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Abstract

We study whether the entropy (or growth rate) of minimal forbidden
patterns of symbolic dynamical shifts of dimension 2 or more, is a conju-
gacy invariant. We prove that the entropy of minimal forbidden patterns
is a conjugacy invariant for uniformly semi-strongly irreducible shifts. We
prove a weaker invariant in the general case.
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1 Introduction

Symbolic dynamical systems are often defined by a set of forbidden patterns. In
dimension two for instance, a shift is the set of labellings of the square lattice,
called configurations, which avoid any forbidden pattern. Shifts of finite type are
those which can be defined by a finite set of forbidden patterns. This property
is a conjugacy invariant, see for instance [20] or [16]. Many natural examples
of two-dimensional shifts of finite type arise from lattice systems in statistical
mechanics [1].

The dynamic of multi-dimensional shifts is much more complex than the
one of one-dimensional shifts. For instance the entropy of a shift, which is
a conjugacy invariant that gives the complexity of the allowed patterns (i.e.
patterns contained in some configuration of the shift), is easily computable for
a one-dimensional shift of finite type. It leads to remarkable difficult problems
even for the simplest examples in dimension two.
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In [3] has been introduced the notion of minimal forbidden word for a one-
dimensional shift: a word is minimal forbidden if it is forbidden and if all its
proper factors are allowed words of the shift. The set of minimal forbidden words
is finite for a shift of finite type. The entropy, or complexity, of the set of minimal
forbidden words is a conjugacy invariant for one-dimensional shifts. Moreover
this invariant is independent of some other known invariants like the entropy
of the shift or the zeta function for instance. Note that this invariant is not
meaningful for shifts of finite type, or it just says that shifts of finite type are only
conjugate to shifts of finite type, which is well known. Minimal forbidden words
have applications in several areas like lossless compression (data compression
using antidictionaries [7]) and also reconstruction of DNA sequences from its
fragments (the fragment assembly problem [4], [18] and [21]).

In this paper, we study the notion of minimal forbidden patterns for multi-
dimensional shifts, with the goal to provide some new conjugacy invariants for
multi-dimensional shifts. We give two notions of minimal forbidden patterns.
The first one is the direct extension of the notion of minimal forbidden words
for one-dimensional shifts. It can be considered for patterns with a square
or rectangular shape. For instance, a square is minimal forbidden if it is a
forbidden pattern such that each strict subsquare is allowed. It turns out that
this definition is too weak. Indeed, a shift of finite type can have an infinite
number of minimal forbidden patterns of this type. Thus we consider a stronger
notion which leads to much less minimal forbidden patterns. In dimension two
for instance, a forbidden square of size n is minimal for this stronger notion
if it is contained in a configuration c such all squares of c of size n − 1 are
allowed patterns of the shift. These two notions coincide in dimension one.
Another main difference between the one-dimensional and higher dimensional
case appears with the computational point of view. The computation of the
set of minimal forbidden words for one-dimensional shifts of finite type, or one-
dimensional sofic shifts, and the computation of its growth rate is easily done in
polynomial time (see [6] and [2]), while the problem seems to have at least the
same difficulty as the problem of computing the entropy of the shift in dimension
two. It is also undecidable to check whether a given pattern is contained in a
configuration of a given shift of finite type (see [14] for instance).

For a multi-dimensional shift X , we denote by h1(X) the complexity of the
strong minimal forbidden patterns and by h2(X) the complexity of the weak
minimal forbidden patterns. We prove two partial results of invariance under
conjugacy. First, if X and Y are two conjugate shifts, h1(X) ≤ h2(Y ). Second,
the strong entropy h1(X) of minimal forbidden patterns is a conjugacy invariant
for shifts which are uniformly semi-strongly irreducible. This latter property is
a property of irreducibility of shifts of finite type approximating the shift from
the outside. It is always satisfied by one-dimensional irreducible sofic shifts.
We prove our main results for square shapes and the results are valid for any
dimension. The proofs of these results cannot be generalized in the case of
rectangular shapes.

The paper is organized as follows. In Section 2, we recall some basic defi-
nitions from symbolic dynamics. The reader is referred to [15] or [13] for more
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details, see also [14], [20], and [16] for multi-dimensional shifts, [8] for shifts on
Cayley graphs. We define here the notions of minimal forbidden patterns, the
weaker and the stronger. We prove our main results in Section 3.

2 Definitions and examples

2.1 Background on shifts and conjugacies

We recall here some basic definitions and properties about multi-dimensional
shifts and conjugacies. We also fix some notations.

Let A be a finite alphabet and d be a positive integer. The d-dimensional

full A-shift is the set AZ
d

of all functions c : Z
d → A. In the language of cellular

automata we have a space in which the “universe” is the integer lattice Z
d and

a configuration is an element of AZ
d

, that is a function assigning to each cell of

the grid a letter of A. On this set we have a natural metric: if c1, c2 ∈ AZ
d

are
two configurations, we define the distance

dist(c1, c2) :=
1

n + 1
,

where n is the least natural number such that c1 6= c2 in Dn := [−n, n]d. If such
an n does not exist, that is if c1 = c2, we set their distance equal to zero. This
metric induces a topology equivalent to the usual product topology, where the
topology in A is the discrete one. In the sequel we focus on the case d = 2.

The group Z
2 acts on AZ

2

as follows:

(cγ)|α := c|γ+α

for each c ∈ AZ
2

and each γ, α ∈ Z
2, where c|α is the value of c at α and the

addition is the usual operation in the direct sum Z
2.

Now we give a topological definition of a shift space (briefly shift). As stated
in Proposition 2.2, this definition is equivalent to the classical combinatorial
one.

