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Abstract. A vertex colouring of a graph G is nonrepetitive if for any

path P = (v1, v2, . . . , v2r) in G, the first half is coloured differently from

the second half. The Thue choice number of G is the least integer ℓ

such that for every ℓ-list assignment L of G, there exists a nonrepetitive

L-colouring of G. We prove that for any positive integer ℓ, there is a

tree T with πch(T ) > ℓ. On the other hand, it is proved that if G′ is a

graph of maximum degree ∆, and G is obtained from G′ by attaching

to each vertex v of G′ a connected graph of tree-depth at most z rooted

at v, then πch(G) ≤ c(∆, z) for some constant c(∆, d) depending only

on ∆ and z.

1. Introduction

A sequence S = (s1, s2, . . . , ) is nonrepetitive if no two adjacent blocks are

identical, i.e., for any positive integers i and r, one has (si, si+1, . . . , si+r−1) 6=

(si+r, si+r+1, . . . , si+2r−1). It was proved by Thue in 1906 [13] that there is

an infinite sequence on three symbols {0, 1, 2} which is nonrepetitive. This
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result was rediscovered many times in different contexts. It has many gener-

alizations and important applications in distinct fields of Mathematics and

Computer Sciences (see [1], [3], [5], [7], [10]). In particular, it is the starting

point of symbolic dynamics, a field with many deep results and challenging

open problems.

Recently, connection between Thue sequence and graph theory has at-

tracted much attention [6]. A vertex colouring of a graph G is a mapping

c which assigns to each vertex v of G a color c(v). A vertex colouring is

nonrepetitive if for any path P = (v1, v2, . . . , v2r) in G with an even num-

ber of vertices, the first half is coloured differently from the second half.

The Thue chromatic number of G, denoted by π(G), is the least number of

colours used in a nonrepetitive colouring of G. In this language, an infinite

nonrepetitive sequence is just a nonrepetitive colouring of the infinite path,

and the Thue Theorem is equivalent to say that the infinite path has Thue

chromatic number 3.

There are many other classes of graphs whose Thue chromatic numbers

have been studied. The Thue chromatic number of all cycles are determined

[4]. It is proved in [2] that for any graph G, π(G) 6 16∆(G)2, and there are

graphs with Thue chromatic number of order ∆(G)2/ log ∆(G). Graphs of

treewidth k are known to have π(G) 6 4k [9].

The list nonrepetitive colouring of graphs is studied in [8]. A ℓ-list as-

signment is a mapping L which assigns to each vertex v of G a set L(v) of

ℓ permissible colours. A nonrepetitive L-colouring of G is a nonrepetitive

colouring c of G such that c(v) ∈ L(v) for each vertex v. The Thue choice

number of G, denoted by πch(G), is the least integer ℓ such that for any ℓ-list

assignment L, there exists a nonrepetitive L-colouring of G.

It follows from the definition that for any graph G, πch(G) ≥ π(G). Some

of the upper bounds for Thue chromatic number of graphs G are indeed

upper bounds for their Thue choice number. For example, the proof in [2]

actually shows that for any graph G, πch(G) 6 16∆(G)2. However, the

proofs of some other upper bounds for π(G) do not work for πch(G). For

example, the proofs for the upper bounds of the Thue chromatic number of

paths, trees, graphs of bounded treewidth, etc., do not work for their Thue

choice number. Using the probabilistic method, it is proved in [8] that the

infinite path P∞ has Thue choice number at most 4. As π(P∞) = 3, Thue

choice number of the infinite path is either 3 or 4.

The question whether the Thue choice number of trees are bounded by a

constant was asked in [8]. In this paper, we give a negative answer to this

question, by proving that for any positive integer ℓ, there is a tree T with

πch(T ) > ℓ. So the tree-width of a graph does not provide an upper bound
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on its Thue choice number. On the other hand, it is easy to show that graphs

of bounded tree-depth have bounded Thue choice number. We shall prove

a more general class of graphs have bounded Thue choice number: for any

integers ∆, z, there is a constant c(∆, z) for which the following holds: if

G is obtained from a graph G′ of maximum degree at most ∆ by attaching

to each vertex v of G′ a connected graph of tree-depth at most z, then

πch(G) ≤ c(∆, z).

2. Thue choice number of trees are unbounded

First, we give some definitions and notations. Suppose T is a rooted tree

with root v. The level of vertices of T is defined recursively: the level of v is

1, and if u has level k then the sons of u have level k + 1. The height of T

is the maximum level of a vertex of T .

A [k]-tree is a rooted tree such that

– all the leaves have the same level,

– each internal vertex has exactly k sons.

