but we allow exceptions to be raised to signal failures.

3

results in some internal data structure. Additionally, it may produce new tasks, as a list
of type (α × γ) list, which are then appended to the current set of pending tasks. The
next section will describe the usage of this generic interface to perform the traditional
map and fold operations.

Actually, our library provides not just a single compute function as above, but instead
five different versions depending on the execution context. The first two contexts are the
following:

1. Purely sequential execution: this is mostly intended to be a reference imple-
mentation for performance comparisons, as well as for debugging;

2. Several cores on the same machine: this implementation is intended to dis-
tribute the computation over a single machine and it makes use of Unix processes;

The next three implementations are intended for distributing the computation over a
network of machines.

3. Same executable run on master and worker machines: this implementation
makes use of the ability to marshal OCaml closures and polymorphic values. De-
pending on whether the program is run as a master or as a worker, the relevant
arguments of compute are used.

4. Master and workers are different programs, compiled with the same ver-

sion of OCaml: we can no longer marshal closures but we can still marshal
polymorphic values. As a consequence, the compute function is split into two poly-
morphic functions, to implement the master and workers respectively:

val Worker.compute : (α → β) → unit → unit
val Master.compute :

(α × γ → β → (α × γ) list) →
(α × γ) list → unit

5. Master and workers are different programs, not even compiled with the

same version of OCaml: we can no longer use marshalling, so the compute
function is split into two monomorphic functions over strings:

val Worker.compute : (string → string) → unit → unit
val Master.compute :

(string × γ → string → (string × γ) list) →
(string × γ) list → unit

Our library is organized into three modules: Sequential for the pure sequential imple-
mentation, Cores for multiple cores on the same machine and Network for a network of
machines, respectively. The Network module itself is organized into three sub-modules,
called Same, Poly and Mono, corresponding to contexts 3, 4 and 5 above. The next section
presents more functions provided by Functory, which are all derived from the generic API
just presented.

4

3 Derived API

In most cases, the easiest way to parallelize an execution it to make use of operations
over lists, where processing of the list elements are done in parallel. To facilitate such a
processing, we now derive the most commonly used list operations from our generic API.

The most obvious operation is the traditional map operation over lists, that is:

val map : (α → β) → α list → β list

The next natural operation is a combination of map and fold operations, that is a function
like

val map fold : f:(α → β) → fold:(γ → β → γ) → γ → α list → γ

which, given two functions, an accumulator a and a list l, computes

fold...(fold(fold a (f x1))(f x2))...(f xn) (1)

for some permutation [x1, x2, ..., xn] of the list l. We assume that the f operations are
always performed in parallel. Regarding fold operations, we distinguish two cases:

• either fold operations are computationally less expensive than f and we perform
them locally;

• or fold operations are computationally expensive and we perform them in parallel.

We thus provide two functions map local fold and map remote fold.
In the case of map remote fold, only one fold operation can be performed at a time

(possibly in parallel with f operations), as obvious from (1). However, there are cases
where several fold operations can be performed in parallel, as early as intermediate results
of fold operations are available. This is the case when fold is an associative operation
(which implies that types β and γ are the same). Whenever fold is also commutative, we
can perform even more fold operations in parallel. Thus our API provides two functions
map fold a and map fold ac for these two particular cases. The five operations of the
derived API are summarized in Figure 1.

These five functions are actually derived from the generic API. The generality is
achieved by implementing these derivations as a functor. This functor, Derive, is param-
eterized by the compute function, as follows:

module Derive
(X : sig

val compute :
worker:(α → β) → master:(α × γ → β → (α × γ) list) →
(α × γ) list → unit

end) = struct ... end

We now explain how each function from Figure 1 is implemented using compute inside
the functor body.