Definition 2.1 A subset X of AZ
2

is called a shift if it is topologically closed
and Z

2-invariant.

Here Z
2-invariance means that X is invariant under the action of Z

2 on AZ
2

(that is cγ ∈ X for each c ∈ X and each γ ∈ Z
2). Notice that this is equivalent

to have c(1,0) ∈ X and c(0,1) ∈ X for each c ∈ X .
A pattern is a function p : E → A, where E is a non-empty finite subset

of Z
2. The set E is called the support of the pattern. In the sequel, we do not

distinguish between a pattern p with support E and the pattern obtained by
copying p on a translated support of E. A block is a pattern with a connected
support. A pattern (resp. block) of X is the restriction of a configuration of X
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to a finite (resp. a finite connected) subset of Z
2. Notice that, being a shift

Z
2-invariant, these notions are independent of the position of their supports.

We denote by B(X) the set of blocks of a shift X and by Bn(X) the set of
square blocks of size n of X . If X is a subshift of AZ, a configuration is a bi-
infinite word and a block of X is a finite word appearing in some configuration
of X .

Let F be a set of patterns, we denote by XF the set of all configurations of
AZ

2

avoiding each pattern of F . It is easy to prove that the topological definition
of a shift space is equivalent to the following combinatorial one involving the
avoidance of certain forbidden patterns.

Proposition 2.2 A subset X ⊆ AZ
2

is a shift if and only if there exists a set
of patterns F such that X = XF . In this case, F is a set of forbidden patterns
of X.

Definition 2.3 Let X be a subshift of AZ
2

. A map τ : X → AZ
2

is k-local if
there exists δ : B2k+1(X) → A such that for every c ∈ X and γ ∈ Z

2

(τ(c))|γ = δ((cγ)|Dk
) = δ(c|γ+α1

, c|γ+α2
, . . . , c|γ+αm

),

where α1, . . . , αm denote the elements of Dk = [−k, k]2.

In this definition, we have assumed that the alphabet of the shift X is the
same as the alphabet of its image τ(X). In this assumption there is no loss of

generality because if τ : X ⊆ AZ
2

→ BZ
2

, one can always consider X as a shift
over the alphabet A ∪ B.

It is known from the Curtis-Lyndon-Hedlund theorem that local maps are
exactly the functions which are continuous and commute with the Z

2-action
(i.e. for each c ∈ X and each γ ∈ Z

2, one has τ(cγ) = τ(c)γ). Hence if a local
map is one-to-one and onto, its inverse is also a local map.

This result leads us to give the following definition.

Definition 2.4 Two subshifts X, Y ⊆ AZ
2

are conjugate if there exists a lo-
cal bijective map between them (namely a conjugacy). The invariants are the
properties of a shift invariant under conjugacy.

The basic definition of a shift of finite type is in terms of forbidden patterns.
In a sense we may say that a shift is of finite type if we can decide whether or
not a configuration belongs to the shift only by checking its blocks of a fixed
(and only depending on the shift) size.

Definition 2.5 A shift is of finite type if it admits a finite set of forbidden
blocks.

We will see later some examples of shifts of finite type.
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Definition 2.6 If X ⊆ AZ
2

is a shift, the entropy of X is defined as

h(X) := lim
n→∞

log |Bn(X)|

n2
. (1)

We will always use the base 2 for logarithms.

The existence of the limit in (1) is proved for instance in [15, Proposition
4.1.8] for the one-dimensional case and in [12] for the multi-dimensional one.

For each γ ∈ Z
2, the set Dn provides, by translation, a neighborhood of γ,

that is the set D(γ, n) := γ + Dn = [γ − n, γ + n]2. Given a subset E ⊆ Z
2 and

for each k ∈ N we denote by

E+k :=
⋃

α∈E

D(α, k) and E−k := {α ∈ E | D(α, k) ⊆ E}

the k-closure of E and the k-interior of E, respectively.

Let τ : X → Y be a k-local map. If p is a pattern of X with support E, the
map τ is defined on p and gives a pattern of Y with support E−k. Indeed one
can define

τ(p) := τ(c)|E−k ,

where c is any configuration of X extending p.

The following well-known result guarantees that the entropy is invariant
under conjugacy.

Proposition 2.7 Let X be a shift and let τ : X → AZ
2

be a local map. Then
h(τ(X)) ≤ h(X).

Proof Let τ be k-local and let Y := τ(X). The map τ : Bn+2k(X) → Bn(Y )
is surjective and hence

|Bn(Y )| ≤ |Bn+2k(X)| ≤ |Bn(X)||A[1,n+2k]2\[1,n]2 |.

From the previous inequalities we have

log |Bn(Y )|

n2
≤

log |Bn(X)|

n2
+

((n + 2k)2 − n2) log |A|

n2

and hence, taking the limit, h(Y ) ≤ h(X). 2

In the case of Cayley graphs the entropy is defined as a maximum limit and,
as proved in [8, Theorem 2.12], it is an invariant if the group is amenable.
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2.2 Minimal forbidden patterns

We define below several notions of minimal forbidden patterns. In the one-
dimensional case, a word is minimal forbidden if it is forbidden and if each strict
factor is allowed. The natural extension of this property leads to a forbidden
block whose proper subblocks are allowed. This corresponds to our second
definition below. But, as we will see later, this definition is too weak. For
instance, a shift of finite type does not necessarily have a finite set of minimal
forbidden patterns with respect to this definition. For this reason, our first
definition below corresponds to a stronger property which is equivalent to the
other one in the one-dimensional case. We also make a distinction between the
cases in which these blocks are squares or rectangles. We will see below that
this distinction is relevant.

