SANDPILE GROUP ON THE GRAPH D, OF THE DIHEDRAL GROUP
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ABSTRACT. In this paper we study the structure of the Abelian sandpile group on the Cayley graph Dy,
of the dihedral group D, =< a,b | a® = b? = (ab)?2 = 1 >. We prove that the Smith normal form of the
sandpile group is not cyclic as one can generaly expect but is always the direct product of two or three cyclic
groups. We conclude by considering some particular cases.

1. INTRODUCTION

The Abelian sandpile model has been introduced by Bak, Tang and Wiesenfeld in [2]. It has been widely
studied as one of the simplest models that shows Self-organized criticality (SOC) [11, 1, 3, 12]. Its underlying
Abelian structure was discovered by Dhar [9] and Creutz [8]. In particular, the order of the group is precisely
the number of spanning trees of the graph [10], and two principal bijections exist [4].

A sandpile model could be seen as a cellular automaton on a rooted graph G whose cells are the vertices
V(G) of G and each cell contains a certain number of grains of sand. The transitions of the automaton are
given by the following “toppling rule”: each cell i containing at least as many grains as its degree, transfers
a grain of sand to each of its neighbors j. After a toppling of the vertex i, the number of grains in this
cell decreases by its degree, while the number of those of its neighbors increases by 1. The root r does not
topple and could be considered as collecting all the grains leaving the system. The sandpile group on G is
the quotient of ZY(9) by the subgroup generated by the |V(G)| — 1 elements expressing the toppling rules
(that is, if ¢ # r is a vertex of degree d; and (ji)1<k<d; are the neighbors of i, a generator of this subgroup
is Aj :=dimi — Y <p<q, Tjr)> and the element ;..

The aim of this work is to characterize the structure of the Abelian sandpile group on the graph D, for
any n > 3. As shown in Figure 1, the graph D,, is the non oriented Cayley representation for the dihedral
group D,, of symmetries for an n-sided regular polygon, with the presentation

< abla”=b"=(ab)?’=1 >.

FiGure 1. Graph D, FI1GURE 2. Dual graph of D,
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We will see that the sandpile group on D,, is not cyclic and it is always the direct product of at most
three cyclic groups.

We want to point out that the sandpile group on the Cayley graph on a finite group, is not independent on
the presentation of such a group. For example if we consider the presentation < a,b|a®? =b*> = (ab)”" =1 >
of D,,, we have that its Cayley graph is circle with 2n vertices and the sandpile group on this graph is cyclic
of order 2n.

2. A SYSTEM OF RELATIONS FOR THE SANDPILE GROUP ON D,

Cori and Rossin have proved in [6] that the Smith normal form of the sandiple group on a graph is the
same of that on its planar dual. Being simpler the induced system of relations, we work on the dual graph of
D,, (Figure 2). Here we have chosen the vertex n + 2 as the root, such that z, 12 = 0. Applying the toppling
rule to each of the remaining vertices, we get the following system of equations:

1 = 4Tp — Tp_1 — Tpi1

(1) Ty = 4x1 —Tp — Tpt1 '
x; = 4xi 1 — ;o —Tpp1 (for each 3 <i<n)
0 = X1+...+2Tp.

From this system we can already see that there are at most three generators. Indeed each z; can be expressed
in term of x1, 2 and x,41. For all 3 <i < n, we define a;, b; and ¢; such that x; = a;22 — b;z1 — ¢;Zny1-

Proposition 2.1. If we extend (c;)i>3 by co =1 and ¢c1 =0, we get:

(2) ci=4ci1—ci2+1,
i>3d @ = GG
- bz = C; —Cj—1.

ProoF From Equation (1), we get three recurrence relations for a;, b; and ¢; with 3 <4 < n. From these
relations it turns out that we could express the a;’s and b;’s in term of the ¢;’s. O

This leads us to simplify the matrix A = A,, of the system.

Theorem 2.2. The matriz A,, of the Abelian sandpile group on D,, is given by

0 cn —1 Cn+1

An = 0 Cn+1 Cn+2
Cn42—3Cn41 =N  Cn42—Cniy1—N
2 2

ProoF From Equation 1 and Proposition 2.1 we can deduce a new system of relations between generators
z1, T2 and T,41, that is

1 = (Cng2 — Cny1)T2 — (Cpng1 — Cp)T1 — Cng1Znt
T2 = (Cn+3 - Cn+2)$2 - (Cn+2 - Cn+1)$1 — Cn2Tn41
;i = (cit1—¢i)T2 — (Ci — Ci—1)T1 — CiTny1 (for each 3 < i < n).