5

val map :
f:(α → β) → α list → β list

val map local fold :
f:(α → β) → fold:(γ → β → γ) →
γ → α list → γ

val map remote fold :
f:(α → β) → fold:(γ → β → γ) →
γ → α list → γ

val map fold ac :
f:(α → β) → fold:(β → β → β) →
β → α list → β

val map fold a :
f:(α → β) → fold:(β → β → β) →
β → α list → β

Figure 1: Derived API.

map. Function map is easily implemented by associating an integer index with each
element (of type α) of the input list. Thus the list of tasks passed to compute is a list
of pairs of type α × int. As soon as an intermediate result is available, it is passed to
master, which stores it in a local table using the index as a key and generates no new
task. Whenever compute returns, we easily recover the output list from the values stored
in the table.

map local fold. Function map local fold is implemented using a local reference storing
the current accumulator (of type γ). As soon as an intermediate result is available, the
master combines it with the accumulator using the function fold. Whenever compute
returns, we simply return the current accumulator.

map remote fold. In this case, combining the accumulator with an intermediate result
is itself a task to be performed in parallel with f operations. Thus tasks are of two
different kinds and we use a sum type to make the distinction. When an intermediate f
result is available, the accumulator may be already in use in a fold operation. Hence we
need to store the intermediate f result in a table local to the master, to be used as soon as
the accumulator becomes available. The master function distinguishes between f and fold
results and, accordingly, updates the table and the accumulator. For a f result, either we
combine it with the accumulator in a new task or we simply store it in the local table. For
a fold result, either we simply store it into the accumulator or we immediately combine
it with a pending f result from the table. Whenever compute returns, the accumulator
must be available and we simply return it.

map fold ac. The function map fold ac is easier than the previous one, since we do not
need to store more than one intermediate result. Indeed, as soon as two intermediate re-
sults are available, we immediately combine them using a fold operation. Thus, whenever
the master receives some result, it either stores it or combines it with the accumulator,

6

depending on the availability/non availability of the accumulator. Whenever compute
returns, the accumulator must be available and we simply return it.

map fold a. Function map fold a is definitely the trickiest. Indeed, the operation being
only associative, we can only combine adjacent intermediate results. In order to perform
this, we store intermediate results in a local table according to indices of the input list.
More precisely, if we have already computed

xi ⊕ xi+1 ⊕ · · · ⊕ xj

where ⊕ denotes the fold operation, then we associate this value with indices i, j. As soon
as a result of indices k, i− 1 or j + 1, k is available, it can be combined with the result of
i, j. Whenever compute returns, the table should only contain a result corresponding to
the full input list and we simply return it.

These five functions are the most natural derivations of the compute functions. There
are obviously other possible derivations (e.g. a variant of map fold where only fold is
meaningful); in most cases, they could be derived in a straightforward way from our
generic API.

4 Illustrative Case Studies

In this section, we show how to use Functory on several case studies. We focus here on
the use of the API. Experimental results of these case studies are given in Section 6. The
source code for all these case studies is contained in the distribution, in sub-directory
tests.

4.1 Matrix Multiplication

As a first example, let us consider matrix multiplication. We assume two matrices a and
b, respectively of size n× p and p×m, given as input, as well as a matrix c of size n×m
to store the result. Assuming a being a row-matrix and b a column-matrix, the standard
matrix multiplication would be as follows:

for i = 0 to n-1 do
for j = 0 to m-1 do

for k = 0 to p-1 do
c.(i).(j) ← c.(i).(j) + a.(i).(k) × b.(j).(k)

done
done

done

and runs in O(n × p × m), assuming addition and multiplication over coefficients to be
denoted + and × respectively. An easy way to distribute this computation is obviously
to turn each computation of the inner loop over k into a task. To do so, we first prepare
the list of tasks:

let tasks =
let l = ref [] in

7

for i = 0 to n-1 do for j = 0 to m-1 do
tasks := ((a.(i), b.(j)), (i,j)) :: !tasks

done done;
!l

Each task consists of row a.(i) and column b.(j) as first tuple, together with position (i,j)
as a second tuple. The worker is receiving the first tuple as argument and computes the
dot product:

let worker (ai, bj) =
let c = ref 0 in
for k = 0 to p-1 do c := !c + ai.(k) × bj.(k) done;
!c

The master is a one line function which receives the result r from the worker and simply
stores it into c, according to the position contained in the input task. It produces no new
task.

let master (, (i,j)) r = c.(i).(j) ← r; []