Let m, n be two nonnegative integers. We denote by Fn(X) the set of for-
bidden squares of X of size n, and by Fm,n(X) the set of forbidden rectangles
of X of size m × n. If it is not specified a particular set of forbidden patterns
for X , with forbidden pattern we mean a pattern which is not allowed.

Now we give four different possible definitions of minimal forbidden patterns
of a shift X . Let m, n be two integers greater than or equal to 1.

• M1
n(X) := Fn(X) ∩ B(XFn−1(X)). That is a square of size n is minimal

forbidden if it is forbidden and if it is contained in a configuration in which
each square of size n − 1 is allowed;

• M2
n(X) is the set of squares of Fn(X) such that each subsquare of size

n − 1 is an element of B(X);

• M1
m,n(X) := Fm,n(X) ∩ B(XFm−1,n(X)) ∩ B(XFm,n−1(X));

• M2
m,n(X) is the set of rectangles of Fm,n(X) such that each proper sub-

rectangle is an element of B(X).

It is straightforward that, for any integers m, n, we have the inclusions M1
n,n(X)

⊆ M1
n(X) ⊆ M2

n(X) and M1
m,n(X) ⊆ M2

m,n(X). We will see that there are
examples in which these inclusions are strict.

We denote with Mi(X) the set
⋃

n Mi
n(X) (for i = 1, 2). We prove below

that the sets
⋃

m,n M1
m,n(X) and M1(X) are sets of forbidden patterns for X .

Proposition 2.8 The set
⋃

m,n M1
m,n(X) is a set of forbidden patterns for X,

that is X = XS

m,n
M1

m,n(X).

Proof If c ∈ X and p is a rectangle of c, we have p /∈ Fm,n(X) for every
m, n ≥ 1 and then p /∈

⋃

m,n M1
m,n(X). Hence X ⊆ XS

m,n
M1

m,n(X).

Suppose that c /∈ X . Since X =
⋂

m,n XFm,n(X) we have c /∈ XFm,n(X)

for some m, n ≥ 0. Notice that the shifts XFm,n(X) have the property that
c /∈ XFm,n(X) implies c /∈ XFm+1,n(X) and c /∈ XFm,n+1(X). This means that
in the grid of the natural numbers in which a pair (m, n) is “marked” if and
only if c /∈ XFm,n(X), there are some extremal pairs, that is, pairs which are
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marked but such that the pair on the left and the pair below are not marked. In
Figure 1 the left corners of the dashed line show the extremal pairs for c. Notice
that since Fm,0 = ∅ = F0,n, the pairs (m, 0) and (0, n) are always unmarked.
Hence if (m, n) is an extremal pair for c we have m, n ≥ 1, c ∈ XFm−1,n(X) and

Figure 1: The extremal pairs for c.

c ∈ XFm,n−1(X). Since c /∈ XFm,n(X) there exists a forbidden rectangle p of size
m×n in c and this is also a pattern of XFm−1,n(X) and a pattern of XFm,n−1(X).
This means that p ∈ M1

m,n(X) and hence c /∈ XS

m,n
M1

m,n(X). 2

Remark. One can see that Proposition 2.8 holds in dimension d. Indeed the
shifts XFn1,...,nd

(X) are such that c /∈ XFn1,...,nd
(X) implies c /∈ XFn1,...,nk+1,...,nd

(X)

for each k = 1, . . . , d.

Proposition 2.9 The set M1(X) is a set of forbidden patterns for X, that is
X = XM1(X).

Proof If c ∈ X and p is a square of c, we have p /∈ Fn(X) for every n ≥ 1
and hence p /∈ M1

n(X). Thus X ⊆ XM1(X).
Suppose that c /∈ X . If c /∈ XF1(X) we have c /∈ XM1

1(X) and hence c /∈

XM1(X) (notice that M1
1(X) = F1(X) since F0(X) = ∅). Otherwise, since

XF1(X) ⊇ XF2(X) ⊇ · · · ⊇ XFn(X) · · · ⊇ X,

there exists an integer i such that c ∈ XFi(X) and c /∈ XFi+1(X). Hence there
is a pattern p of c of size i + 1 which is forbidden in X (that is p ∈ Fi+1(X)).
Moreover we have p ∈ B(XFi(X)) and hence p ∈ M1

i+1(X) which implies c /∈
XM1(X). 2

Notice that, as an easy consequence of Propositions 2.8 and 2.9, the sets
⋃

m,n M2
m,n(X) and M2(X) also are possible sets of forbidden patterns for X .
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Proposition 2.10 A shift X is of finite type if and only if M1(X) is finite.

Proof If M1(X) is finite, the shift X is of finite type by Proposition 2.9.
Conversely, suppose that X is of finite type and hence that X = XF , where F
is a finite set of forbidden squares. Let n be such that there are no squares in F
of size greater than or equal to n. If h ≥ n and p is a square of M1

h(X), there
exists a configuration c ∈ XFh−1(X) which contains p. Thus c /∈ X . Hence there
is a square of F contained in c, and the size of this square must be greater than
or equal to h ≥ n, which is excluded. Hence M1

h(X) = ∅ for each h ≥ n. 2

By Proposition 2.8, if
⋃

m,n M1
m,n(X) is finite then X is of finite type. We

will see with an example that the converse is not true. Nevertheless we have
the following result.

Proposition 2.11 A shift X is of finite type if and only if there is a positive
integer n0 such that M1

m,n(X) = ∅ for m, n ≥ n0.

