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Abstract. The notion of repetition threshold, which is the object of Dejean’s
conjecture (1972), was generalized by Ilie, Ochem, and Shallit in 2005, to
include the lengths of the avoided words. We give a lower and an upper bound
on this generalized repetition threshold.

1. Introduction

The study of repetitions in words has been one of the main topics in combina-
torics on words. Thue [13] showed the existence of an infinite square-free word on
three letters, that is without concatenated occurrences of the same non-empty fac-
tor. This fact was actually implied by the existence of an infinite binary overlap-free
word (i.e., without factors of the form uvuvu with u non empty).

A natural extension of this problem takes into account repetitions of a fractional
exponent, where the exponent of a non-empty finite word is the ratio between
its length and its period. This notion has been introduced by Dejean [7] and
Brandenburg [1]. Dejean proved the existence of an infinite word over a three-letter
alphabet without repetitions of exponent strictly greater than 7/4. This bound is
the best possible because every sufficiently long word over a three-letter alphabet
contains a repetition of exponent at least 7/4. The least real number α > 1 such
that there exists an infinite word on k letters avoiding repetitions of exponent
strictly greater than α is called the repetition threshold on k letters. Thus Thue’s
result implies that the repetition threshold on two letters is 2, while Dejean’s result
means that the repetition threshold on three letters is 7/4.

Dejean observed that for k ≥ 5, the repetition threshold is not smaller than
k

k−1 , while for k = 4 it is not smaller than 7/5. She conjectured that these are the
actual values of the repetition thresholds. This conjecture has been proved true
for k = 4 by Pansiot [11]. For k ≥ 5, the conjecture has been solved thanks to
the contribution of many authors: Moulin-Ollagnier [10], Currie and Mohammad-
Noori [3], Rao [12], Currie and Rampersad [6, 4, 5], and Carpi [2].

In [8] the authors generalize the repetition threshold of Dejean to handle avoid-
ance of repetitions with sufficiently long period. They define R(k, ℓ) as the least
real number α > 1 such that there exists an infinite word on k letters avoiding
repetitions of exponent strictly greater than α and period not smaller than ℓ. This
naturally extends the classical notion of repetition threshold. Moreover, in [8] its
value has been calculated in some particular cases and general lower and upper
bounds have been given. In this paper we improve these bounds by studying the
asymptotics of the generalized repetition threshold. Part of this paper was pre-
sented at the conference WORDS 2009.
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2. Definitions

Let α > 1 be a rational number, and let ℓ ≥ 1 be an integer. A word w is

an (α, ℓ)-repetition if w = (uv)nu, where |uv| = ℓ and α = |w|
ℓ . In this case α is

called exponent of the repetition and ℓ its period. Notice that in our definitions,
exponent and period of a repetition are not univocally defined. For instance, the
word aabcaabcaa on the alphabet {a, b, c} is a (5

2 , 4)-repetition, a (5
4 , 8)-repetition

and a (10
9 , 9)-repetition. We say a word (α, ℓ)-free if it contains no factor that is

an (α′, ℓ′)-repetition with α′ ≥ α and ℓ′ ≥ ℓ. We say a word (α+, ℓ)-free if it is
(α′, ℓ)-free for all α′ > α. Finally, a word is α-free if it does not contain a repetition
with exponent ≥ α and is α+-free if it is α′-free for all α′ > α.

Let Σk denote the k-letter alphabet {0, 1, . . . , k − 1}. For integers k ≥ 2 and
ℓ ≥ 1, the generalized repetition threshold R(k, ℓ) is defined as the smallest real
number α such that there exists an infinite (α+, ℓ)-free word over Σk. Indeed, there
always exists an infinite (R(k, ℓ)+, ℓ)-free word over Σk. Nevertheless, as pointed
out in [8], there is no known instance of a (R(k, ℓ), ℓ)-free infinite word. Finally,
notice that by definition, R(k + 1, ℓ) ≤ R(k, ℓ) and R(k, ℓ + 1) ≤ R(k, ℓ).

The finiteness of R(k, ℓ) is due to the existence of an infinite binary overlap-free
word. Ilie, Ochem and Shallit [8] also obtained a lower bound on R(k, ℓ), namely

1 +
ℓ

kℓ
≤ R(k, ℓ) ≤ 2.

The aim of the paper is to improve the above inequalities.
The case ℓ = 1 corresponds to the classical repetition threshold and the values of

R(k, 1) are now all determined. Moreover, the proof of our upper bound explicitly
uses the fact that R(k, 1) = k

k−1 for k ≥ 5.