Finally, the overall computation is started by invoking compute as follows:

let () = compute ˜worker ˜master !tasks

The total number of tasks is n×m.
Using the sequential implementation provided by Functory is as simple as including

the following line in the code:

open Sequential

Then the computation is roughly similar to the standard multiplication described above.
Now, let us assume we want to make use of a 4-core machine to perform the same

computation. This is achieved by just replacing the line above by

open Cores
let () = set number of cores 4

while the rest of the code remains unchanged.
Later, we may want to use a network of machines instead, for example two machines

called orcus and belzebuth with 4 and 8 cores respectively. Similar to the above, we
turn the above lines into

open Network
let () = declare workers ˜n:4 ”orcus”
let () = declare workers ˜n:8 ”belzebuth”
open Same

Here, Same is a module which is to be used when master and worker are running the same
executable. It provides a compute function which has the same signature as in modules
Sequential and Cores, so that the rest of the code remains unchanged. Master and worker
processes are distinguished at run-time using an environment variable WORKER which is
set/unset.

If we need to write two different programs for master and worker, for reason of binary
incompatibility or any other reason, the library API is providing functions to do that. If

8

master and worker are still compiled with the same version of OCaml, we use the Poly
module which provides a polymorphic API. Let us start with the worker program. It now
looks like:

open Poly
let worker (ai, bj) = ...
let () = Worker.compute worker ()

The Worker.compute function enters a loop which waits for tasks sent by the master and
returns results computed using worker. The master program is almost the same as before.
First, we replace module Same with module Poly:

open Network
let () = declare workers ˜n:4 ”orcus”
let () = declare workers ˜n:8 ”belzebuth”
open Poly

Tasks and master function are unchanged:

let tasks = ...
let master (, (i,j)) r = ...

Finally, we start the computation with Master.compute, which does not have a worker
parameter anymore:

let () = Master.compute ˜master tasks

When master and worker programs are compiled with different versions of the OCaml
compiler, our library still provides a monomorphic API over strings. As a consequence,
we need to convert tasks and results to and from strings in both master and worker. The
modified worker program then looks as follows:

open Mono
let worker (ai, bj) = ...
let worker string s = string of coeff (worker (task of string s))
let () = Worker.compute worker string ()

The master program is modified in a similar way. We simply replace Poly with Mono and
encode/decode coefficients as strings, as follows:

let tasks = ... string of task ...
let master (, (i,j)) r = c.(i).(j) ← coeff of string r; []

where string of task and task of string are user-defined functions to convert tasks to and
from strings.

4.2 N-queens

The next example is the classical N -queens problem, where we compute the total number
of ways to place N queens on a N × N chessboard in such a way no two queens attack
each other. We use a standard backtracking algorithm for this problem, which places
the queens one by one starting from the first row. Distributing the computation is thus
quite easy: we consider all possible ways to place queens on the first D rows and then

9

perform the subsequent search in parallel. Choosing D = 1 will result in exactly N tasks;
choosing D = 2 will result in N2 − 3N + 2 tasks; and so on.

Each task only consists of three integers and its result is one integer, which is the
total number of solutions for this task. We make use of function map local fold from
the derived API, where f is performing the search and fold simply adds the intermediate
results. In the network configuration, we make use of the Network.Same module, workers
and master being the same executable.

4.3 Mandelbrot Set

Drawing the Mandelbrot set is another classical example that could be distributed easily,
since the color of each point can be computed independently of the others. Let us assume
we are given the coordinates of the region to be drawn, along with the width w and height
h of the resulting image (in pixels). Let us assume the total number of tasks t ≥ 1 is
given as a parameter. It is immediate to split the image into t sub-images, each of which
is computed in parallel with and independently of the others. For instance, the image
could be split into horizontal slices or, more generally, into rectangular blocks.

Each task is thus four floating-point numbers denoting the region coordinates, together
with two integers denoting the dimensions of the sub-image to be drawn. The result of
the task is a matrix of pixels, of size (w× h)/t. For instance, drawing a 800× 600 image
using 20 tasks will result in 20 sub-images of size 176, 000 bytes each, assuming each pixel
is encoded in four bytes.

In the network configuration, we deliberately choose to have two different programs
for master and workers, using the Network.Poly module (actually, a single source code
with a command line option).