Proof Suppose that X is of finite type and hence that X = XF where F
is a finite set of forbidden rectangles. Let n0 be an integer such that there are
no rectangles in F of size m × n, when m ≥ n0 or n ≥ n0. Let m and n be
two integers such that m ≥ n0 and n ≥ n0. If p is a rectangle of M1

m,n(X),
there exists a configuration c containing p which belongs to XFm,n−1(X). This
configuration is not in X . Then c contains a rectangle of F of size m̄ × n̄ with
m̄ > m ≥ n0 or n̄ ≥ n ≥ n0. This contradicts the fact that there are no
rectangles in F of size m × n, when m ≥ n0 or n ≥ n0. Hence M1

m,n(X) = ∅
for each m, n ≥ n0. 2

In the following proposition, we prove that the possible notions of minimal
forbidden patterns coincide in the one-dimensional case.

Proposition 2.12 Let X be a one-dimensional shift. Then M1
n(X) = M2

n(X).

Proof Let w be a minimal forbidden word in M2
n(X), where w1 is its left

prefix of length n − 1, and w2 its right suffix of length n − 1. Then w1, w2 are
allowed words of X . Let l be a left-infinite word and r be a right-infinite word
such that lw1r ∈ X . Similarly let l̄ be a left-infinite word and r̄ be a right-infinite
word with l̄w2r̄ ∈ X . Then lwr̄ belongs to XFn−1(X). Thus w ∈ M1

n(X). 2

Now we give two examples of shifts of finite type for which the sets of minimal
forbidden squares M1 and M2 are both finite. Other examples can be found
in [16] and [20].

Example 2.13 The following example is a two-dimensional shift of finite type X
for which the value of its entropy of allowed blocks h(X) is known. Let A be
the alphabet {0, 1, 2}. We define the shift of finite type X = XF where F is the
following set of patterns:
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x x
x
x

with x ∈ A. The configurations of this bidimensional shift are the three colorings
of a square lattice. Two adjacent cells have a different color. It turns out that
the exact value of the entropy of this shift is known (see [1]) and equal to

h(X) =
3

2
log

4

3
. 2

Example 2.14 We now give an example of a two-dimensional shift of finite
type X for which the exact value of its entropy of allowed blocks is not known.
Let A be the alphabet {0, 1}. We define the shift of finite type X = XF where
F is the following set of patterns:

1 1
1
1

These constraints are known as the hard square constraints. They correspond
to some lattice gas models [1]. 2

For the two shifts of Examples 2.13 and 2.14, both sets M1 and M2 are finite.
Indeed, M2 only contains the 2 × 2 squares containing a forbidden rectangle
of F . We now give an example of a bidimensional shift of finite type for which
the sets M2 and

⋃

m,n M2
m,n are not finite.

Example 2.15 Let A be an alphabet and Ā := A ∪ {a, b}, where a and b do
not belong to A. We define the shift of finite type X = XF where F is the
following set of patterns:

x
a

y
b

where x 6= a and y 6= b. For n big enough we have M1
n(X) = ∅, but M2

n(X)
contains, if n is odd, the following squares of size n:

a ∗ . . . ∗ b
∗ ∗ . . . ∗ ∗
∗ ∗ . . . ∗ ∗
...

... . . .
...

...
∗ ∗ . . . ∗ ∗

where each ∗ can be replaced by any letter in A. Thus |M2
n(X)| ≥ |A|n

2−2.
Moreover, for m, n big enough, we have M1

m,n(X) = ∅. In this example we also
have that

⋃

m,n M1
m,n(X) is not finite. Indeed M1

1,n(X) contains, if n is odd,
the following rectangle:

a ∗ . . . ∗ b

where each ∗ can be replaced by any letter in A. This can be easily seen
observing that the configuration filled of a’s outside the rectangle is contained
in XF0,n(X) ∩ XF1,n−1(X). Hence |M1

1,n(X)| ≥ |A|n−2. 2
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Example 2.16 Let A be the alphabet {a, b, c} and F be the set of squares
bordered by b’s as follows,

b b . . . b b
b ∗ . . . ∗ b
...

... . . .
...

...
b ∗ . . . ∗ b
b b . . . b b

(2)

where each ∗ can be replaced with an a or a c. Let X = XF . We have M1
n(X) =

M2
n(X) = M1

n,n(X), and a minimal forbidden square of size n in X is a square
n × n bordered by b’s and contained in F . Hence |M1

n(X)| = |M2
n(X)| =

|M1
n,n(X)| = 2(n−2)2 . Moreover we have M1

m,n(X) = ∅ if m 6= n. 2

Example 2.17 With a slight modification of Example 2.16, one can see that
in general M1

n 6= M1
n,n. Let A be the alphabet {a, b, c} and F be the set of

rectangles n × (n + 1) bordered by b’s as in (2), where each ∗ can be replaced
with an a or a c. The square (n + 1) × (n + 1)

b b . . . b b
b a . . . a b
...

... . . .
...

...
b a . . . a b
b b . . . b b
a a . . . a a

︸ ︷︷ ︸

(n+1)×(n+1)

is contained in M1
n+1(X), but M1

n+1,n+1(X) = ∅. In this example one can also
see that in general X 6= XS

n
M1

n,n(X). 2

3 Entropy of minimal forbidden patterns

In this section, we state and prove our main invariance results on the entropy of
minimal forbidden patterns in the case of square blocks. We will explain later
why these results cannot be extended to the case of rectangular shapes.

Definition 3.1 For i = 1, 2, we denote by hi(X) the entropy of the sequence
(Mi

n(X)) of minimal forbidden patterns of X , that is:

hi(X) := lim sup
n→∞

1

n2
log |Mi

n(X)|.

Notice that h1 is always −∞ for shifts of finite type. In the Example 2.15 we
have h1(X) = −∞ and h2(X) ≥ log(|A|).
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Let τ be a k-local map defined on X . The map τn is well defined on XFn(X)

if n ≥ 2k + 1 and
τn(c)|α := τ(c|D(α,k)) (3)

(indeed c|D(α,k) is a pattern of X).