By some reductions, one can verify that A,, is the matrix of such a system. O

We conclude this section giving an explicit formula for the sequence (c,)n>0. Solving the Equation (2)
we get

(3) cn = 220V3 _1‘;‘/5(2 VA4 2EV +1‘;‘/§(2 ~V3)" -

N =

3. ANALYSIS OF THE COEFFICIENTS OF THE SMITH NORMAL FORM

In this section we give an explicit expression of the Smith normal form § = §,, of the matrix A,,.

It can be easily seen that, for each n, we have ¢,—1¢pt1 = ¢2 — ¢,,. Hence the determinant of the minor

cn —1 cpia .
n ") of A, s —wp i= —(Cng1 + Cny2)-
Cn+41 Cn+2



SANDPILE GROUP ON THE GRAPH D, OF THE DIHEDRAL GROUP 3

Proposition 3.1. Forn = 2m + 1 odd, we have that w, = cam+2 + C2m+3 = hfn where the sequence h,, is
defined as:

ho=1

hi =5

hm =4hy 1 — By o

For n = 2m even, we have that w, = capmy1 + C2mia = 6 k2

-, Where the sequence k,, is defined as:

k‘o =0
ki=1
km = 4km—1 — km—2.

PROOF It can be seen by induction that, for every m > 1, we have h2, = wam+i1, Am—1hm = Wam — 1,
6k2, = way, and 6ky_1kym = wapmer — 1. O

Proposition 3.2. For each m,n > 1 we have
km+n = km+1kn —knkn_1 and hm+n = km+1hn —kmhn_1.

4

PROOF Set K := (1

_01) we have that

m_ (4 —I\"_ (kmy1  —km
K —<1 0) _<km —km_l)

Since K™+~ = K™ K"~1, we have

km+n _km+n71 _ km—f—l _km . kn _knfl
km+n71 _km+n72 n km _kmfl knfl _kn72 )
Comparing the top left entry in the left hand side with the corresponding in the right side gives the first
equality. For the second identity, we use the first one and the identity h,, = kp + kg1 O

Now we list some other relationships linking the sequences h,,, k,, and ¢,,. They can be easily prooved by
induction.

L hm km = Com+2
® hyp_1 by = Com+1
® hy k1 = comas
With this, one can prove the following theorem.

Theorem 3.3. For a dividing b, we have that k, divides ky. Moreover, we also have that det(A,) divides
det(Ay) (these are the orders of the sandpile groups).

Proor For the first statement, we prove by induction on ¢ that k, divides k,¢. This is true if ¢t = 0. If
ko divides kq¢, hence we have kq(441) = Kat+1ka — Katka—1- The inductive hypothesis implies that k, divides
the second term, hence it also divides kq(¢y1)-

Now we prove that if 2a + 1 divides 2b + 1, then h, divides hy. First notice that, by Proposition 3.2,
we have komy1 = k2, — k2,. Let 2b +1 = (2a + 1)(2¢t + 1). We prove by induction on ¢ that h, divides
hb = h2at+a+t- This is true if t = 0. If ha divides h2at+a+t; we have h2a(t+1)+a+(t+1) = h(2a+1)+(2at+a+t) =
kogt2h2at+att — k2a+1P20t+a+t—1. The first term is a multiple of h, by inductive hypothesis. Moreover we
have kaqt1 = k2 — k2 = (kag1 + ko) (Kat1 — ko) = ha(kaq1 — ko). Hence also the second term is a multiple
of hg.

Finally, we prove that if 2a + 1 divides 2b, then h, divides ky. Let 2b = (2a + 1)2t. We have to prove that
hg divides k(2q41)¢- As we have already seen, h, divides ky,41. Moreover, we have that koqq1 is a divisor of
kay1ye = k-

By these facts and being det(A,) = —aw,, we have the second statement. O
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Corollary 3.4. If 2t divides n with t > 1, then 2tt! divides k,. Moreover, if 3t divides n, then 3! also
divides k.