3. Lower Bound

A natural way of obtaining a bound of the form R(k, ℓ) ≥ α is to show that there
is no infinite word over Σ∗

k which is (α, ℓ)-free. In this section we give lower bounds
on R(k, ℓ). We treat separately the cases k = 2, ℓ ≥ 2 (Theorem 1), k ≥ 2, ℓ = 2
(Theorem 4) and k, ℓ ≥ 3 (Theorem 14).

Theorem 1. R(2, ℓ) ≥ 1 + 2
ℓ+2 .

Proof. Suppose for the sake of contradiction that R(2, ℓ) < 1 + 2
ℓ+2 . That is, there

exists an infinite binary word w with no repetition of period ≥ ℓ and exponent
≥ 1 + 2

ℓ+2 . In particular, repetitions uvu such that |u| = 2 and ℓ ≤ |uv| ≤ ℓ + 2
cannot appear in w. Moreover, we can assume without loss of generality that w is
double-infinite, that is, infinite in both directions. We say that a factor is forbidden
if it cannot appear in w.

First, we check that the factor 0010 is forbidden. Indeed, if 0010 was a factor
of w, then w would have a factor of the form u1u20010v1v2, with |u1| = |v2| = 4,
|u2| = ℓ − 3 and |v1| = ℓ − 2. The following picture illustrates the situation.

• • • • 0010 • • • •
ℓ − 3 ℓ − 2

By previous considerations about the distances, we have that the blocks u1 and
v2 coincide necessarily with 1111. This creates a repetition of period 2ℓ + 3 and
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exponent 1 + 4
2ℓ+3 > 1 + 2

ℓ+2 . Hence the factor 0010 and, by symmetry, the factors
0100, 1101, and 1011, are forbidden.

Similarly, we check that the factor 0011 is forbidden. Otherwise we had a factor
of the form u1u20011v1v2, with |u1| = |v2| = 4 and |u2| = |v1| = ℓ − 3.

• • • • 0011 • • • •
ℓ − 3 ℓ − 3

The block u1 on the left of the factor 0011 must be of the form •10• , then 110• ,
and finally 1100 since 1101 is forbidden. The block v2 on the right of the factor 0011
must be of the form •10 • , then •100 , and finally 1100 since 0100 is forbidden.
This creates a repetition of period 2ℓ + 2 and exponent 1 + 2

ℓ+1 > 1 + 2
ℓ+2 .

The factor 001 is forbidden because 0010 and 0011 are forbidden. By symmetry,
100, 110, and 011 are also forbidden. Thus, the only remaining possibilities for w are
the words ω0ω, ω1ω, and ω(01)ω, which obviously contain repetitions of arbitrarily
great exponent and period. �

Theorem 1 is certainly not optimal, since numerical evidences suggest that
R(2, ℓ) = 1 + 1

ℓ/3+1 for ℓ ≥ 6, ℓ = 0 (mod 3). We also mention that Kolpakov

and Rao [9] have proved that R(3, ℓ) ≥ 1 + 1
ℓ , which would be a tight lower bound

for the conjecture in [8] that R(3, ℓ) = 1 + 1
ℓ for ℓ ≥ 2.

We now consider the problem for a general k. The (α, ℓ)-freeness of a word im-
poses conditions on the length of some of its factors. Such conditions are described
in the following, and will be used in the proof of Theorem 4 and Theorem 14.

Definition 2. Let k, ℓ be integers, let m ≥ ℓ be a real number, and let a be a letter
in Σk. We denote by L(k, ℓ, m, a) the language of the words w over Σk such that

the following conditions (Cℓ,m
i ) hold for 1 ≤ i ≤ ℓ

(Cℓ,m
i ): if aixai is a subword of w, then |aix| > im or |aix| < ℓ.

We denote by L(k, ℓ, m) the language
⋂

a∈Σk

L(k, ℓ, m, a).

Proposition 3. Let k, ℓ be integers, m ≥ ℓ be a real number, and w ∈ Σ∗
k. If w is

(1 + 1
m , ℓ)-free, then, w ∈ L(k, ℓ, m).

Proof. Let a be a letter in Σk. Let i ∈ {1, . . . , ℓ} be an integer. Suppose that w

does not satisfy condition (Cℓ,m
i ), i.e., there exists a subword aixai of w such that

ℓ ≤ |aix| ≤ im. Then, aixai is a repetition with period |aix| ≥ ℓ, and exponent

|aixai|
|aix| = 1 +

i

|aix| ≥ 1 +
1

m
.