Lemma 3.2 Let τ be a k-local map defined on X. If c ∈ X then c ∈ XFn(X)

and τn(c) = τ(c).

Proof We have τn(c)|α = τ(c|D(α,k)) = τ(c)|D(α,k)−k = τ(c)|α. 2

Lemma 3.3 Let τ be a k-local map defined on X. If p is a pattern of X then
it is also a pattern of XFn(X) and τn(p) = τ(p).

Proof Let E be the support of p and let c ∈ X be a configuration ex-
tending p. One has τn(p) = τn(c)|E−k . By Lemma 3.2, we have τn(c)|E−k =
τ(c)|E−k = τ(p). 2

Proposition 3.4 Let τ : X → Y be a k-local map. If n ≥ 2k + 1, we have
τn : XFn(X) → XFn−2k(Y ).

Proof Let c ∈ XFn(X) and let p a square of size n−2k of τn(c). There exists
a square p̄ of c with size n such that τn(p̄) = p. We have p̄ ∈ B(X) and hence
there exists a c̄ ∈ X such that p̄ is a square of c̄. This means that p is a square
of τ(c̄) ∈ τ(X) ⊆ Y . 2

Proposition 3.5 Let τ : X → Y be an injective k-local map. Then there exists
an n such that τn is injective on XFn(X) (and hence it is injective on each
XFm(X) with m ≥ n).

Proof Suppose that for each n the map τn is not injective on XFn(X). Then
there exist two sequences (cn)n and (c̄n)n with cn, c̄n ∈ XFn(X) such that for
each n we have cn 6= c̄n and τn(cn) = τn(c̄n). We can always suppose that

cn 6= c̄n at the center (0, 0) of AZ
2

. Being AZ
2

compact, there exist c, c̄ ∈ AZ
2

and two subsequences (cnk
)k and (c̄nk

)k such that limk cnk
= c and limk c̄nk

= c̄.
For each h, the sequence (cnk

)k≥h is contained in XFnh
(X) and it being closed,

c ∈ XFnh
(X). This implies that c ∈ X and analogously c̄ ∈ X . Moreover the

continuity of τnh
implies that τ(c) = τ(c̄). But being dist(cn, c̄n) = 1, we have

c 6= c̄, which contradicts the injectivity of τ . 2

Lemma 3.6 Let τ : X → Y be a bijective k-local map, let τ−1 be k̄-local and
let c ∈ XFn(X) with n ≥ 2k + 2k̄ + 1. Hence (τ−1)n−2k(τn(c)) = c.

Proof Let α be an element of Z
2. We have

(τ−1)n−2k(τn(c))|α = τ−1(τn(c)|D(α,k̄)) = τ−1(τn(c|D(α,k̄+k))).

By Lemma 3.3, we have

τ−1(τn(c|D(α,k̄+k))) = τ−1(τ(c|D(α,k̄+k))) = τ−1(τ(c̄)|D(α,k̄)),

11



where c̄ ∈ X extends c|D(α,k̄+k). Now τ−1(τ(c̄)|D(α,k̄)) = τ−1(τ(c̄))|α = c̄|α
= c|α. 2

Notice that in Proposition 3.5 we have proved that, if τ is one-to-one, the
map τn : XFn(X) → τn(XFn(X)) is invertible. In Lemma 3.6, we have proved
that the inverse of this map is ((τ−1)n−2k)|τn(XFn(X)). In particular the constant

of locality of (τn)−1 is the same as that of τ−1 (that is k̄).

Lemma 3.7 Let τ : X → Y be a bijective k-local map, let τ−1 be k̄-local and
let p be a pattern of XFn(X) with n ≥ 2k + 2k̄ + 1. Hence, if E is the support
of p, we have (τ−1)n−2k(τn(p)) = p|E−k−k̄ .

Proof Let c be a configuration of XFn(X) extending p. We have

(τ−1)n−2k(τn(p)) = (τ−1)n−2k(τn(c)|E−k ) = (τ−1)n−2k(τn(c))|E−k−k̄ .

By Lemma 3.6, we have (τ−1)n−2k(τn(c))|E−k−k̄ = c|E−k−k̄ = p|E−k−k̄ . 2

Observe that a shift of finite type can also be defined using the notion of
allowed patterns. More precisely a shift X is of finite type if and only if there
exists a finite set C of patterns such that X = X(C), where

X(C) := {c ∈ AZ
2

| each pattern of c belongs to C}.

Indeed if F is a finite set of forbidden patterns, we can always suppose that
each of them has the same support F and we can define C := AF \F . Observe
that in this case it is not necessary that each pattern of C is a pattern of X , but
we can always suppose that C = C ∩ B(X).

With this equivalent characterization it is possible to prove the invariance
of the notion of being of finite type. For this we can define C̄ := {τ(c)|F+k̄ | c ∈

X and c extends p ∈ C} and prove, using Lemma 3.7, that Y = X(C̄). In the
following theorem we prove this invariance as a consequence of Proposition 3.5.

Proposition 3.8 The notion of being of finite type for multi-dimensional shifts
is invariant under conjugacy.

Proof Suppose that τ : X → Y is a k-local conjugacy and suppose that
Y is of finite type. Hence there exists n such that Y = XFn(Y ) (obviously this
condition is also sufficient). Suppose that c ∈ XFn+2k(X). The configuration
τn+2k(c) belongs to XFn(Y ) = Y and then τn+2k(c) = τ(c̄) with c̄ ∈ X . By
Lemma 3.2 we have τn+2k(c) = τn+2k(c̄) and being τn+2k one-to-one we have
c = c̄. This implies X = XFn+2k(X). 2

The following theorem extends the one-dimensional construction of [2] to
multi-dimensional shifts.