4.4 SMT Solvers

Here we demonstrate the potential of our library for our application needs as mentioned
in the introduction. In this case study, we consider 80 challenging verification conditions
(VC) obtained from the Why platform [7]. Each VC is stored in a file, which is accessible
over NFS. The purpose of the experiment is to check the validity of each VC using several
automated provers (namely Alt-Ergo, Simplify, Z3 and CVC3), which are all installed on
each of the machines in use.

The master program proceeds by reading the file names, turning them into tasks
by multiplying them by the number of provers (more than 300 tasks in total). Each
worker in turn invokes the given prover on the given file, within a timeout limit. Each
task completes with one of the four possible outcomes: valid, unknown (depending on
whether the VC is valid or undecided by the prover), timeout and failure.

The result of each computation is a pair denoting the status and the time spent in the
prover call. The master collects these results and sums up the timings for each prover
and each possible status.

10

5 Implementation Details

We now describe the implementations of the various modules introduced in Section 2.
The implementation of the Sequential module is straightforward and does not require any
explanation.

5.1 Multiple Cores

The Cores module implements the distributed computing library for multiple cores on
the same machine. It provides a function set number of cores: int → unit to indicate
the number of cores to be used. The number passed to this function may be different
from the actual number of cores in the machine; it is rather the number of tasks to be
performed simultaneously.

The Cores module is implemented with Unix processes, using the fork and wait system
calls provided by the Unix library of OCaml. The idea is pretty simple. The compute
function maintains a global table of pending tasks and keeps track of the number of idle
cores. Whenever there is a pending task and an idle core, a new sub-process is created
using Unix.fork; once completed, the sub-process marshals the result into a local file. The
main process maintains a table mapping each sub-process ID to the input task and the
local file name. It waits for any completed sub-process using Unix.wait and recovers the
result from the local file. Then function master is applied, which may generate new tasks.
The main loop can be depicted in the following way:

while pending tasks ∨ pending sub-processes
while pending tasks ∧ idle cores

create new sub-process for some task
wait for any completed sub-process

push new tasks generated by master

We also have an alternative implementation using Unix pipes instead of local files.
The scheduling of tasks to the different cores is left to the operating system, through

Unix.fork. Thus it may be the case that two tasks are executed on the same core, even
if the declared number of cores is less or equal than the actual number of cores on the
machine.

5.2 Network of Machines

The Network module implements the distributed computing library for a network of ma-
chines. It provides a function declare workers: n:int → string → unit to fill a table of
worker machines.

The Network module is based on a traditional TCP-based client/server architecture,
where each worker is a server and the master is the client of each worker. The main
execution loop is similar to the one in the Cores module, where distant processes on
remote machines correspond to sub-processes and idle cores are the idle cores of remote
workers. The master is purely sequential. In particular, when running the user master
function, it is not capable of performing any task-related computation. This is not an
issue, as we assume the master function not to be time-consuming. The worker, on the

11

other hand, forks a new process to execute the task and hence can communicate with the
master during its computation. We subsequently describe issues of message transfer and
fault tolerance.

5.2.1 Protocol

Messages sent from master to workers could be any of the following kinds:

Assign(id:int, f:string, x:string) This message assigns a new task to the worker, the
task being identified by the unique integer id. The task to be performed is given by
strings f and x, which are interpreted depending on the context.

Kill(id:int) This message tells the worker to kill the task identified by id.

Stop This message informs the worker about completion of the computation, so that it
may choose to exit.

Ping This message is used to check if the worker is still alive, expecting a Pong message
from the worker in return.

Messages sent by workers could be any of the following kinds:

Pong This message is an acknowledgment for a Ping message from the master.

Completed(id:int, s:string) This message indicates the completion of a task identified
by id, with result s.

Aborted(id:int) This message informs the master that the task identified by id is aborted,
either as a response to a Kill message or because of a worker malfunction.

Our implementation of the protocol works across different architectures, so that master
and workers could be run on completely different platforms w.r.t. endianness, version of
OCaml and operating system.

5.2.2 Network Sub-modules

As mentioned in Section 2, the Network module actually provides three different imple-
mentations, according to three different execution scenarios. There are provided in three
sub-modules, as described below.

