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Abstract. The repetition threshold introduced by Dejean and Brandenburg
is the smallest real number α such that there exists an infinite word over a
k-letter alphabet that avoids β-powers for all β > α. Ilie, Ochem, and Shallit
generalized this concept to include the lengths of the avoided words. We give
a lower and an upper bound on this generalized repetition threshold.

1. Introduction

The study of repetitions in words has been one of the main topics in combi-
natorics on words. Thue [12] showed the existence of an infinite square-free word
on three letters, that is without concatenated occurrences of the same non empty
factor. This fact was actually implicated by the existence of an infinite binary
overlap-free word (i.e. without factors of the form uvuvu with u non empty).

A natural extension of this problem takes into account repetitions of a fractional
order, where the order of a non empty finite word is the ratio between its length
and its period. This notion has been introduced by Dejean [6] and Brandenburg [1].
Dejean proved that every sufficiently long word over a three-letter alphabet contains
a 7/4-power, and this bound is the best possible. The least real number α > 1 such
that there exists an infinite word on k letters avoiding β-powers for all β > α
is called the repetition threshold on k letters. Thus Thue’s result implies that
the repetition threshold on two letters is 2, while Dejean’s result means that the
repetition threshold on three letters is 7/4.

Dejean observed that for k ≥ 5, the repetition threshold is not smaller than k
k−1 ,

while for k = 4 it is not smaller than 7/5. She conjectured that these are the actual
values of the repetition thresholds. This conjecture has been proved true for k = 4
by Pansiot [10]. For k ≥ 5, the conjecture has been solved thanks to the contribution
of many authors: Moulin-Ollagnier [9], Currie and Mohammad-Noori [3], Rao [11],
Currie and Rampersad [4, 5], and Carpi [2].

In [7] the authors generalize the repetition threshold of Dejean to handle avoid-
ance of all sufficiently large fractional powers. They define a real number, depend-
ing on the size k of the alphabet and on the length ℓ of a repetition. This number
naturally extends the classical notion of repetition threshold. Moreover, in [7] its
value has been calculated in some particular cases and general lower and upper
bounds have been given. In this paper we improve these bounds by studying the
asymptotics of the generalized repetition threshold.

2. Definitions

Let α > 1 be a rational number, and let ℓ ≥ 1 be an integer. A word w is an

(α, ℓ)-repetition if w = (uv)nu, where |uv| = ℓ and α = |w|
ℓ . In this case α is called

order of the repetition and ℓ its length or period. Notice that in our definitions,
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order and length of a repetition are not univocally defined. For instance, the word
aabcaabcaa on the alphabet {a, b, c} is a ( 5

2 , 4)-repetition, a ( 5
4 , 8)-repetition and a

( 10
9 , 9)-repetition. An α-power is an (α, ℓ)-repetition for some ℓ. We say a word

(α, ℓ)-free if it contains no factor that is an (α′, ℓ′)-repetition with α′ ≥ α and
ℓ′ ≥ ℓ. We say a word (α+, ℓ)-free if it is (α′, ℓ)-free for all α′ > α. Finally, a word
is α-free if it does not contain α′-powers with α′ ≥ α and is α+-free if it is α′-free
for all α′ > α.

Let Σk denote the k-letter alphabet {0, 1, . . . , k − 1}. For integers k ≥ 2 and
ℓ ≥ 1, the generalized repetition threshold R(k, ℓ) is defined as the smallest real
number α such that there exists an infinite (α+, ℓ)-free word over Σk. Actually,
there always exists an infinite (R(k, ℓ)+, ℓ)-free word over Σk. Nevertheless, as
pointed out in [7], there is no known instance of a (R(k, ℓ), ℓ)-free infinite word.
Finally, notice that by definition, R(k + 1, ℓ) ≤ R(k, ℓ) and R(k, ℓ + 1) ≤ R(k, ℓ).

The finiteness of R(k, ℓ) is due to the existence of an infinite binary overlap-free
word. Ilie et al. [7] also obtained a lower bound on R(k, ℓ), namely

1 +
ℓ

kℓ
≤ R(k, ℓ) ≤ 2.

The aim of the paper is to improve the above inequalities.
The case ℓ = 1 corresponds to the classical repetition threshold and the values of

R(k, 1) are now all determined. Moreover, the proof of our upper bound explicitly
uses the fact that R(k, 1) = k

k−1 for k ≥ 5.