12



Theorem 3.9 Let τ : X → Y be a conjugacy, let τ be k-local and let τ−1 be
k̄-local. Hence for n ≥ 2k + 2k̄ + 1

|M1
n(X)| ≤ C(n)

2k̄∑

r=−2k

|M2
n+r(Y )|,

where C(n) = (2k̄ + 2k + 1)2|A|4(k̄+k)(n+k̄−k).

Proof If p ∈ M1
n(X) we have p ∈ B(XFn−1(X)), and hence there exists

c ∈ XFn−1(X) such that c contains p in E := [1, n]2. Consider the pattern
p̄ := τn−1(c)|E+k̄ of τn−1(c). If p̄ is a pattern of Y there exists c̄ ∈ Y such that

p̄ is a pattern of c̄. Now τ−1(c̄) ∈ X and τ−1(c̄)|E = τ−1(c̄|E+k̄) = τ−1(p̄).

Being p̄ a pattern of XFn−1−2k(Y ), we can apply Lemma 3.3 and then τ−1(p̄) =
(τ−1)n−1−2k(p̄) = (τ−1)n−1−2k(τn−1(c)|E+k̄) = (τ−1)n−1−2k(τn−1(c|E+k̄+k)).
Now notice that c|E+k̄+k is a pattern in XFn−1(X) and we can apply Lemma 3.7.

Hence we have τ−1(c̄)|E = (τ−1)n−1−2k(τn−1(c|E+k̄+k)) = c|E = p, which con-

tradicts the fact that p /∈ B(X).
Hence to each p ∈ M1

n(X) one can associate a pattern p̄ ∈ Fn+2k̄(Y ) ∩
B(XFn−1−2k(Y )) and being (τ−1)n−1−2k(p̄) = p this association is one-to-one.

Notice that in p̄ there is a pattern of M2
n+r(Y ), where −2k ≤ r ≤ 2k̄. Hence

the maximal number of such patterns contained in p̄ is

(2k̄ − r + 1)2|A|(n+2k̄)2−(n+r)2 |M2
n+r(Y )|,

where (2k̄ − r + 1)2 is the number of positions in which we can insert the left
bottom vertex of a square of size n + r in a square of size n + 2k̄ (see Figure 2),
and (n + 2k̄)2 − (n + r)2 is the number of free positions which we can fill with
letters in the alphabet A. Hence

n+r

n+2k

2k−r+1

p

Figure 2: How a pattern in M2
n+r(Y ) can appear in p̄.

|M1
n(X)| ≤

2k̄∑

r=−2k

(2k̄ − r + 1)2|A|(n+2k̄)2−(n+r)2 |M2
n+r(Y )|

13



≤ (2k̄ + 2k + 1)2|A|4(k̄+k)(n+k̄−k)
2k̄∑

r=−2k

|M2
n+r(Y )|. 2

Remark. In the d-dimensional case we have

|M1
n(X)| ≤ C(n)

2k̄∑

r=−2k

|M2
n+r(Y )|, (4)

where C(n) = (2k̄ + 2k + 1)d|A|(n+2k̄)d−(n−2k)d

.

Corollary 3.10 Let X and Y be two conjugate multi-dimensional shifts. Then
h1(X) ≤ h2(Y ).

Proof By Equation (4) we have that

|M1
n(X)| ≤ (2k̄ + 2k + 1)d|A|(n+2k̄)d−(n−2k)d

2k̄∑

r=−2k

|M2
n+r(Y )|.

Thus

|M1
n(X)| ≤ (2k̄ + 2k + 1)d+1|A|(n+2k̄)d−(n−2k)d 2k̄

max
r=−2k

|M2
n+r(Y )|.

Hence we have

log(|M1
n(X)|)

nd
≤

(d + 1) log(2k̄ + 2k + 1)

nd
+

+
((n + 2k̄)d − (n − 2k)d) log |A|

nd
+

log |M2
n+r̄(Y )|

nd
,

where −2k ≤ r̄ = r̄(n) ≤ 2k̄. By taking the maximum limits, we have the
conclusion. 2

From the previous result and by Proposition 2.12, we recover the known
result for one-dimensional shifts (see [2]).

Corollary 3.11 Let X and Y be two conjugate one-dimensional shifts. Then
h1(X) = h1(Y ).

3.1 Semi-strongly irreducible shifts

In this section we prove that h1 is an invariant for a suitable class of shifts.
A one-dimensional shift X is irreducible if for every u, v ∈ B(X) there exists

a word w such that the concatenation uwv belongs to B(X).
This concept can be generalized in the multi-dimensional case: a shift X ⊆

AZ
d

is called irreducible if for each pair of blocks p, q ∈ B(X) with supports E

14



and F , there exists a configuration c ∈ X such that c = p in E and c = q in F̄ ,
where F̄ is a translation of F contained in {E.

We now give the definition of semi-strong irreducibility for a shift. This
definition is strictly weaker than the one given in [9] needed to prove a Garden
of Eden theorem for shifts of finite type defined on the Cayley graph of a finitely
generated group.

Definition 3.12 A shift X is called (M, h)-irreducible (where M, h are natural
numbers such that M ≥ h) if for each pair of blocks p, q ∈ B(X) whose supports
E and F have distance greater than M , there exists a configuration c ∈ X such
that c = p in E and c = q in F̄ , where F̄ is a translation of F contained in F +h.
The shift X is called semi-strongly irreducible if it is (M, h)-irreducible for some
M, h ∈ N.