Same. This module is used when master and workers are running the same executable.
The master and workers have to be differentiated in some manner. We use an environment
variable WORKER for this purpose. When set, it indicates that the executable acts as a
worker. At run-time, a worker immediately enters a loop waiting for tasks from the
master, without even getting into the user code. As explained in Section 2, the master
function has the following signature.

val compute :
worker:(α → β) →
master:(α × γ → β → (α × γ) list) → (α × γ) list → unit

12

The master uses marshalling to send both a closure of type α → β and a task of type α
to the worker. The resulting strings are passed as argument f and x in message Assign.
Similarly, the worker uses marshalling to send back the result of the computation of type
β, which is the argument s in message Completed.

Though the ability to run the same executable helps a lot in deploying the program in
different machines, it comes at a small price. Since the worker is not getting into the user
code, closures which are transmitted from the master cannot refer to global variables in
the user code. Indeed, the initialization code for these global variables is never reached
on the worker side. For instance, the Mandelbrot set example could be written as follows:

let max iterations = 200
let worker (xmi, xma, ymi, yma, w, h) =

... draw sub-image using max iterations ...

That is, the global function worker makes use of the global variable max iterations. The
worker gets the function to compute from the master, namely the closure corresponding
to function worker in that case, but on the worker side the initialization of max iterations
is never executed.

One obvious solution is not to use global variables in the worker code. This is
not always possible, though. To overcome this, the Same sub-module also provides a
Worker.compute function to start the worker loop manually from the user code. This
way, it can be started at any point, in particular after the initialization of the required
global variables. Master and worker are still running the same executable, but are distin-
guished using a user-defined way (command-line argument, environment variable, etc.).

There are situations where it is not possible to run the same executable for master
and workers. For instance, architectures or operating systems could be different across
the network. For that reason, the Network module provides two other implementations.

Poly. When master and workers are compiled with the same version of OCaml, we
can no longer marshal closures but we can still marshal polymorphic values. Indeed,
an interesting property of marshalling in OCaml is to be fully architecture-independent,
as long as a single version of OCaml is used. It is worth pointing out that absence of
marshaled closures now enables the use of two different programs for master and workers.
This is not mandatory, though, since master and workers could still be distinguished at
run-time as in the previous case.

On the worker side, the main loop is started manually using Worker.compute. The
computation to be performed on each task is given as an argument to this function. It
thus looks as follows:

Worker.compute : (α → β) → unit → unit

On the master side, the compute function is simpler than in the previous case, as it has
one argument less, and thus has the following signature.

Master.compute : master:(α × γ → β → (α × γ) list) → (α × γ) list → unit

For realistic applications, where master and workers are completely different programs,
possibly written by different teams, this is the module of choice in our library, since

13

it can still pass polymorphic values over the network. The issues of marshalling are
automatically taken care of by OCaml run-time.

The derived API presented in Section 3 is adapted to deal with the absence of closures.
Exactly as the compute function, each API now takes two forms, one for the master and
another for the workers. For example, map fold ac takes the following forms.

Worker.map fold ac : f:(α → β) → fold:(β → β → β) → unit → unit
Master.map fold ac : β → α list → β

It is the responsibility of the user to ensure type consistency between master and workers.

Mono. When master and workers are compiled using different versions of OCaml, we
can no longer use marshalling. As in the previous case, we split compute into two func-
tions, one for master and one for workers. In addition, values transmitted over the
network can only be strings. The signature thus takes the following form.

Worker.compute : (string → string) → unit → unit
Master.compute : master:(string × γ → string → (string × γ) list) →

(string × γ) list → unit

Any other datatype for tasks should be encoded to/from strings. This conversion is left
to the user. Note that the second component of each task is still polymorphic (of type γ
here), since it is local to the master.

5.2.3 Fault Tolerance

The main issue in any distributed computing environment is the ability to handle faults,
which is also a distinguishing feature of our library. The fault tolerance mechanism of
Functory is limited to workers; handling master failures is the responsibility of the user,
for instance by periodically logging the master’s state. Worker faults are mainly of two
kinds: either a worker is stopped, and possibly later restarted; or a worker is temporarily
or permanently unreachable on the network. To provide fault tolerance, our master
implementation is keeping track of the status of each worker. This status is controlled
by two timeout parameters T1 and T2 and Ping and Pong messages sent by master and
workers, respectively. There are four possible statuses for a worker:

not connected: there is no ongoing TCP connection between the master and the worker;

alive: the worker has sent some message within T1 seconds;

pinged: the worker has not sent any message within T1 seconds and the master has sent
the worker a Ping message within T2 seconds;

unreachable: the worker has not yet responded to the Ping message (for more than T2

seconds).