3. Lower Bound

A natural way of obtaining a bound of the form R(k, ℓ) ≥ α is to show that
sufficiently long words over Σk contain a repetition uvu with length |uv| ≥ ℓ and
order at least α. In [7], the proof of R(k, ℓ) ≥ 1 + ℓ

kℓ focused on repetitions such
that |u| = ℓ in order to imply that |uv| ≥ ℓ. The next result mainly uses repetitions
such that |u| = 1, and marginally such that |u| = ℓ.

Theorem 1. For k ≥ 3 and ℓ ≥ 2, we have R(k, ℓ) ≥ 1 + 1
(k−1)ℓ .

Proof. Consider a word over Σk containing a block w of the following form

· · · 01 · · ·
k − 2 k − 2

ℓ ℓ ℓ − 1 ℓ − 1 ℓ ℓ

Let w1 be the the suffix of w starting at 01, we have that |w1| = (k − 1)ℓ + 1.
Suppose that in w1 there is a repetition of length ≥ ℓ. It is easy to see that in
a word of length n, the minimum exponent of a repetition is n

n−1 . Hence, the

repetition in w1 has order ≥ 1 + 1
(k−1)ℓ , and the theorem is proved.

Suppose now that in w1 there is no repetition of length ≥ ℓ. This implies that
the maximal distance between to occurrences of the same letter is ℓ − 1 and in
particular each letter of the alphabet appears at most ℓ times in w1. Notice that,
because of the distance argument, the (k−2)ℓ-block at the end of w1, do not contain
letters 0 and 1. By the pigeonhole principle we have that each letter of the alphabet
Σk \{0, 1} appears exactly ℓ times in this (k−2)ℓ-block. Without loss of generality,
we can suppose that these letters appear in the increasing order.
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Let w0 be the prefix of w ending at 01. By the same argument we have that w0

either contains a repetition of length ≥ ℓ and order ≥ 1 + 1
(k−1)ℓ , or each letter of

the alphabet Σk \ {0, 1} appears exactly ℓ times in the (k − 2)ℓ-block prefixing w0.

· · · 01 · · ·z · · · z x · · ·x 2 · · · 2 k − 1 · · · k − 1

k − 2 k − 2

ℓ ℓ ℓ − 1 ℓ − 1 ℓ ℓ

Consider the suffix of w of length (k +1)ℓ starting at the ℓ-block x · · ·x. This word
contains a repetition of length ≥ 3ℓ and order ≥ 1 + 1

k ≥ 1 + 1
(k−1)ℓ .

Hence, in order to prove our statement, we can exclude the case of a sufficiently
long word containing a factor xy with x 6= y. This implies that the only remaining
cases are those of words 0ω, 1ω, . . . , (k− 1)ω, which obviously contain repetitions of
arbitrarily great order and length. �

Theorem 2. R(2, ℓ) ≥ 1 + 2
ℓ+2 .

Proof. Suppose for the sake of contradiction that R(2, ℓ) < 1 + 2
ℓ+2 . That is, there

exists an infinite binary word w with no repetition of length ≥ ℓ and order ≥ 1+ 2
ℓ+2 .

In particular, repetitions uvu such that |u| = 2 and ℓ ≤ |uv| ≤ ℓ + 2 are forbidden
in w. Moreover, we can assume without loss of generality that w is recurrent, that
is, every finite factor of w appears infinitely many times in w.

First, we check that the factor 0010 is forbidden in w.

• • • • 0010 • • • •
ℓ − 3 ℓ − 2

By previous considerations about the distances, we have that the blocks • • • • on
the left and on the right of the factor 0010 must be 1111. This creates a repetition
of length 2ℓ + 3 and order 1 + 4

2ℓ+3 > 1 + 2
ℓ+2 . Since 0010 is forbidden, the factors

0100, 1101, and 1011 are also forbidden by symmetry.

Now, we check that the factor 0011 is forbidden in w.

• • • • 0011 • • • •
ℓ − 3 ℓ − 3

The block • • • • on the left of the factor 0011 must be •10 • , then 110 • , and
finally 1100 since 1101 is forbidden. The block • • • • on the right of the factor
0011 must be •10 • , then •100 , and finally 1100 since 0100 is forbidden. This
creates a repetition of length 2ℓ + 2 and order 1 + 2

ℓ+1 > 1 + 2
ℓ+2 .