Hence w is not (1 + 1
m , ℓ)-free. �

First we consider the case ℓ = 2, and look for a lower bound of R(k, 2).

Theorem 4. Let k ≥ 2. We have

R(k, 2) ≥ 1 +
1

m
,

where m = 1 +
⌊

3
2 (k − 1)

⌋

.
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Proof. As m = 1 +
⌊

3
2 (k − 1)

⌋

, we observe that 2m + 3 ≥ 3k + 1. Hence we have

(2m + 3)k > 3k2 + (k − 1). Consider r = 3k + 1 and a word w ∈ Σ∗
k such that

|w| = rk + 1. Then, there exists a letter a ∈ Σk such that

|w|a ≥ r + 1 = 3k + 2.

Suppose that w is (1+ 1
m , 2)-free. Then, as m = 1+

⌊

3
2 (k − 1)

⌋

≥ 2, by Proposition 3,
the word w ∈ L(k, 2, m, a).

Conditions (C2,m
1 ) and (C2,m

2 ) imply that in w there are at least m letters between
two non-consecutive occurrences of the letter a and at least 2m− 1 letters between
two occurrences of the factor aa.

We prove by induction on s ∈ N that any word in L(k, 2, m, a) containing 3s + 2
occurrences of the letter a is not shorter than (2m + 3)s + 2.

This is evident for s = 0. If the statement is true up to s, consider a word
v ∈ L(k, 2, m, a) containing 3(s + 1) + 2 occurrences of the letter a. Then v can be
written as

v = v1v2 . . . vs+2

where v1 contains exactly two occurrences of a and for each i ≥ 2, the factor vi

begins with a letter a and contains exactly three occurrences of this letter. Clearly
we have that |vs+2| ≥ 2m + 2.

If the last letter of vs+1 is different from a, we have that the last m letters of
vs+1 are different from a and we apply the inductive hypothesis on the prefix of v of
length |v1v2 . . . vs+1|−m. Thus |v| ≥ (2m+3)s+2+m+2m+2 ≥ (2m+3)(s+1)+2.

Otherwise, suppose that the last letter of vs+1 is a. If for each 2 ≤ i ≤ s + 1,
the last letter of the factor vi is a, then this factor vi has the form axiayia with
|xi|a = |yi|a = 0. Thus

v = v1a x2 a y2 aa x3 a y3 a . . . a xs a ys aa xs+1 a ys+1 a vs+2

and for each i ≥ 3 we have |xi| ≥ m and |yi| ≥ m. Moreover |v1| ≥ m + 2 and
|x2|+|y2| ≥ 2m−1. This implies |v| ≥ m+2+3+2m−1+(2m+3)(s−1)+2m+2 ≥
(2m + 3)(s + 1) + 2.

Finally, if for some 2 ≤ i ≤ s the factor vi does not end with a, we can apply the
induction hypothesis on a proper prefix of v, and similar arguments on the lengths
as before, to conclude that |v| ≥ (2m + 3)(s + 1) + 2.

Hence

|w| ≥ (2m + 3)k + 2

> 3k2 + k + 1 = rk + 1,

which is a contradiction since |w| = rk+1. Thus, there is no infinite (1+ 1
m , 2)-free

word over Σk, and

R(k, 2) ≥ 1 +
1

m
.

�

In Theorem 14, the result of Theorem 4 is generalized to any ℓ ≥ 3. The proof
also uses considerations on letter frequencies in the words of L(k, ℓ, m). In the
following, ℓ is a fixed integer greater than 2.

Definition 5. Let a ∈ Σk. A word w = w1 . . . w|w| ∈ Σ∗
k is of type Sa if 1 ≤ |w| ≤ ℓ,

w1 = w|w| = a, and if b1b2 6∈ Fact(w) for each b1, b2 ∈ Σk \ {a}.
Notice that any word of type Sa is in L(k, ℓ, m, a), for any real number m ≥ ℓ.
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Definition 6. Let a ∈ Σk. Let w be a word of type Sa. The weight pa(w) of w is
defined by

pa(w) = max{j ∈ N | aj ∈ Fact(w)}.

Notice that 1 ≤ pa(w) ≤ ℓ for each word w.

Proposition 7. Let a ∈ Σk. Let w be a word of type Sa. We have

|w|a ≤ ℓ −
⌊

ℓ

pa(w) + 1

⌋

=

⌈

ℓ · pa(w)

pa(w) + 1

⌉

.