A shift X is uniformly (M, h)-irreducible if the sequence (X, XFn(X)) is uni-
formly (M, h)-irreducible, i.e. X and XFn(X) are (M, h)-irreducible for any non-
negative integer n. The shift X is uniformly semi-strongly irreducible if it is
uniformly (M, h)-irreducible for some M, h ∈ N.

Recall (see for instance [15]), that a one-dimensional shift is sofic if it is the
set of labels of all bi-infinite paths on a finite labeled graph. It is irreducible if
and only if one of these graphs is strongly connected.

Proposition 3.13 Every one-dimensional irreducible sofic shift is semi-strongly
irreducible.

Proof Let X be the set of labels of an M -state labeled strongly connected
graph. We prove that X is (M − 1, M − 1)-irreducible. Let n ≥ M − 1 and let
u, v ∈ B(X). Being u contained in a configuration of X , there exists ū ∈ Bn(X)
such that uū ∈ B(X). Since the graph has M states and is strongly connected,
there is word w of length at most M − 1 such that uūwv ∈ B(X). Being
n ≤ |ūw| ≤ n + (M − 1), we have the conclusion. 2

Theorem 3.14 Let X be a uniformly semi-strongly irreducible shift. Let τ :
X → Y be a conjugacy, let τ be k-local and let τ−1 be k̄-local. Hence if n ≥
M + 4h + 4k + 2k̄

|M1
n(X)| ≤ C(n)

2k̄∑

r=−2k

|M1
n+r(Y )|,

where C(n) = (a + n)2|A|bn+c, a, b, c are constants depending only on k, k̄, M, h
and the shift X is uniformly (M, h)-irreducible.

Proof Consider p ∈ M1
n(X). Being XFn−1(X) an (M, h)-irreducible shift

and being p a pattern of it, there exists a configuration c ∈ XFn−1(X) such
that c contains p in E := [1, n]2 and a copy of p in each translation Ē of E
contained in squares of size n + 2h at mutual distance M + 1 and positioned
as in Figure 3. Hence c̄ := τn−1(c) is a configuration in XFn−1−2k(Y ) and, as
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p

p

p

p p

p
p p

n

n+2h
{

p

E

M+2

E
+h

Figure 3: The configuration c ∈ XFn−1(X).

proved in Theorem 3.9, we have c̄ /∈ XFn+2k̄(Y ). Then there exists an integer r,

with −2k ≤ r ≤ 2k̄ such that c̄ ∈ XFn+r−1(Y ) and c̄ /∈ XFn+r(Y ). This means
that c̄ contains a pattern p̄ ∈ M1

n+r(Y ) with a support F whose left bottom
corner belongs to some square of size n + 2h + M obtained by covering the
plane with disjoint copies of [1 − h, n + h + M ]2 (recall that [1, n]2 = E and
[1 − h, n + h]2 = E+h). The number of possible positions of this left bottom
corner of F inside this square is then (n + 2h + M)2. Let q be the pattern
of c̄ of size n − 2k defined by q := τn−1(p). As one can see in Figure 4, the
pattern p̄ determines (at most) four rectangles in the copies of q intersecting p̄,
and hence it determines (at most) four rectangles of q. We are going to count
the maximal number of points in q which are not contained in one of these four
rectangles. First notice that the maximal distance between two copies of q in c̄ is
M +4h+2k+1 and hence the minimal number of points in the four rectangles is
(n+r)2−(2(M+4h+2k)(n+r)−(M+4h+2k)2) = (n+r−(M+4h+2k))2 (notice
that our condition on n garanties that at least one of these four rectangles is not
empty). It turns out that the maximal number of points in q which are not in
the rectangles is (n−2k)2−(n+r−(M +4h+2k))2. By the restrictions on r this
number is less than or equal to e(n) := 2(M +4h+2k)(n−2k)−(M+4h+2k)2.

Now p̄ determines q excepting for at most e(n) points and hence we can
complete q in at most |A|e(n) ways. On the other side, q determines p excepting
for at most f(n) := n2 − (n− 2k − 2k̄)2 points and hence we can complete p in
at most |A|f(n) ways. Indeed q determines, by (τ−1)n−1−2k, a square contained
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Figure 4: The configuration c̄ := τ(c) containing the pattern p̄ ∈ M1
n+r(Y ).

in p of size n − 2k − 2k̄. Thus we have:

|M1
n(X)| ≤ (n + 2h + M)2|A|e(n)+f(n)

2k̄∑

r=−2k

|M1
n+r(Y )|. 2

Remark. In the d-dimensional case we have

|M1
n(X)| ≤ C(n)

2k̄∑

r=−2k

|M2
n+r(Y )|,

where C(n) = (n + 2h + M)d|A|e(n)+f(n) with e(n) := d(M + 4h + 2k)(n +
2k̄)d−1 − (M + 4h + 2k)d, f(n) := nd − (n − 2k − 2k̄)d and the shift X is
uniformly (M, h)-irreducible.

Corollary 3.15 Let X and Y be two conjugate uniformly semi-strongly irre-
ducible shifts. Then h1(X) = h1(Y ).

Example 3.16 Here is an example of two shifts X, Y ⊆ AZ
2

such that h1(X) 6≤
h2(Y ) and hence which are not conjugate. Consider the shift X of Example 2.16
and let Y be the shift in which is forbidden to replace each ∗ with an a in the
block (2). As we have seen, |M1

n(X)| = 2(n−1)2 and then h1(X) = log(2). On
the other side we have M1

n(Y ) = M2
n(Y ) and a minimal forbidden square of

size n in Y is a square n × n bordered by b’s and only with a’s inside:
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b b . . . b b
b a . . . a b
...