Whenever we receive a message from a worker, its status changes to alive and its timeout
value is reset.

14

not connected alive

pinged

unreachableconnect

ping

any msg.

pong/any msg.

lost connection

Fault tolerance is achieved by exploiting the status of workers as follows. First, tasks
are only assigned to workers with either alive or pinged status. Second, whenever a worker
executing a task t moves to status not connected or unreachable, the task t is rescheduled,
which means it is put back in the set of pending tasks. Whenever a task is completed,
any rescheduled copy of this task is either removed from the set of pending tasks or killed
if it was already assigned to another worker.

It is worth noticing that our library is also robust w.r.t. exceptions raised by the
user-provided worker function. In that case, an Aborted message is sent to the master and
the task is rescheduled. It is the responsibility of the user to handle such exceptions if
necessary.

6 Experiments

Our library, Functory, is implemented in OCaml and is available from http://www.lri.

fr/~filliatr/functory/. In this section, we show the experimental results pertaining
to the case studies of Section 4.

6.1 N-queens

The following table shows execution times for various values of N and our three different
implementations: Sequential, Cores, and Network. The purpose of this experiment is to
measure the speedup w.r.t. the sequential implementation. Therefore, all computations
are performed on the same machine, a 8 cores Intel Xeon 3.2 GHz running Debian Linux.
The sequential implementation uses a single core. The multi-core implementation uses
the 8 cores of the machine. The network implementation uses 8 workers running locally
and a master running on a remote machine (which incurs communication cost).

The first column shows the value of N . The number of tasks is shown in second
column. Then the last three columns show execution times in seconds for the three
implementations. The figures within brackets show the speedup w.r.t. sequential imple-
mentation.

N D #tasks Sequential Cores Network

16 1 16 15.2 2.04 (7.45×) 2.35 (6.47×)
2 210 15.2 2.01 (7.56×) 21.80 (0.69×)

17 1 17 107.0 17.20 (6.22×) 16.20 (6.60×)
2 240 107.0 14.00 (7.64×) 24.90 (4.30×)

18 1 18 787.0 123.00 (6.40×) 125.00 (6.30×)
2 272 787.0 103.00 (7.64×) 124.00 (6.34×)

19 1 19 6120.0 937.00 (6.53×) 940.00 (6.51×)
2 306 6130.0 796.00 (7.70×) 819.00 (7.48×)

15

From the table above, it is clear that the Cores and Network implementations provide
a significant speedup. As evident from the last row, the speedup is almost 8, which is
also the number of cores we use. It is also evident from the last column that the Network
implementation performs significantly better when the computation time dominates in the
total execution time. The two extreme cases correspond to the second and the last row:
in the second row, the communication time dominates and is in fact more than 91% of the
total execution time; on the other hand, for the last row communication time amounts to
just 4.6% of the total execution time. As expected, the network implementation is only
beneficial when the computation time for each individual task is significant, which is the
case in realistic examples.

6.2 Mandelbrot Set

This benchmark consists in drawing the fragment of the Mandelbrot set with lower left
corner (−1.1, 0.2) and upper right corner (−0.8, 0.4), as a 9, 000 × 6, 000 image. The
sequential computation of this image consumes 29.4 seconds. For Cores and Network
implementations, the computation times in seconds are tabulated below.