Proof. Let us denote p = pa(w), and write w as

w = z1z2 . . . znz,

where n ∈ N, |zi| = p + 1, for 1 ≤ i ≤ n, and |z| = r ≤ p. For each i, we have
|zi|a ≤ p (because ap+1 6∈ Fact(w)), and |z|a ≤ |z|. Hence

|w|a ≤ np + r = |w| −
⌊ |w|

p + 1

⌋

≤ ℓ −
⌊

ℓ

p + 1

⌋

=

⌈

ℓp

p + 1

⌉

.

�

Definition 8. Let a ∈ Σk. A word w = w1 . . . w|w| ∈ Σ∗
k is of type S′

a if |w| ≤ ℓ,
w1 = w|w| = a.

Definition 9. Let a ∈ Σk and m ≥ ℓ be a real number. A word w ∈ Σ∗
k is of type

La if |w| > m − 1 and |w|a = 0.

Notice that any word of type La is in L(k, ℓ, m, a).

Lemma 10. Let k, ℓ be integers, let m ≥ 2ℓ − 2 be a real number, a ∈ Σk, and
w ∈ L(k, ℓ, m, a). Then w can be written as

w = xs′1l1s
′
2l2 . . . lr−1s

′
ry,

where r ∈ N (if r = 0 then w = x), each word s′i is of type S′
a, each word li is of

type La and |x|a = |y|a = 0.

Proof. As w ∈ L(k, ℓ, m, a), w satisfies condition (Cℓ,m
1 ): if axa is a subword of w,

then, |axa| > m + 1 or |axa| < ℓ + 1.
If |w|a = 0, we have the result with x = w and r = 0.

Now, if |wa| > 0, let us write w = xw′y, where w′ begins and ends with a,
while x and y do not contain a. The maximal factors without a’s in w′ either have
length < ℓ − 1, or length > m − 1. Take the latter factors as l1, . . . , lr−1 to get
the factorization w = xs′1l1s

′
2 . . . lr−1s

′
ry. Each s′i begins and ends with a, all other

blocks do not contain a, and by definition, |li| > m− 1 for all i. Thus, to prove the
lemma, it suffices to show that |s′i| ≤ ℓ for any i. If it is not the case, then for some
s′i = aua, we have |s′i| > m + 1. Then |u| > m − 1, and u contains the letter a by
construction. So we have s′i = au1au2a. At least one of the words au1a and au2a
has length > m+1, because if both have length > ℓ−1, then |s′i| < 2ℓ−3 ≤ m+1.
Thus, u1 also contains a, and we repeat the argument to get a contradiction after
a finite number of steps.

�
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Proposition 11. Let k, ℓ be integers, let m ≥ 2ℓ − 2 be a real number, a ∈ Σk

and w ∈ L(k, ℓ, m, a). There exists a word w̃ in L(k, ℓ, m, a), such that |w̃| = |w|,
|w̃|a = |w|a and w̃ can be written as

w̃ = xs1l1s2l2 . . . lr−1sry,

where r ∈ N (if r = 0 then w̃ = x), each word si is of type Sa, each word li is of
type La, and |x|a = |y|a = 0.

Proof. By Lemma 10, w is of the form:

w = x′s′1l
′
1s

′
2 . . . l′r−1s

′
ry

′,

where r ∈ N, x′, y′ ∈ (Σk \ {a})∗, s′i are words of type S′
a, and l′i are words of type

La. For each 1 ≤ i ≤ r, let us consider the factor s′i, and iterate the rewriting rules
b1b2a 7→ b1ab2, ∀b1, b2 ∈ Σk \ {a}, on it. After each iteration, with regard to the
lexicographic order (where a ≺ b, ∀b ∈ Σk \ {a}), we get a smaller word, because
b1ab2 ≺ b1b2a. So the iteration finishes, and we get a word of the form sixi, where
si is a word of type Sa, and where xi ∈ (Σk \ {a})∗. We remark that |si| ≤ |s′i|,
|sixi| = |s′i|, |si|a = |s′i|a, and |sixi|a = |s′i|a, since the iteration conserves the
number of occurrences of each letter in s′i.

Finally, let w̃ = xs1l1s2l2 . . . lr−1sry, where x = x′, y = xry
′, and li = xil

′
i.

It is clear that |w̃| = |w| and |w̃|a = |w|a. It is then sufficient to prove that

w̃ ∈ L(k, ℓ, m, a). Condition (Cℓ,m
1 ) is clearly satisfied by definition of the types Sa

and La. Let now j ∈ [2, . . . , ℓ] and z ∈ Σ∗
k be such that ajzaj ∈ Fact(w̃).