Let a be a positive integer. A vertex colouring c of a tree is a-distinct if

– c takes values in a finite set of colours {1, . . . , a},

– the sons of a vertex have all different colours.

Note that [k]-tree always admits an a-distinct colouring if k ≤ a.

A descending path in a tree is a path starting from the root.

We can now state the main result of this section.

Theorem 1. Let ℓ be a positive integer and let T be a
[

(ℓ+ 1)
(

ℓ3

ℓ

)

]

-tree of

height ℓ+ 1. Then πch(T ) > ℓ.

Notice that the tree above has
∑ℓ

h=0

(

(ℓ+ 1)
(

ℓ3

ℓ

)

)h
= ℓΘ(ℓ2) vertices. We

thus obtain the following.

Corollary 2. The maximum Thue choice number of trees of order n asymp-

totically satisfies

max
|T |=n

πch(T ) = Ω

(

(

log n

log log n

)1/2
)

.

The rest of this section is dedicated to the proof of Theorem 1.

We fix a set A of colors of cardinality a ≥ ℓ and a
[

(ℓ+ 1)
(

a
ℓ

)]

-tree T . We

use an ℓ-list assignment L on T such that every ℓ-subset of A is assigned to

exactly (ℓ+1) of the sons of an internal vertex (the list assigned to the root

could be arbitrarily chosen).

Consider a potential nonrepetitive L-colouring of T . Among the (ℓ + 1)

sons of an internal vertex sharing the same list, at least two of them must
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get the same colour by the pigeon-hole principle. Moreover, for each internal

vertex, at least (a − ℓ + 1) distinct colours appear twice among its sons:

select one son for each list such that its color appears also on another son

and suppose for the sake of contradiction that (at least) ℓ distinct colours

do not appear among the selected sons. Then the list consisting of these ℓ

forbidden colours is assigned to one of the selected son, a contradiction.

From the L-colouring of T we keep a− ℓ+ 1 sons for each internal vertex

v, such that they have different colors and the a − ℓ + 1 different colours

appear twice among the sons of v in T . This way, we obtain an a-distinct

colouring of some subtree T ′ of T , and T ′ is an [a− ℓ+ 1]-tree.

The color of a vertex in T ′ must be distinct from the color of its father

to avoid repetitions of length two. It is also distinct from the color of its

grand-father to avoid repetitions of length four, since there exists an uncle

in T with the same color as the father. This means that T ′ contains no

palindrome.

We consider now the tree T ′ only, and we suppose that its a-distinct

colouring is nonrepetitive and avoids palindromes. We will eventually obtain

a contradiction, for a large enough.

Lemma 3. Let T ′ be an [a − ℓ + 1]-tree of height ℓ + 1 as above. For any

nonrepetitive a-distinct colouring on T ′ that avoids palindromes, the number

of vertices at level ℓ having a son with the same colour as one of its ancestor,

is at most

ℓ−1
∑

h=2

(a− ℓ+ 1)ℓ−1−h
(

ah − (a− ℓ+ 1)h
)

.

Proof. Let h be an integer such that 2 ≤ h ≤ ℓ− 1. Consider an [a− ℓ+ 1]-

tree R of height h+ 2. For any nonrepetitive a-distinct colouring on R that

avoids palindromes, the number of vertices at level h+ 1 having a son with

the same colour as the root, is at most ah − (a − ℓ + 1)h. Indeed, suppose

that a vertex at level h+1 has a son with the same colour as the root. Call

nostalgic such a vertex. Say that the common colour of the root and of the

leaf is 1. Consider the descending path coloured 1a1 . . . ah ending a nostalgic

vertex in R. The inverse descending path coloured 1ah . . . a1 is distinct from

the previous one since R does not contain palindromes. Moreover, it cannot

exist in R since it would create the repetition (a1 . . . ah1)
2.
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1

a1

ah

1

ah

a1

. . .

Now, there are ah − (a− ℓ+1)h words of length h over {1, 2, . . . , a} that do

not correspond to one of (a− ℓ+1)h descending paths in R. For every such

missing word, there is at most one nostalgic vertex in R by considering the

inverse descending path.

Since T ′ avoids palindromes, a vertex does not have the same colour as

its father (resp. grand-father). The bound in the statement is obtained by

considering nostalgic vertices of subtrees rooted at each internal vertex of

T ′. �

Let T ′ be an [a−ℓ+1]-tree of height ℓ+1 on which is defined an a-distinct

vertex colouring. Observe that, among the a− ℓ+1 sons of a vertex, at most

ℓ of them have the same colour as one of their ancestors. Consider a vertex

at level ℓ such that its colour and the colours of its ancestors are pairwise

distinct. The number of such vertices is at least

(a− 2ℓ+ 1)ℓ−1.