ProoF We obtain an explicit formula for k,, solving the recurrence:
1

kn=—=(2+V3)"-(2-V3)") =
W (( )" = ")
YR g (% Yo
=— , 37 = Y , 3ign—(2i+1)
\/§1§2j+1§n 2j +1 1<2j+1<n 2j+1

From this we have that 2¢*! divides ko: for t > 1. Moreover, 3¢ divides kg:. O

3.1. Computation of S;;. Notice that for each m we have (K, km+1) = (hm,hm+1) = 1. This implies
that
e If n =2m + 11is odd (cpi1,¢na2) = (hmkm, bmkmy1) = hm-
o If n = 2m is even then (cpi1,cna2) = (hm—1km, hmkm) = k-
In general
Si1 = (1, Cnp1, g2, W)_

o If n = 2m + 1 is odd then (n,cpy1, Cnyo, PE—H) = (n,¢nq1,Cng2). Indeed, if d divides n,
nt1 and cpyp hence d is odd because n is odd and d divides also “#2—r+1-"  Hence S;; =
(ny eng1,Cnta) = (N, hpy).

o If n = 2m is even then

mivm — m—km_ hm—hm_
S :(n,km,h k h2 ! n) :(n,km,kmfl—m):(n,k‘m,m):(m,km).
— If m is odd hence k,, is odd and then S1; = (n, k).
— If m is even we have 811 = (m, kp,) = W This latter equality comes from Corollary 3.4,

indeed k,, contains in its factorization the maximal power of 2 contained in 2m. With this,
notice that if n; and ns are two integers then 2(ny,ns) = (2n1,ns) if the power of 2 contained
in m, is strictly smaller than the power of 2 contained in ns.

3.2. Computation of Sz2. In general

2
(ent1 + Cng2)® +nCpy1 — NCpa
S11822 = (Cpt1 + Cng2, NCpt1, N1 2, 2 — 3Cnt1Cnt2).

o If n=2m + 1 is odd then 811822 = (¢nt1 + Cnt2, NCrt1; NCrt2, 3Cn+1Cnt2). Indeed it can be easily
seen that either c¢,41 or ¢,49 is odd and if d divides ¢,4+1 + ¢nt2, NCryr1 and ne, 2 hence d is odd
sl (cngitcny2)’+ncny1—ncnqs
and divides also 5 . Thus

311822 = (th,nhm,3hfnkmkm+1) = hm(hm,n,3hmkmkm+1) = hm(n, hm)
Hence S32 = hyy,.
e If n = 2m is even, we have

36k2, + nku (Ao — hon—1)
2
(hm - hmfl)
2

S11820 = (6k2,, nkm, — 3hm—1kmhmkm) =

= ki 6k, 7, 18k + 1 — 3l 1P ki) =

= km (6km, 1, 3hm—1hmkm) = km (1, 3k (2, b —1hi)) = km (0, 3km).
Hence
— If m is odd then Ss2 = ki, with o := %
— If m is even then Sy = 2k, .

From Corollary 3.4 we have that the numbers a which could be 1 or 3, is actually 1. Moreover, we have
that det(S,) = [det(A,)|. Thus S33 = g''g-. Hence the Smith form S, of the matrix A, is
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e Forn=2m + 1 odd

(nyhm) 0O 0
0 hm 0 ,
0 0 nhm
(n,hm)
e for n = 2m with m odd
(n,km) O 0
0 km 0 ,
6nkm
0 0 ks

e for n = 2m with m even

0 2k, 0
6nk,,
0 0 G

By the statements verified during the proof of Theorem 3.3, one can also see that, for a dividing b, each
entry of the matrix S, divides the corresponding one in the matrix S. This leads to the following theorem.

Theorem 3.5. For a dividing b, the sandpile group on D, is a subgroup of the sandpile group on Dy.

4. SOME PARTICULAR CASES

It is interesting to investigate the cases in which the sandpile group on D,, is the direct product of exactly
three cyclic groups, that is in which S;; # 1. We have already seen that, if ¢ > 2 and 2! divides n, hence
2t=1 divides S;1. Moreover, if ¢ > 1 and 2 - 3! divides n, hence 3! divides Sy;.

4.1. The case n = p!, where p is a prime. If p # 2, we have the following equalities mod p:

V3" +@-VB @ VB )@ V)
2 B 2
This argument shows that (p, wy:) = 1 for p odd prime, thus the Smith form is in this case
1 0 0
Spr = 0 hptz;l 0
0 0  plhy
2

Wpt = Cpt41 + Cptya = —1=1.