Then, as w ∈ L(k, ℓ, m, a), we have |ajz| = |ajz′| > jm+1, and condition (Cℓ,m
j )

holds.
The letter a moved by the iteration of the rewriting rules always has some letter b

on its immediate left. Hence the iteration cannot result in a new factor aj . So, if w̃
contains ajzaj , then w contains ajz′aj , where |z′| = |z|. Then, as w ∈ L(k, ℓ, m, a),

we have |ajz| = |ajz′| > jm, and condition (Cℓ,m
j ) holds.

�

Lemma 12. Let p ≥ 1 be an integer. Let v be a word in L(k, ℓ, m, a), of the form
described in Proposition 11:

v = xs1l1s2l2 . . . lr−1sry,

and where the words si of type Sa are such that pa(si) = p for each i = 1, . . . , r.
Then,

r <

{

1 + |v|−1
m if p = 1

1 + |v|−p
p(m+1)−ℓ if p > 1.

Proof. Consider two consecutive blocks si and si+1, with 1 ≤ i ≤ r − 1. As they
have weight p, they both contain ap as a factor. So, silisi+1 has a factor apuap,
and by condition (Cℓ,m

p ), we have |apuap| > p(m + 1). So |silisi+1| > p(m + 1).
But |si+1| ≤ ℓ, by definition of the type Sa. Thus, ∀1 ≤ i ≤ r − 1,

|sili| > p(m + 1) − ℓ.

Moreover, |s − r| ≥ p. Then,

|v| ≥
r−1
∑

i=1

|sili| + |s − r| > (r − 1) (p(m + 1) − ℓ) + p,
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and we deduce that

r < 1 +
|v| − p

p(m + 1) − ℓ
.

In the case p = 1, we can have a better bound: as |li| > m−1 and |si| ≥ 1, we have

|sili| > m,

hence

r < 1 +
|v| − 1

m
.

�

Proposition 13. Let k, ℓ be integers, let ξ ≥ 2 be a real number, let m ≥ ξ(ℓ − 1)
be a real number, a ∈ Σk, and w ∈ L(k, ℓ, m, a). We have

|w|a
|w| <















2
|w| + 1

m · 3ξ−1
2ξ−1 if ℓ = 2

ℓ
|w| + 1

m

(

ℓ − (ξ−1)(ℓ−1)
2(2ξ−1) − ξ2(ℓ−2)

(ξℓ−1)(2ξ−1)

)

if ℓ ≥ 3.

Proof. By Proposition 11, we can assume without loss of generality that

w = xs1l1s2l2 . . . lr−1sry,

where r ∈ N, each word si is of type Sa, each word li is of type La, and |x|a =
|y|a = 0. Words of type La contain no occurrences of a thus, by Proposition 7,

|w|a =

r
∑

i=1

|si|a ≤
ℓ
∑

p=1

np(w)

⌈

ℓp

p + 1

⌉

,

where

np(w) = #{i ∈ [1, . . . , r] | pa(si) = p}.
For any 1 ≤ j ≤ ℓ, we denote

qj(w) =
∑

p≥j

np(w) = #{i ∈ [1, . . . , r] | pa(si) ≥ j}.

For any 1 ≤ p ≤ ℓ − 1, we have np(w) = qp(w) − qp+1(w), and nℓ(w) = qℓ(w).
Hence

|w|a ≤
ℓ−1
∑

p=1

(qp(w) − qp+1(w))

⌈

ℓp

p + 1

⌉

+ qℓ(w)

⌈

ℓ2

ℓ + 1

⌉

=

ℓ
∑

p=1

qp(w)

(⌈

ℓp

p + 1

⌉

−
⌈

ℓ(p − 1)

p

⌉)

.

Let n = |w|. Because of Proposition 11, it makes sense to speak of qp(v) for any
word v ∈ L(k, ℓ, m, a). Thus for any 1 ≤ p ≤ ℓ, we have

qp(w) ≤ max{qp(v) | v ∈ L(k, ℓ, m, a), and |v| = n}.
If v reaches this maximum, by replacing some occurrences of a by any other letter,
we construct a word v′ such that |v′| = |v| and ni(v