A vertex at level ℓ that simultaneously verifies this latter condition and has

no son coloured as one of its own ancestor is called bad.

By Lemma 3, the number of bad vertices is at least

(1) (a− 2ℓ+ 1)ℓ−1 −
ℓ−1
∑

h=2

(a− ℓ+ 1)ℓ−1−h
(

ah − (a− ℓ+ 1)h
)

.

Notice that (1) is a polynomial in a with leading term aℓ−1. It is thus

positive for a large enough, say a = ℓ3. Hence T ′ contains a bad vertex. By

considering the ℓ vertices on the descending path to the bad vertex, and the

(a−ℓ+1) colours on its sons, we obtain a contradiction: ℓ+(a−ℓ+1) = a+1

vertices should get distinct colours but we have only a colours.

3. Graph classes with bounded Thue choice number

In order to find classes of graphs whose Thue choice number is bounded, we

need to restrict to those classes which do not contain the class of trees as

a subclass. One such class consists of graphs of bounded maximum degree.
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As mentioned in Section 1, the proof in [2] shows that for any graph G,

πch(G) 6 16∆(G)2. Another such class consists of graphs of bounded tree

depth defined below.

The closure of a rooted tree (T, r), is defined as the graph clos(T, r) in

which V (clos(T, r)) = V (T ) and v1v2 ∈ E(clos(T, r)) if and only if v1 is an

ancestor of v2 or v2 is an ancestor of v1 in (T, r). For a connected graph G,

the tree-depth of G [11] is the least integer h such that there is a rooted tree

(T, r) of height h such that G is a subgraph of clos(T, r). For a disconnected

graph G, its tree-depth is the maximum of the tree-depth of its connected

components.

Lemma 4. For every positive integer ℓ, the maximum Thue choice number

of graphs of tree-depth ℓ is equal to ℓ.

Proof. The proof of Theorem 1 gives a rooted tree of height ℓ + 1, which is

then a graph of tree-depth at most ℓ + 1, whose Thue choice number is at

least ℓ+ 1.

On the other hand, let G be a connected graph of tree-depth at most ℓ.

Let (T, r) be a rooted tree of height ℓ such that G is a subgraph of clos(T, r).

Assume that to each vertex v is assigned a list of ℓ colours L(v). As a

vertex in (T, r) has at most ℓ − 1 ancestors, it is possible to find a colour

assignment c such that for every vertex v, c(v) ∈ L(v) and c(v) is different

from the colours of its ancestors in (T, r). Now consider any path P in

G. There exists a vertex v ∈ V (P ) which is an ancestor of all the other

vertices in V (P ). Then the colour c(v) cannot appear twice on P and hence

the colour sequence of P is nonrepetitive. It follows that the Thue choice

number of T is at most ℓ. �

The following result shows that a super class of graphs obtained by gluing

together graphs of bounded maximum degree and bounded tree-depth also

have bounded Thue choice number.

Theorem 5. Let G be a graph of maximum degree ∆ and G′ be a graph

obtained from G by attaching to each vertex v of G a connected graph Hv

of tree-depth at most z, i.e., identify v with some vertex of Hv, then G′ has

Thue choice number at most ⌈(2z − 4)∆2z−4e4(2
z−3)(2z−2)⌉.

The proof of Theorem 5 uses Lovász Local Lemma.

Lemma 6 (Lovász Local Lemma). Let A1, A2, . . . , An be events in a proba-

bility space. Let D = (V,E) be a graph with vertex set V = {A1, A2, . . . , An}.

For each A ∈ V , Γ(A) (respectively, Γ[A]) is the open (respectively, close)
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neighborhood of A in D. If each event A is independent from any col-

lection A of events such that A ∩ Γ[A] = ∅, and there exists an assign-

ment of reals x : V → (0, 1) to the events such that for any event A,

Pr[A] ≤ xA
∏

B∈Γ(A)(1 − xB), then the probability of avoiding all events

in V is positive, i.e., Pr[A1 ∧A2 ∧ . . . ∧An] > 0.

Proof of Theorem 5. Let d = 2z − 3 and let N = ⌈2(d + 1)∆2d+2e4d
2+4d⌉.

Assume L is a list assignment with |L(v)| = N for each vertex v of G′. First,

for each vertex v of G, let c(v) ∈ L(v) be a colour randomly chosen from L(v).

For integers 0 ≤ s ≤ 2d and k ≥ 1 and for a path P = (v1, v2, . . . , v2k+s) in

G of length 2k+s−1, let AP,k,s be the event that the first k vertices of P are

coloured as the last k vertices, i.e., c(vi) = c(vk+s+i) for i = 1, 2, . . . , k. Let

Ak be the set of all events AP,k,s, where 0 ≤ s ≤ 2d, and let A = ∪∞k=1Ak.