The factor 001 is forbidden because 0010 and 0011 are forbidden. By symmetry,
100, 110, and 011 are also forbidden. Thus, the only remaining possibilities for w
are the words 0ω, 1ω, and (01)ω, which obviously contain repetitions of arbitrarily
great order and length. �
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For k ≥ 3, the lower bound 1 + 1
(k−1)ℓ is at least as good as the previous one,

namely 1 + ℓ
kℓ . The same holds when k = 2 with the lower bound 1 + 2

ℓ+2 .

Theorem 2 is certainly not optimal, since numerical evidences suggest that
R(2, ℓ) = 1 + 1

ℓ/3+1 for ℓ ≥ 6, ℓ = 0 (mod 3). We also mention that Kolpakov

and Rao [8] have proved that R(3, ℓ) ≥ 1 + 1
ℓ , which would be a tight lower bound

for the conjecture in [7] that R(3, ℓ) = 1 + 1
ℓ for ℓ ≥ 2.

4. Upper bound

In this section we use the fact that Dejean’s conjecture is proved for N ≥ 5. We
describe a morphism from an N -letter alphabet to a k-letter one that transforms

an infinite
(

N
N−1

)+

-free word into a word in which the sufficiently large repetitions

are of order not much bigger than N
N−1 .

Let Sk,t be the set of words of length t over Σk of the form 0ew where e ≥ 2,
|w| ≥ 1, the first and the last letter of w are different from 0, and w does not contain
00 as a factor. For example, we have that S2,5 = {00001, 00011, 00101, 00111}. Let
N = |Sk,t| and let h be a t-uniform morphism h : Σ∗

N → Σ∗
k such that the set of

h-images of letters in ΣN is Sk,t. Now, if N ≥ 5, we consider the h-image of some

infinite
(

N
N−1

)+

-free word over ΣN .

A uniform morphism m : A∗ → B∗ is said to be synchronizing if for any a, b, c ∈
A and s, r ∈ B∗, m(ab) = rm(c)s implies that either r = ε and a = c or s = ε and
b = c.

Remark. A synchronizing morphism m is always injective (actually it is injective on
the set A of monoid generators). Moreover, if it is t-uniform, then for each factor
u of a word in m(A∗) such that |u| ≥ 2t − 1, there exists a unique factorization
u = xm(u′)y where u′ ∈ A∗ and 0 ≤ |x|, |y| < t.

Lemma 3. The t-uniform morphism h : Σ∗
N → Σ∗

k defined above is synchronizing.

Proof. Suppose that the h is not synchronizing. Then there exist a, b, c ∈ ΣN and
s, r ∈ Σ∗

k such that m(ab) = rm(c)s = w[1, . . . , 2t] with 0 < |r| < t. We obtain a
contradiction for every possible value of |r|:

• if |r| = 1 or |r| = 2, then the letter w[t + |r|] is 0 in m(ab) and is not 0 in
rm(c)s,

• if |r| = t − 1 or |r| = t − 2, then the letter w[t] is not 0 in m(ab) and is 0
in rm(c)s,

• if 2 < |r| < t − 2, then m(c) contains the factor w[t, . . . , t + 2]. In m(ab),
this factor is of the form x00 with x 6= 0, whereas factors of this form do
not exist in m(c).

�

In order to get the mentioned repetition-freeness property in h(Σ∗
N ), we use the

following lemma. As it will appear clear from the context, for any real number ℓ ≥ 1,
we write (α+, ℓ)-free to mean (α+, ⌈ℓ⌉)-free and hence R(k, ℓ) to mean R(k, ⌈ℓ⌉).
Lemma 4. Let α, β ∈ R, 1 < α < β < 2. Let h : A∗ → B∗ be a synchronizing

t-uniform morphism. If w ∈ A∗ is α+-free, then h(w) is (β+, 2t−2
β−α )-free.
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Proof. Let uvu be a β′-repetition in h(w) with β′ > β. Suppose |u| ≥ 2t−1. Hence
u contains an h-image and it can be uniquely written as xh(u′)y with 0 ≤ |x|, |y| < t.
Thus this h-image ū = h(u′) appears at the same position of u in uvu.

t t ūū

x xy y

The factor v̄ = yvx is an h-image. We have that ūv̄ū is the h-image of a repetition

in w and hence |ūv̄ū|
|ūv̄| ≤ α. Moreover, β′ = |ūv̄ū|

|ūv̄| + |x|+|y|
|uv| and β′ > β implies that

|x|+|y|
|uv| > β − α. Hence

|uv| <
|xy|

β − α
≤ 2t − 2

β − α
.