′) = 0 for each i 6= p. So,

qp(w) ≤ max{qp(v) | v ∈ L(k, ℓ, m, a), |v| = n, and ni(v) = 0, ∀i 6= p}.
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Finally, if ni(v) = 0 for each i 6= p, then qp(v) = np(v), and we obtain

qp(w) ≤ max{np(v) | v ∈ L(k, ℓ, m, a), |v| = n, and ni(v) = 0, ∀i 6= p}

<

{

1 + n−1
m if p = 1

1 + n−p
p(m+1)−ℓ if p > 1,

by Lemma 12. Hence

|w|a <

ℓ
∑

p=1

(⌈

ℓp

p + 1

⌉

−
⌈

ℓ(p − 1)

p

⌉)

+
(n − 1)

⌈

ℓ
2

⌉

m
+

ℓ
∑

p=2

(n − p)
(⌈

ℓp
p+1

⌉

−
⌈

ℓ(p−1)
p

⌉)

p(m + 1) − ℓ

≤ ℓ +
n
(

ℓ −
⌊

ℓ
2

⌋)

m
+

ℓ
∑

p=2

n
(⌊

ℓ
p

⌋

−
⌊

ℓ
p+1

⌋)

p(m + 1) − ℓ

≤ ℓ +
n

m



ℓ −
⌊

ℓ

2

⌋

+

ℓ
∑

p=2

⌊

ℓ
p

⌋

−
⌊

ℓ
p+1

⌋

p − 1
ξ



 .

Indeed, from m ≥ ξ(ℓ − 1) follows p(m + 1) − ℓ ≥ (p − 1
ξ )m. Then, if ℓ = 2,

|w|a
|w| <

2

n
+

1

m
· 3ξ − 1

2ξ − 1
,

and if ℓ ≥ 3 we have

|w|a < ℓ +
n

m



ℓ −
⌊

ℓ

2

⌋

· ξ − 1

2ξ − 1
−

ℓ
∑

p=3

⌊

ℓ

p

⌋

1
(

p − 1
ξ

)(

p − 1 − 1
ξ

)



 .

Since

ℓ
∑

p=3

⌊

ℓ

p

⌋

1
(

p − 1
ξ

)(

p − 1 − 1
ξ

) ≥
ℓ
∑

p=3

1
(

p − 1
ξ

)(

p − 1 − 1
ξ

)

=
ξ2(ℓ − 2)

(ξℓ − 1)(2ξ − 1)
,

we obtain

|w|a
|w| <

ℓ

n
+

1

m

(

ℓ − (ξ − 1)(ℓ − 1)

2(2ξ − 1)
− ξ2(ℓ − 2)

(ξℓ − 1)(2ξ − 1)

)

.

�

Theorem 14. For any k ≥ 3, ℓ ≥ 3, we have R(k, ℓ) ≥ 1 + 1
m , where

m =

(

5

6
ℓ − 1

2
+

2

2ℓ − 1

)

k.

Proof. Let N > 0 be an integer and mN =
(

5
6ℓ − 1

2 + 2
2ℓ−1 + 1

N

)

k. Let v ∈ Σ∗
k.

Suppose v is (1 + 1
mN

, ℓ)-free, and |v| ≥ N · ℓ · mN .

As k ≥ 3, we have mN ≥ 5
2ℓ − 3

2 ≥ ℓ. Thus, by Proposition 3, v ∈ L(k, ℓ, mN ).
Moreover, as Σk is the k-letter alphabet, there exists a letter a in Σk such that
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|v|a
|v| ≥ 1

k . Then, by Proposition 13 with ξ = 2 (notice that mN ≥ 5
2ℓ− 3

2 ≥ 2ℓ− 2),

and since |v| ≥ N · ℓ · mN , we have

1

k
≤ |v|a

|v| <
ℓ

|v| +
1

mN

(

5

6
ℓ − 1

2
+

2

2ℓ − 1

)

≤ 1

mN

(

5

6
ℓ − 1

2
+

2

2ℓ − 1
+

1

N

)

.

Then, we have

mN <

(

5

6
ℓ − 1

2
+

2

2ℓ − 1
+

1

N

)

k.

Hence we have a contradiction because mN =
(

5
6ℓ − 1

2 + 2
2ℓ−1 + 1

N

)

k, and

R(k, ℓ) ≥ 1 +
1

mN
.

Finally, as m = lim
N→+∞

mN , we have

R(k, ℓ) ≥ 1 +
1

m
.

�

Remark 15. For ℓ = 2, the result of Proposition 13 and the same arguments as in
the proof of Theorem 14 give R(k, 2) ≥ 1 + 1

m with m = 5k
3 , which is not as good

as the bound of Theorem 4.

Remark 16. Theorem 14 gives a general result and its proof is based on estimations
used in Proposition 13. In order to have better results in some particular cases, one
could improve these estimations as follows.