Define a dependency graph with vertex set A so that AP,k,s and AP ′,k′,s′ are

adjacent if and only if P and P ′ have a common vertex. For each vertex

v, for each positive integer k and for each 0 ≤ s ≤ 2d, there are at most

(k + s/2)∆2k+s ≤ (k + d)∆2k+2d paths P of length 2k + s− 1 containing v.

So a path P with 2k+s vertices intersects at most (2k+s)(k′+d)∆2k′+2d ≤

(2k + 2d)(k′ + d)∆2k′+2d paths of length 2k′ + s′ − 1 for any 0 ≤ s′ ≤ 2d.

Therefore in the dependency graph, an event A ∈ Ak is adjacent to at most

2d(2k + 2d)(k′ + d)∆2k′+2d events in Ak′ if k′ 6= k, and it is adjacent to at

most 2d(2k + 2d)(k + d)∆2k+2d − 1 events in Ak.

For any event A ∈ Ak, let

nk = (k + d)∆2(k+d),

xA = xk =
1

nk2k + 1
.

Then

xknk

1− xk
=

1

2k
,

∞
∑

k=1

xknk

1− xk
= 1, Nk ≥ nk2

k exp(4d(k + d)).

Therefore

xA
∏

B←A

(1− xB) ≥ xk(1− xk)
−1

∞
∏

k′=1

(1− xk′)
4d(k+d)n

k′

≥
1

nk2k

∞
∏

k′=1

exp

(

−xk′4d(k + d)nk′

1− xk′

)

=
1

nk2k
exp

(

−4d(k + d)

∞
∑

k′=1

xk′nk′

1− xk′

)

=
1

nk2k
exp (−4d(k + d))

≥ N−k.
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By Lovász Local Lemma, the probability of avoiding all the AP,k,s is pos-

itive. So there is an L-colouring c of the vertices of G so that for any k ≥ 1,

for any 0 ≤ s ≤ 2d, for any path P with 2k + s vertices, the first k vertices

are not coloured in the same way as the last k vertices.

Now for each vertex v of G, let Hv be a connected graph of tree-depth at

most d attached to G by identifying one of its vertices with v. We colour

each vertex x of Hv with a colour in L(x) which is different from the colour

of any ancestor of x, and also different from the colour of any vertex v′ of G

for which distG(v, v
′) ≤ 2d. Such a colouring exists, because |L(x)| = N =

⌈2(d + 1)∆2d+2e4d
2+4d⌉ ≥ ∆2d + d+ 1.

We shall show that the colouring c is nonrepetitive. Assume to the con-

trary that P = (x1, x2, . . . , x2r) is a repetitive path in G′. If both end vertices

x1 and x2r of P are vertices of G, then P is a path in G. By the first part

of this proof, P cannot be repetitive. Thus we may assume that the initial

vertex of P belong to Hv for some v of G. As proved in Lemma 4, P can-

not be contained in Hv. So x2r is either a vertex of G, or a vertex of Hv′

for some vertex v′ of G which is distinct from v. In particular, v ∈ V (P ).

As the colour c(v) is not used by any other vertex of Hv, we conclude that

V (P ) ∩ V (Hv) is contained in the first half of P , i.e., xr+1 /∈ Hv. Assume

|V (P ) ∩ V (Hv)| = t. As noticed in [11], tree-depth is minor monotone and

the tree-depth of a path of length L is ⌈log2(L + 2)⌉. It follows that the

longest path Hv has length at most 2z − 2 hence t ≤ 2z − 1. If the other end

vertex of P is a vertex of G, then P ′ = (xt, xt+1, . . . , x2r) is a path of G in

which the first r − t vertices of P ′ are coloured in the same way as the last

r − t vertices of P ′, contrary to the first part of this proof.

Assume x2r ∈ V (Hv′) for some vertex v′ of G distinct from v. By sym-

metry, we may assume that |V (P ) ∩ V (Hv′)| = t′ ≤ t. Then xr+1 ∈ V (G).

Since c(x1) = c(xr+1), by the colouring defined above, we conclude that

distG(v, xr+1) is at least 2d + 1. In particular, r ≥ 2d + 1 ≥ 2t. Now the

path P ′ = (xt, xt+1, . . . , xr, xr+1, . . . , x2r−t+1) is in G, and the first r−2t+2

vertices are coloured as the last r−2t+2 vertices, contrary to the first part of

this proof (where we consider k = r−2t+2 and s = 2t−4 ≤ 2z−6 = 2d). �
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