#cores #tasks Cores Network

2 10 15.8 (1.86×) 20.3 (1.45×)
30 15.7 (1.87×) 18.7 (1.57×)

100 16.1 (1.83×) 19.8 (1.48×)
1000 19.6 (1.50×) 38.6 (0.76×)

4 10 9.50 (3.09×) 14.4 (2.04×)
30 8.26 (3.56×) 11.4 (2.58×)

100 8.37 (3.51×) 11.4 (2.58×)
1000 10.6 (2.77×) 20.5 (1.43×)

8 10 9.40 (3.13×) 12.6 (2.33×)
30 4.24 (6.93×) 7.6 (3.87×)

100 4.38 (6.71×) 7.5 (3.92×)
1000 6.86 (4.29×) 11.3 (2.60×)

The best timings are achieved for the Cores configuration, where communications happen
within the same machine and are thus cheaper. There are two significant differences with
respect to the n-queens benchmark. On one hand, the number of tasks can be controlled
more easily than in the case of n-queens. We experimentally figured out the optimal
number of tasks to be 30. One the other hand, each computation result is an image,
rather than just an integer as in the case of n-queens. Consequently, communication costs
are much greater. In this particular experiment, the total size of the results transmitted
is more than 200 Mb.

6.3 Matrix Multiplication

This benchmark was inspired by the PASCO’10 programming contest [4]. It consists of
multiplication of two square matrices of dimension 100, that is n = p = m = 100, with
integer coefficients. Coefficients have several thousands of digits, hence we use GMP [2]
to handle operations over coefficients.

16

We compare the performances of two different implementations. In the first one,
called mm1, each task consists of the computation of a single coefficient of the resultant
matrix, as described in Section 4.1. In the second one, called mm2, each task consists
of the computation of a whole row of the resultant matrix. As a consequence, the total
number of tasks in n×m = 10, 000 for mm1 and only n = 100 for mm2. The experimental
results (in seconds) are tabulated below.

mm1 mm2
(10,000 tasks) (100 tasks)

Sequential 20.3 20.2
Cores (2 cores) 22.7 (0.89×) 11.3 (1.79×)

(4 cores) 12.3 (1.65×) 6.1 (3.31×)
(6 cores) 8.6 (2.36×) 4.3 (4.70×)
(8 cores) 8.0 (2.54×) 3.5 (5.77×)

We do not include results for the network configuration, as they do not achieve any benefit
with respect to the sequential implementation. The reason is that the communication
cost dominates the computation cost in such a way that the total execution time is always
greater than 30 seconds. Indeed, irrespective of the implementation (mm1 or mm2), the
total size of the transmitted data is O(n×m× p), which in our case amounts to billions
of bytes.

A less naive implementation would have the worker read the input matrices only once,
e.g. from a file, and then have the master send only row and column indices. This would
reduce the communication cost to O(n×m) only.

6.4 SMT Solvers

As explained in Section 4.4, this benchmark consists of 80 verification conditions, each
being checked by 4 different SMT solvers. Each task is executed with a timeout limit of
1 minute. Our computing infrastructure for this experiment consists of 3 machines with
4, 8 and 8 cores respectively. The figure below shows the total time in minutes spent by
each prover for each possible outcome.

prover valid unknown timeout failure

Alt-ergo 406.0 3.0 11400.0 0.0
Simplify 0.5 0.4 1200.0 222.0

Z3 80.7 0.0 1800.0 1695.0
CVC3 303.0 82.7 4200.0 659.0

These figures sum up to more than 6 hours if provers were executed sequentially. However,
using our library and our 3-machine infrastructure, it completes in 22 minutes and 37
seconds, giving us a speedup of more than 16×. We are still far away from the ideal ratio
of 20× (we are using 20 cores), since some provers are allocating a lot of memory and
time spent in system calls is not accounted for in the total observed time. However, a
ratio of 16× is already a significant improvement for our day-to-day experiments.

17

7 Conclusion and Future Work

We presented a distributed programming environment for functional programming. The
main features are the genericity of the interface, which makes use of polymorphic higher-
order functions, and the ability to easily switch between sequential, multi-core, and net-
work implementations. In particular, Functory allows to use the same executable for mas-
ter and workers, which makes the deployment of small programs immediate — master and
workers being only distinguished by an environment variable. Functory also allows master
and workers to be completely different programs, which is ideal for large scale deployment.
Another distinguishing feature of our library is a robust fault-tolerance mechanism which
relieves the user of cumbersome implementation details. Finally, Functory also allows to
cascade several distributed computations inside the same program.