– For small values of ℓ, we can explicitly compute the value of the sum

ℓ
∑

p=3

⌊

ℓ

p

⌋

1

(p − 1
ξ )(p − 1 − 1

ξ )

in Proposition 13, instead of taking a lower bound for it. For example, for
ℓ = 6, we get R(k, 6) ≥ 1 + 1

m , with m = 1457k
330 .

– In the proof of Theorem 14, we choose ξ = 2 in applying Proposition 13.
As it appears clear from the statement of this latter proposition, a greater

ξ would give a better upper bound on the frequency |w|a
|w| . Though, we need

ξ ≤ m
ℓ−1 and this implies a constraint on k. For example, if k ≥ 5 one can

choose ξ = 3 and get m = (4
5ℓ − 2

5 + 3
3ℓ−1 )k .

4. Upper bound

In this section we explicitly use the fact that Dejean’s conjecture is proved for
K ≥ 5. We describe a morphism from a K-letter alphabet to a k-letter one that

transforms an infinite
(

K
K−1

)+

-free word into a word in which the sufficiently large

repetitions are of exponent not much greater than K
K−1 .

Let Sk,t be the set of words of length t over Σk of the form 0ew where e ≥ 2,
|w| ≥ 1, the first and the last letter of w are different from 0, and w does not
contain 00 as a factor. For example, we have S2,5 = {00001, 00011, 00101, 00111}.
Let K = |Sk,t| and let h be a t-uniform morphism h : Σ∗

K → Σ∗
k such that the set of
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h-images of letters in ΣK is Sk,t. Now, if K ≥ 5, we consider the h-image of some

infinite
(

K
K−1

)+

-free word over ΣK .

A uniform morphism h : A∗ → B∗ is said to be comma-free if for any a, b, c ∈ A
and s, r ∈ B∗, h(ab) = rh(c)s implies that either r = ε and a = c or s = ε and
b = c.

Remark 17. A comma-free morphism h is always injective (actually it is injective
on the set A of monoid generators). Moreover, if it is t-uniform, then for each
factor u of a word in h(A∗) such that |u| ≥ 2t−1, there exists a unique factorization
u = xh(u′)y where u′ ∈ A∗ and 0 ≤ |x|, |y| < t.

Lemma 18. The t-uniform morphism h : Σ∗
K → Σ∗

k defined above is comma-free.

Proof. Suppose that the h is not comma-free. Then there exist a, b, c ∈ ΣK and
s, r ∈ Σ∗

k such that h(ab) = rh(c)s = w[1, . . . , 2t] with 0 < |r| < t. We obtain a
contradiction for every possible value of |r|:

– if |r| = 1 or |r| = 2, then the letter w[t + |r|] is 0 in h(ab) and is not 0 in
rh(c)s,

– if |r| = t − 1 or |r| = t− 2, then the letter w[t] is not 0 in h(ab) and is 0 in
rh(c)s,

– if 2 < |r| < t−2, then h(c) contains the factor w[t, . . . , t+2]. In h(ab), this
factor is of the form x00 with x 6= 0, whereas factors of this form do not
exist in h(c).

�

In order to get the mentioned repetition-freeness property in h(Σ∗
K), we use

the following lemma. For any real number ℓ ≥ 1, we write (α+, ℓ)-free to mean
(α+, ⌈ℓ⌉)-free and hence R(k, ℓ) to mean R(k, ⌈ℓ⌉).

Lemma 19. Let α, β ∈ R, 1 < α < β < 2. Let h : A∗ → B∗ be a comma-free
t-uniform morphism. If w ∈ A∗ is α+-free, then h(w) is (β+, 2t−2

β−α )-free.

Proof. Let uvu be a β′-repetition in h(w) with β′ > β. Suppose |u| ≥ 2t−1. Hence
u contains an h-image and it can be uniquely written as xh(u′)y with 0 ≤ |x|, |y| < t.
Thus this h-image ū = h(u′) appears at the same position of u in uvu.

The factor v̄ = yvx is an h-image. We have that ūv̄ū is the h-image of a repetition

in w and hence |ūv̄ū|
|ūv̄| ≤ α. Moreover, β′ = |ūv̄ū|

|ūv̄| + |x|+|y|
|uv| and β′ > β implies that

|x|+|y|
|uv| > β − α. Hence

|uv| <
|xy|

β − α
≤ 2t − 2

β − α
.

