The syntactic graph of a sofic shift
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Abstract. We define a new invariant for the conjugacy of irreducible
sofic shifts. This invariant, that we call the syntactic graph of a sofic
shift, is the directed acyclic graph of characteristic groups of the non
null regular D-classes of the syntactic semigroup of the shift.
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1 Introduction

Sofic shifts [17] are sets of bi-infinite labels in a labeled graph. If the graph can be
chosen strongly connected, the sofic shift is said to be irreducible. A particular
subclass of sofic shifts is the class of shifts of finite type, defined by a finite set of
forbidden blocks. Two sofic shifts X and Y are conjugate if there is a bijective
block map from X onto Y. It is an open question to decide whether two sofic
shifts are conjugate, even in the particular case of irreducible shifts of finite type.

There are many invariants for conjugacy of subshifts, algebraic or combinato-
rial, see [13, Chapter 7], [6], [12], [3]. For instance the entropy is a combinatorial
invariant which gives the complexity of allowed blocks in a shift. The zeta func-
tion is another invariant which counts the number of periodic orbits in a shift.

In this paper, we define a new invariant for irreducible sofic shifts. This invari-
ant is based on the structure of the syntactic semigroup of the language of finite
blocks of the shift. Irreducible sofic shifts have a unique (up to isomorphisms of
automata) minimal deterministic presentation, called the right Fischer cover of
the shift. The syntactic semigroup S of an irreducible sofic shift is the transition
semigroup of its right Fischer cover.

In general, the structure of a finite semigroup is determined by the Green’s
relations (denoted R, £, H, D, J) [16]. Our invariant is the acyclic directed graph
whose nodes are the characteristic groups of the non null regular D-classes of S.
The edges correspond to the partial order <7 between these D-classes. We call
it the syntactic graph of the sofic shift. The result can be extended to the case
of reducible sofic shifts.

The proof of the invariant is based on Nasu’s Classification Theorem for sofic
shifts [15] that extends William’s one for shifts of finite type. This theorem says
that two irreducible sofic shifts X,Y are conjugate if and only if there is a se-
quence of transition matrices of right Fischer covers A = Ag, A1,..., A1, 4 =
B, such that A; 1, A; are elementary strong shift equivalent for 1 <4 < [, where



A and B are the transition matrices of the right Fischer covers of X and Y, re-
spectively. This means that there are transition matrices U;, V; such that, after
recoding the alphabets of 4;_; and A;, we have A;_1 = U;V; and 4; = V;U;. A
bipartite shift is associated in a natural way to a pair of elementary strong shift
equivalent and irreducible sofic shifts [15].

The key point in our invariant is the fact that an elementary strong shift
equivalence relation between transition matrices implies some conjugacy rela-
tions between the idempotents in the syntactic semigroup of the bipartite shift.

We show that particular classes of irreducible sofic shifts can be characterized
with this syntactic invariant: the class of irreducible shifts of finite type and the
class of irreducible aperiodic sofic shifts.

Basic definitions related to symbolic dynamics are given in Section 2.1. We
refer to [13] or [9] for more details. See also [10], [11], [4] about sofic shifts.
Basic definitions and properties related to finite semigroups and their structure
are given Section 2.2. We refer to [16, Chapter 3] for a more comprehensive
expository. Nasu’s Classification Theorem is recalled in Section 2.3. We define
and prove our invariant in Section 3. A comparison of this syntactic invariant to
some well known other ones is given in Section 4. Proofs of Propositions 1 and
2 are omitted. The extension to the case of reducible sofic shifts is discussed at
the end of Section 3.

2 Definitions and background

2.1 Sofic shifts and their presentations

Let A be a finite alphabet, i.e. a finite set of symbols. The shift map o : A% — A%
is defined by o((ai)icz) = (ait1)iez, for (a;)icz € AL If AZ is endowed with the
product topology of the discrete topology on A, a subshift is a closed o-invariant
subset of AZ.