Related Work. Closest to the approach in this paper is Yohann Padioleau’s MapRe-
duce implementation in OCaml [12]. It is built on top of OCamlMPI [9], while our
approach uses a homemade protocol for message passing. Currently, we have less flex-
ibility w.r.t. deployment of the user program than OCamlMPI; on the other hand, we
provide a more generic API together with fault tolerance. There are other distributed
computing libraries on top of which one could implement the library discussed in this
paper. Jo&Caml [11] is one of them. However, Jo&Caml does not provide fault tolerance,
which is indispensable in a distributed setting. The user has to include code for fault
tolerance, as already demonstrated in some Jo&Caml experiments [10].

There are other implementations of distributed computing in the context of functional
programming. One is the Disco project [3], which implements exactly Google’s MapRe-
duce in Erlang [1]. Our library, on the contrary, is not an OCaml implementation of
Google’s MapReduce. There are other ways to exploit multi-core architectures. One of
these is data parallelism, which is also relevant in the functional programming setting [8].
Our work does not target data parallelism at all.

Future Work. There are still some interesting features that could be added to our
library.

• One is the ability to efficiently assign tasks to workers depending on resource pa-
rameters, such as data locality, CPU power, memory, etc. This could be achieved
by providing the user with the means to control task scheduling. This would enable
Functory to scale up to MapReduce-like applications.

Currently, without any information about the tasks, the scheduling is completely
arbitrary. In both Cores and Network modules, we use traditional queues for the
pending tasks; in particular, new tasks produced by the master are appended at
the end of the queue.

• Another interesting feature could be the ability to add or remove machines dynam-
ically. Currently, our library assumes that the list of machines to be used is given
a priori, as part of the code. An alternative would be to read machine names from
a file, watched periodically by the master.

18

• Our library provides limited support for displaying real-time information about
computations and communications. Processing and storing information about work-
ers and tasks locally in the master is straightforward; monitoring it in real-time
could be done using Ocamlviz [5].

• One very nice feature of Google’s MapReduce is the possibility to use redundantly
several idle workers on the same tasks for speedup when reaching the end of com-
putation. Since we already have the fault tolerance implemented, this optimization
should be straightforward to add to our library.

We intend to enrich our library with all above features.

Acknowledgements. The authors are grateful to the ProVal team for support and
comments on early versions of the library and of this paper.

References

[1] The Erlang Programming Language. http://www.erlang.org/.

[2] The GNU Multiple Precision Arithmetic Library. http://gmplib.org/.

[3] The Disco Project, 2009. http://discoproject.org/.

[4] Parallel Symbolic Computation 2010 (PASCO), 2010. http://pasco2010.imag.

fr/.

[5] Sylvain Conchon, Jean-Christophe Filliâtre, Fabrice Le Fessant, Julien Robert, and
Guillaume Von Tokarski. Observation temps-rel de programmes Caml. In Vingt-
et-unièmes Journées Francophones des Langages Applicatifs, Vieux-Port La Ciotat,
France, January 2010. INRIA.

[6] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In OSDI, pages 137–150, 2004.

[7] Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus Plat-
form for Deductive Program Verification. In Werner Damm and Holger Hermanns,
editors, 19th International Conference on Computer Aided Verification, volume 4590
of Lecture Notes in Computer Science, pages 173–177, Berlin, Germany, July 2007.
Springer.

[8] Simon L. Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel M. T.
Chakravarty. Harnessing the Multicores: Nested Data Parallelism in Haskell. In
Ramesh Hariharan, Madhavan Mukund, and V. Vinay, editors, FSTTCS, volume 2
of LIPIcs, pages 383–414. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2008.

[9] Xavier Leroy. OCamlMPI: Interface with the MPI Message-passing Interface. http:
//pauillac.inria.fr/~xleroy/software.html.

19

[10] Louis Mandel and Luc Maranget. Programming in JoCaml (tool demonstration). In
17th European Symposium on Programming (ESOP 2008), pages 108–111, Budapest,
Hungary, April 2008.

[11] Louis Mandel and Luc Maranget. The Jo&Caml Language, 2008. http://jocaml.

inria.fr/.

[12] Yoann Padioleau. A poor’s man MapReduce for OCaml, 2009. http://www.

padator.org/ocaml/mapreduce.pdf.

20