Suppose now that |u| ≤ 2t − 2. Hence β′ > β implies that |u|
|uv| > β − 1. Thus

|uv|
|u| < 1

β−1 and

|uv| <
|u|

β − 1
≤ 2t − 2

β − 1
<

2t − 2

β − α
.

�

Recall that, by definition, if there exists a (β+, ℓ)-free infinite word over Σk then
R(k, ℓ) ≤ β.
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Corollary 20. Let h : Σ∗
K → Σ∗

k be a comma-free t-uniform morphism as above.

If β ∈ R, K
K−1 < β < 2, and K ≥ 5, then R

(

k, 2t−2
β− K

K−1

)

≤ β.

We now compute K = Kk,t. Consider the prefixes of length (t− 1) of the words
in Sk,t:

– Kk,t−1 of them are such that the last letter is not 0,
– Kk,t−2 of them are such that the last letter is 0 and the penultimate letter

is not 0,
– one them is the word 0t−1.

Each prefix can be extended by one of the (k − 1) letters distinct from 0 to get a
word in Sk,t, so Kk,t satisfies the recurrence relation

Kk,1 = Kk,2 = 0, Kk,t = (k − 1)(Kk,t−1 + Kk,t−2 + 1).

Solving this relation, we obtain that

Kk,t =
k − 1

(2k − 3)
√

(k − 1)(k + 3)

(

λt − µt − (k − 2)(λt−1 − µt−1)
)

− k − 1

2k − 3
,

where λ =
(k−1)+

√
(k−1)(k+3)

2 and µ =
(k−1)−

√
(k−1)(k+3)

2 .
We thus have

Kk,t = Ckλt−1 − O(1), where Ck =
(k − 1)(

√

(k − 1)(k + 3) − k + 3)

2(2k − 3)
√

(k − 1)(k + 3)
.

For each real number α, ⌊α⌉ denotes the nearest integer to α.

Theorem 21. R(k, ℓ) ≤ 1 + 2 ln ℓ
ℓ ln λ + O

(

1
ℓ

)

if k is fixed and ℓ tends to infinity.

Proof. Let us fix t =
⌊

ln ℓ
lnλ

⌉

+ 1 and β = 1 + 2t−2
ℓ + 1

K−1 . For ℓ sufficiently large,
we have t ≥ 6 which ensures that K ≥ 5, and we also have β < 2. We can thus use
Corollary 20, which gives

R(k, ℓ) = R

(

k,
2t − 2

β − K
K−1

)

≤ β = 1 +
2t − 2

ℓ
+

1

K − 1
.

Since
2t − 2

ℓ
=

2
⌊

ln ℓ
lnλ

⌉

ℓ
=

2 ln ℓ

ℓ lnλ
+ O

(

1

ℓ

)

and
1

K − 1
=

1

Ckλt−1 − O(1)
=

1

Ckλ⌊ ln ℓ

ln λ⌉ − O(1)
= O

(

1

ℓ

)

,

the result follows. �

5. An example

Let us illustrate our results with a concrete example: k = 8 and ℓ = 100. Theo-

rem 14 gives R(8, 100) ≥ 1 +
((

5
6 × 100 − 1

2 + 2
199

)

× 8
)−1

= 1.001508871 . . . . For
the upper bound, we have to decide which morphism h will be used, or equivalently
to choose the value of the parameter t. For a given t, we can compute K = Kk,t

and then the bound β = 1 + 2t−2
ℓ + 1

K−1 . So, we have to choose t so that β is

minimized. The choice of t =
⌊

ln ℓ
ln λ

⌉

+1 in Theorem 21 is well-suited to get such an
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asymptotic result, but for a given pair (k, ℓ) like this example, it is better to make
a specific case study.

– If t = 3, then K = 7 and β = 181
150 = 1.20666666 . . . .

– If t = 4, then K = 56 and β = 593
550 = 1.07818181 . . . .

– If t = 5, then K = 448 and β = 12094
11175 = 1.08223713 . . . .

Since β gets bigger if t > 5, the minimum is reached at t = 4, whereas
⌊

ln ℓ
ln λ

⌉

+1 = 3.

We thus obtain R(8, 100) ≤ 593
550 ≤ 1.078182.

6. Conclusion

For k fixed and ℓ tending to infinity, we know now in particular that the asymp-
totics of the generalized repetition threshold R(k, ℓ) is between 1 + Ω(1/ℓ) and
1+O(ln ℓ/ℓ). New ideas are needed to settle this and other questions about R(k, ℓ),
such as good estimates for R(k, 2) or R(k, k). The case 1.001848 < R(8, 100) <
1.078182 suggests that there is still room for improvement.
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