If X is a subshift of A% and n a positive integer, the nth higher power of X
is the subshift of (A")Z defined by X™ = {(ain, - - -, Gintn_1)icz | (ai)icz € X}

A finite automaton is a finite multigraph labeled on A. It is denoted A =
(Q, E), where @ is a finite set of states, and E a finite set of edges labeled on
A. Tt is equivalent to a symbolic adjacency (Q x Q)-matriz A, where A, is the
finite formal sum of the labels of all the edges from p to ¢q. A sofic shift is the
set of the labels of all the bi-infinite paths on a finite automaton. If A is a finite
automaton, we denote by Xa the sofic shift defined by the automaton A. Several
automata can define the same sofic shift. They are also called presentations or
covers of the sofic shift. We will assume that all presentations are essential: all
states have at least one outgoing edge and one incoming edge. An automaton
is deterministic if for any given state and any given symbol, there is at most
one outgoing edge labeled with this given symbol. A sofic shift is irreducible if it
has a presentation with a strongly connected graph. Irreducible sofic shifts have
a unique (up to isomorphisms of automata) minimal deterministic presentation
called the right Fischer cover of the shift.



Let A = (Q,E) be a finite deterministic (essential) automaton on the al-
phabet A. Each finite word w of A* defines a partial function from @ to Q.
This function sends the state p to the state g, if w is the label of a path form
p to q. The semigroup generated by all these functions is called the transition
semigroup of the automaton. When Xja is not the full shift, the semigroup has
a null element, denoted 0, which corresponds to words which are not factors of
any bi-infinite word of Xa. The syntactic semigroup of an irreducible sofic shift
is defined as the transition semigroup of its right Fischer cover.

Example 1. The sofic shift presented by the automaton of Figure 1 is called the
even shift. Its syntactic semigroup is defined by the table in the right part of the
figure.

1(2

a all|—
b bj2|1

ab|2|—

ba|—|1|"

bb(1|2

b bab|—|2
aba|—|—

Fig. 1. The right Fischer cover of the even shift and its syntactic semigroup. Since aa
and a define the same partial function from @ to @, we write aa = a in the syntactic
semigroup. We also have aba = 0, or ab®**'a = 0 for any nonnegative integer k. The
word bb is the identity in this semigroup.

2.2 Structure of finite semigroups

We refer to [16] for more details about the notions defined in this section.
Given a semigroup S, we denote by S! the following monoid: if S is a monoid,
S' = S.If S is not a monoid, S' = S U {1} together with the law * defined by
zxy=zayifr,yc€ Sand 1xxz =z 1 =2 for each x € S'.
We recall the Green’s relations which are fundamentals equivalence relations
defined in a semigroup S. The four equivalence relations R, £, H, J are defined
as follows. Let z,y € S,

TRy & xSt =yS?t,

zLy & Stz = Sy,
zJy & StxSt = StySt,
2Hy < xRy and zLy.



Another relation D is defined by:
Dy & Jz € S 2Rz and zLy.
In a finite semigroup J = D. We recall the definition of the quasi-order < g:
r<gye StzS' C S'yst.

An R-class is an equivalence class for a relation R (similar notations hold for the
other Green’s relations). An idempotent is an element e € S such that ee = e. A
regular class is a class containing an idempotent. In a regular D-class, any H-class
containing an idempotent is a maximal subgroup of the semigroup. Moreover,
two regular H-classes contained in a same D-class are isomorphic (as groups), see
for instance [16, Proposition 1.8]. This group is called the characteristic group
of the regular D-class. The quasi-order <7 induces a partial order between the
D-classes (still denoted < 7). The structure of the transition semigroup S is often
described by the so called “egg-box” pictures of the D-classes.

We say that two elements z,y € S are conjugate if there are elements u,v €
S! such that £ = wv and y = vu. Two idempotents belong to a same regular
D-class if and only if they are conjugate, see for instance [16, Proposition 1.12].

Let S be a transition semigroup of an automaton A = (@, E) and z € S. The
rank of x is the cardinal of the image of z as a partial function from @ to Q.
The kernel of x is the partition induced by the equivalence relation ~ over the
domain of x where p ~ ¢ if and only p, ¢ have the same image by z. The kernel
of z is thus a partition of the domain of z. We describe the egg-box pictures
with Example 1 continued in Figure 2.