Otherwise, for p = 2, we have

2t-1 0
Spe=| 0 2ky-r O
0 0 12ky—

4.2. The case n = 2p’, where p is a prime. If p > 3 we have the following calculation mod p:

@+v? +@-V3 | (T4 + (143

’LU2pt = C2pt+1 + C2Pt+2 = 2 = B) 1= 6
This means that 2pt and ky+ (which is odd) are coprime. Hence, for p > 3 we have the Smith form
1 0 0
Sgpt = 0 kpt 0
0 0 12p'ky,
Otherwise, for p = 3, we have
3 0 0
52.3t = 0 k3t 0
0 0 12ks:
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4.3. Building a sandpile group with S;; divided by a given m € N. We conclude this section proving
that for any integer m, there exists an integer n such that the sandpile group on D,, is the product of 3
cyclic groups with m dividing their order. As conjectured in [7], the sandpile groups which are at least the
product of three cyclic groups are rare. Some classes are well known, as complete graphs K,, or bipartite
complete graphs K, , (see [5]).

Let m > 2, we denote by n(m) the period of the values of (c,)n>0 mod m. Hence ¢, 41 = ¢py2 = 0 mod
m if and only if 7(m) divides n. For p > 3 prime we have two cases:
o if (3) =1, then Equation (3) is valid on F,. By Fermat’s little theorem, we have that 7 (p) divides
p
p—1
o if (%) = —1, we have cp42
implies that 7 (p) divides p + 1.
We denote by ¢(m) the smallest positive period of the values of (c,)n>0 mod m which is also a multiple
of m, that is ¢(m) := lem(w(m), m). Notice that if m and n are coprime, then ¢(mn) = lem(d(n), p(m)).

pt1l
- W# = 0 mod p. Analogously, ¢p+3 = 0 mod p and this

Moreover, we have ¢(p) = p(p — (%))

By these facts, we can prove the following proposition:
Proposition 4.1. Let m be an integer and P be the set of prime numbers greater than 3 dividing m. Then
there exists n smaller than 4m3 - Hpep(p — (%)) such that the Smith normal form of the sandpile group on
D, is the product of 3 cyclic groups and m divides the order of each of them.

ProOOF From the equation
2 2 2
6k, = Comy1 t Campo — 4C2mi1Cam42

ko . . P
we deduce that 2m divides kgem) . Set n := ¢(2m). Then m divides n 5 ) and, since n is even, m divides
2

(Sn)11 whatever is the parity of %.

The problem is now the computing of n. Let m = 2™ -3 . HpE'P p" be the prime decomposition of m
(with r1,7s > 0). By the multiplicative property of ¢, we need to compute ¢ at p" for each p € P. By
Corollary 3.4, we have ¢(2t) = 2! for t > 2 and ¢(3?) =2 - 3t.

For p > 3 prime, we can easily compute a good upper bound of ¢(p”). First notice that ¢(p') < p3¢(pt—1)
for t > 2. This implies ¢(pt) < p3(p — (%)), which still holds for ¢ = 1. Hence 4m? - [ cp(p — (%)) is
greater than n. O

It is clear that there are infinitely many numbers n with the properties stated in Proposition 4.1. The
following conjecture gives the explicit form of one of them.

Conjecture 1. Let m be an integer and P be the set of prime numbers greater than 3 dividing m. If
n:=4m-lemyep(p — (%)), then the the Smith normal form of the sandpile group on D,, is the product of 3
cyclic groups and m divides the order of each of them.

This conjecture arise from the fact that the value of ¢(p') is naturally conjectured to be pim(p) for
p > 3 prime. Let m = 2™ .3 . HpeP p" be the prime decomposition of m (with r1,79 > 0). We have
#(2m) = lempep(p(2771), $(372), (p")), with ¢(1) := 1. This value divides 4m - lem,ep(7(p)) and hence it
divides n.

5. CONCLUSION

In this paper, we have studied the structure of the Abelian sandpile group on the Cayley graph D,, of the
dihedral group D,, =< a,b | a™ = b*> = (ab)? =1 >.

First, we have given the explicit Smith normal form of this group, pointing out that the group is never
cyclic, but it is always the product of 2 or 3 cyclic groups. As a by-product this implies that this sandpile
group is strongly dependent on the Cayley representation of D,,.

After that, we have detailled some particular cases. We have seen that the group is always the product
of 2 cyclic groups for n = p! with p > 2 prime, or n = 2 - p! with p > 3 prime. Moreover, we have proved
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that for any integer m there exists n such that the sandpile group is the product of 3 cyclic groups and m
divides the order of each of them. This fact implies the existence of an infinite family of graphs on which
the sandpile group is particular. Indeed, Cori and Rossin conjecture in [7] that the Smith normal form of
the sandpile group on a graph is often cyclic (that is, asymptotically on the number n > 2, there are more
than 75% graphs with n vertices, for which the sandpile group is cyclic), sometimes the product of two cyclic
groups (more than 15%), and very rarely the product of more (less than 5% for any remaining case).
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