... . . .
...

...
b a . . . a b
b b . . . b b

︸ ︷︷ ︸

n×n

Hence |M1
n(Y )| = 1 = |M2

n(Y )| and h1(Y ) = 0 = h2(Y ). This implies that X
and Y are not conjugate.

In this example, the shifts have also different entropies. More precisely
we have h(X) < h(Y ) because X is a proper subshift of Y and this latter

is a strongly irreducible subshift of AZ
2

(see [8, Lemma 4.4]). With a slight
modification of this example (for instance if X̄ is the shift in which is forbidden
to replace the ∗’s in the block (2) with a’s and an odd number of c’s), it is still
easy to prove h1(X̄) 6≤ h2(Y ). But we get the inequality h(X̄) < h(Y ) only by
successive approximations and not by previous argument because X̄ 6⊆ Y . In
any case, for these shifts, the computation of the entropies hi is quite simpler
than that of h. 2

Proposition 3.17 If there exists an integer n̄ such that for each n ≥ n̄ the
sequence (XFn(X)) is uniformly (M, h)-irreducible then X is (M, h)-irreducible.

Proof Let p, q be two patterns of X whose supports are at distance > M .
We have p, q ∈ B(XFn(X)) for each n ≥ n̄ and hence there exists cn ∈ XFn(X)

in which p and q simultaneously appear in a suitable position; we can always
suppose that these positions are the same for each cn. By the compactness of
AZ

2

, a subsequence of (cn) converges to c ∈ X in which p and q appear as in
the cn’s. 2

Counterexample 3.18 Now we show that there is an example of a reducible
shift X such that each XFn(X) is semi-strongly irreducible but the sequence
(XFn(X)) is not uniformly semi-strongly irreducible. Let X be the sofic shift
accepted by the labeled graph in the figure below.

��
��

��
��

q

a
~

b
}

b

Hence a set of forbidden words for X is given by
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{abna | n ≥ 0}.

In the configurations of XFn(X) there are no words awa such that 0 ≤ |w| ≤
n − 2. Suppose that XFn(X) is (M, h)-irreducible. Being a ∈ B(XFn(X)), there
exists a word w such that M −h ≤ |w| ≤ M +h and awa ∈ B(XFn(X)). It must
be |w| ≥ n − 1 and hence M + h ≥ n − 1. This shows that XFn(X) cannot be
(M, h)-irreducible for each n (however XFn(X) is (n − 1, 0)-irreducible for each
n). 2

Proposition 3.19 A one-dimensional semi-strongly irreducible shift is uniform-
ly semi-strongly irreducible.

Proof Let X be an (M, h)-irreducible subshift of AZ. Let p, q ∈ B(XFn(X))
and let m ≥ M . We can always suppose that the lengths of p and q are both
greater than n. Hence p = p̄u with u ∈ Bn(X) and q = vq̄ with v ∈ Bn(X).
Since X is (M, h)-irreducible, there exists w ∈ B(X) such that uwv ∈ B(X)
and m − h ≤ |w| ≤ m + h. Moreover, being p, q ∈ B(XFn(X)), there exist
c, c̄ ∈ XFn(X) such that c contains p and c̄ contains q. Consider the following
configuration.

. . . c p̄ u
︸ ︷︷ ︸

p

w v q̄
︸ ︷︷ ︸

q

c̄ . . .

As one can see, in this configuration does not appear any forbidden word of
length n and hence it must be in XFn(X). Therefore pwq ∈ B(XFn(X)). 2

Corollary 3.20 An irreducible sofic subshift of AZ is uniformly semi-strongly
irreducible.

3.2 The case of rectangles

We now discuss the case of minimal forbidden patterns with a rectangular shape.
The entropy of the sequence (Mi

m,n(X)) of minimal forbidden rectangles of
X is defined as

h̄i(X) := lim sup
m,n→∞

1

mn
log |Mi

m,n(X)|.

Let τ be a k-local map defined on X . In this case also the map τm,n is
well defined on XFm,n(X) if m, n ≥ 2k + 1 and its definition coincides with the
definition (3) given in the case of squares (indeed if c ∈ XFm,n(X) one has that
c|D(α,k) is a pattern of X). With this notation Lemma 3.2 and Lemma 3.3 still
hold. Moreover we have τm,n : XFm,n(X) → XFm−2k,n−2k(Y ) and for m, n big
enough, τm,n is one-to-one if τ is one-to-one.

Let τ : X → Y be a bijective k-local map, let τ−1 be k̄-local, let c ∈ XFm,n(X)

and let p be a pattern of XFm,n(X). As a generalization of Lemmas 3.6 and 3.7
we have (τ−1)m−2k,n−2k(τm,n(c)) = c and (τ−1)m−2k,n−2k(τm,n(p)) = p.
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In spite of these results, we cannot generalize the proof of Theorem 3.9 to
get Corollary 3.10. Indeed to each pattern p of M1

m,n(X) one can associate a
pattern p̄ ∈ Fm+2k̄,n+2k̄(Y ) ∩ B(XFm−2k,n−1−2k(Y )) ∩ B(XFm−1−2k,n−2k(Y )). This

means that in p̄ there is a rectangle of M2
m̄,n̄(Y ), where m̄ ≤ m+2k̄, n̄ ≤ n+2k̄

and m̄ > m − 2k or n̄ > n − 2k or both m̄ = m − 2k and n̄ = n − 2k. Hence
it could also happen that the size of this rectangle is 1 × n and this does not
allow us to have a constant range into the sum appearing in the statement of
Theorem 3.9. For the same reasons as above we cannot generalize either the
proof of Theorem 3.14.
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