12 1 2 _
b 1|*a| ab -
172 2|ba|"bab -

Fig. 2. The syntactic semigroup of the even shift of Example 1 is composed of three
D-classes D1, D3, D3, of rank 2, 1 and 0, respectively, represented by the above tables
from left to right. Each square in a table represents an #-class. Each row represents an
R-class and each column an £-class. The common kernel of the elements in each row is
written on the left of each row. The common image of the elements in each column is
written above each column. Idempotents are marked with the symbol . Each D-class
of this semigroup is regular. The characteristic groups of D1, D2, D3 are Z/2Z, the
trivial group Z/Z and Z/Z, respectively.

Let X be an irreducible sofic shift and S its syntactic semigroup. It is known
that S has a unique D-class of rank 1 which is regular (see [4] or [5], see also
[8])-

We define a finite directed acyclic graph (DAG) associated with X as follows.
The set of vertices of the DAG is the set of non null regular D-classes of S, but



the regular D-class of null rank, if there is one. Each vertex is labeled with the
rank of the D-class and its characteristic group. There is an edge from the vertex
associated with a D-class D to the vertex associated with a D-class D' if and only
if D' <7 D. We call this acyclic graph the syntactic graph of X (see Figure 3
for an example). Note that the regular D-class of null rank, if there is one, is
not taken into account in a syntactic graph. This is linked to the fact that a full
shift (i.e. the set of all bi-infinite words on a finite alphabet) can be conjugate
to a non full shift.

rank 2, Z/2Z

Y
rank 1, Z/Z

Fig. 3. The syntactic graph of the even shift of Example 1. We have D, <7 D; since,
for instance, StabS! C S'bS:.

2.3 Nasu’s Classification Theorem for sofic shifts

In this section, we recall Nasu’s Classification Theorem for sofic shifts [15] (see
also [13, p. 232]), which extends William’s Classification Theorem for shifts of
finite type (see [13, p. 229]).

Let X C A%,Y C B” be two subshifts and m, a be nonnegative integers. A
map ¢ : X — Y is a (m, a)-block map (or (m, a)-factor map) if there is a map § :
Amtatl s Bsuch that ¢((a;)icz) = (b;)iez where §(a;i_m - . - ;_10;Qi41 - - - Qitg)
= b;. A block map is a (m,a)-block map for some nonnegative integers m, a. The
well known theorem of Curtis, Hedlund and Lyndon [7] asserts that continuous
and shift-commuting maps are exactly block maps. A conjugacy is a one-to-one
and onto block map (then, being a shift compact, its inverse is also a block map).

Let A be a symbolic adjacency (@ X @)-matrix of an automaton A with
entries in a finite alphabet A. Let B be a finite alphabet and f a one-to-one map
from A to B. The map f is extended to a morphism from finite formal sums of
elements of A to finite formal sums of elements of B. We say that f transforms
A into an adjacency (@ x Q)-matrix B if By, = f(Ap,)-

We now define the notion of strong shift equivalence between two symbolic
adjacency matrices.

Let A and B be two finite alphabets. We denote by AB the set of words ab
with a € A and b € B.

Two symbolic adjacency matrices A, with entries in A, and B, with entries in
B, are elementary strong shift equivalent if there is a pair of symbolic adjacency



matrices (U, V') with entries in disjoint alphabets &/ and V respectively, such that
there is a one-to-one map from A to UV which transforms A into UV, and there
is a one-to-one map from B to VU which transforms B into VU.

Two symbolic adjacency matrices A and B are strong shift equivalent within
right Fischer covers if there is a sequence of symbolic adjacency matrices of right
Fischer covers

A=A, A1y, A1, A =B

such that for 1 < ¢ <[ the matrices A;_; tand A; are elementary strong shift
equivalent.

Theorem 1 (Nasu). Let X and Y be irreducible sofic shifts and let A and
B be the symbolic adjacency matrices of the right Fischer covers of X and Y,
respectively. Then X and Y are conjugate if and only if A and B are strong shift
equivalent within right Fischer covers.

Ezample 2. Let us consider the two (conjugate) irreducible sofic shifts X and YV
defined by the right Fischer covers A = (@, E) and B = (Q', E') in Figure 4.

Fig. 4. Two conjugate shifts X and Y.