Suppose now that |u| ≤ 2t − 2. Hence β′ > β implies that |u|
|uv| > β − 1. Thus

|uv|
|u| < 1

β−1 and

|uv| <
|u|

β − 1
≤ 2t − 2

β − 1
<

2t − 2

β − α
.

�

Recall that, by definition, if there exists a (β+, ℓ)-free infinite word over Σk then
R(k, ℓ) ≤ β.

Corollary 5. Let h : Σ∗
N → Σ∗

k be a synchronizing t-uniform morphism as above.

If β ∈ R, N
N−1 < β < 2, and N ≥ 5, then R

(

k, 2t−2
β− N

N−1

)

≤ β.

We now compute N = Nk,t. Consider the prefixes of length (t− 1) of the words
in Sk,t:

• Nk,t−1 of them are such that the last letter is not 0,
• Nk,t−2 of them are such that the last letter is 0 and the penultimate letter

is not 0,
• one them is the word 0t−1.

Each prefix can be extended by one of the (k − 1) letters distinct from 0 to get a
word in Sk,t, so Nk,t satisfies the recurrence relation

Nk,1 = Nk,2 = 0, Nk,t = (k − 1)(Nk,t−1 + Nk,t−2 + 1).

Solving this relation, we obtain that

Nk,t =
k − 1

(2k − 3)
√

(k − 1)(k + 3)

(

λt − µt − (k − 2)(λt−1 − µt−1)
)

− k − 1

2k − 3
,

where λ =
(k−1)+

√
(k−1)(k+3)

2 and µ =
(k−1)−

√
(k−1)(k+3)

2 .
We thus have

Nk,t = Ckλt−1 − O(1), where Ck =
(k − 1)(

√

(k − 1)(k + 3) − k + 3)

2(2k − 3)
√

(k − 1)(k + 3)
.

Theorem 6. If k is fixed and ℓ tends to infinity, then R(k, ℓ) ≤ 1 + 2 ln ℓ
ℓ ln λ + O

(

1
ℓ

)

.
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Proof. Let us fix t =
⌊

ln ℓ
ln λ

⌉

+ 1 and β = 1 + 2t−2
ℓ + 1

N−1 . For ℓ sufficiently large,
we have t ≥ 6 which ensures that N ≥ 5, and we also have β < 2. We can thus use
Corollary 5, which gives

R(k, ℓ) = R

(

k,
2t − 2

β − N
N−1

)

≤ β = 1 +
2t − 2

ℓ
+

1

N − 1
.

Since
2t − 2

ℓ
=

2
⌊

ln ℓ
ln λ

⌉

ℓ
=

2 ln ℓ

ℓ ln λ
+ O

(

1

ℓ

)

and
1

N − 1
=

1

Ckλt−1 − O(1)
=

1

Ckλ⌊ ln ℓ

ln λ⌉ − O(1)
= O

(

1

ℓ

)

,

the result follows. �

5. An example

Let us illustrate our results with a concrete example: k = 8 and ℓ = 100.
Theorem 1 gives R(8, 100) ≥ 1+ 1

(8−1)×100 = 1.00142857 . . . . For the upper bound,

we have to decide which morphism h will be used, or equivalently to choose the
value of the parameter t. For a given t, we can compute N = Nk,t and then the
bound β = 1 + 2t−2

ℓ + 1
N−1 . So, we have to choose t so that β is minimized. The

choice of t =
⌊

ln ℓ
ln λ

⌉

+1 in Theorem 6 is well-suited to get such an asymptotic result,
but for a given pair (k, ℓ) like this example, it is better to make a specific case study.

• If t = 3, then N = 7 and β = 181
150 = 1.20666666 . . . .

• If t = 4, then N = 56 and β = 593
550 = 1.07818181 . . . .

• If t = 5, then N = 448 and β = 12094
11175 = 1.08223713 . . . .

Since β gets bigger if t > 5, the minimum is reached at t = 4, whereas
⌊

ln ℓ
ln λ

⌉

+1 = 3.

We thus obtain R(8, 100) ≤ 593
550 ≤ 1.078182.

6. Conclusion

For k fixed and ℓ tending to infinity, we know now in particular that the asymp-
totics of the generalized repetition threshold R(k, ℓ) is between 1 + Ω(1/ℓ) and
1+O(ln ℓ/ℓ). New ideas are needed to settle this and other questions about R(k, ℓ),
such as good estimates for R(k, 2) or R(k, k). The case 1.001428 ≤ R(8, 100) ≤
1.078182 suggests that there is still room for improvement.
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