The symbolic adjacency matrices of these automata are respectively

ab ao0d
A:[bo],Bz cdob
0V 0

Then A and B are elementary strong shift equivalent with

’U10

0u2
U:[“1 ],V: vy 0
OUQO 0’1]2



Indeed,
ViU 0 ViU
UV = [lel U20U2:| s VU = Va2U1 0 V2U2
272 0 V2Ug 0

The one-to-one maps from A4 = {a,b} to UV and from B = {a’,V',c',d'} to VU
are described in the tables below.

a'lviug
aluivy b lvgus
blugval’ c |lvauq| "

d' ViU

An elementary strong shift equivalence enables the construction of an irreducible
sofic shift Z on the alphabet ¢/ UV as follows. The sofic shift Z is defined by the
automaton C = (Q U @', F), where the symbolic adjacency matrix C of C is

Q !
Q|0U
Q Vol
The shift Z is called the bipartite shift defined by U,V (see Figure 5). An edge
of C labeled on U goes from a state in @) to a state in Q'. An edge of C labeled
on V goes from a state in Q' to a state in . Remark that the second higher

power of Z is the disjoint union of X and Y. Note also that C is a right Fischer
cover (i.e. is minimal).

Fig. 5. The bipartite shift Z.

3 A syntactic invariant

In this section, we define a syntactic invariant for the conjugacy of irreducible
sofic shifts.

Theorem 2. Let X and Y be two irreducible sofic shifts. If X and Y are con-
jugate, then they have the same syntactic graph.



We give a few lemmas before proving Theorem 2.

Let X (respectively V) be an irreducible sofic shift whose symbolic adjacency
matrix of its right Fischer cover is a (@ x Q)-matrix (respectively (Q' x @')-
matrix) denoted by A (respectively by B). We assume that A and B are elemen-
tary strong shift equivalent through a pair of matrices (U, V). The corresponding
alphabets are denoted A, B, U, and V as before. We denote by f a one-to-one
map from A to UV which transforms A into UV and by g a one-to-one map
from B to VU which transforms B into VU. Let Z be the bipartite irreducible
sofic shift associated to U, V. We denote by S (respectively T', R) the syntactic
semigroup of X (respectively Y, Z).

Let w € R. If w is non null, the bipartite nature of Z implies that w is a
function from QUQ' to QUQ' whose domain is included either in @ or in @', and
whose image is included either in @) or in Q'. If w # 0 with a domain included
in P and an image included in P’, we say that w has the type (P, P'). Remark
that w has type (@, Q) if and only if w # 0 and w € (f(A))*, and w has type
(Q',Q") if and only if w # 0 and w € (g(B))*.

Lemma 1. Elements of R in a same non null H-class have the same type.

Proof We show the property for the (Q,Q)-type. Let w € H and w of type
(Q,Q). If w = w'v with w',v € R, then w' has type (Q,*). If w = zw' with
z,w' € R, then w' has type (x, Q). Thus, wHw' implies that w’ has type (@, Q).
O

The #H-classes of R containing elements of type (Q, Q) (respectively (@', Q"))
are called (@, Q)-H-classes (respectively (Q', Q')-H-classes).
Let w = ay ...a, be an element of S, we define the element f(w) as f(a1)

. f(ay). Note that this definition is consistent since if a; ...a, = af...al, in

.. -
S, then f(a1)...f(an) = f(a})...f(al,) in R. Similarly we define an element
g(w) for any element w of T'.

Conversely, let w be an element of R belonging to f(A)* (C (UV)*). Then
w = f(a1) ... f(a,), with a; € A. We define f 1(w) as ay ...a,. Similarly we
define g!(w). Again these definitions and notations are consistent. Thus f is a
semigroup isomorphism from S to the subsemigroup of R of transition functions
defined by the words in (f(A))*. Notice that f(0) = 0 if 0 € S. Analogously,
g is a semigroup isomorphism from 7" to the subsemigroup of R of transition
functions defined by the words in (g(B))*.

Lemma 2. Let w,w' € R of type (Q,Q). Then wHw' in R if and only if
FHw)Hf 1(w') in S.

Proof Let w = f(a1)... f(an) and w' = f(a})... f(ay,), with a;,a; € A. We
have w = w'v with v € R if and only if v = f(a1) ... f(a,) with a; € A and
fla1)... f(an) = f(a})... f(a),)f(@1) ... f(@,). This is equivalent to a; ...a, =
aj...al,a ...a,, that is f~}(w)R' C f }(w')R!. Analogously, we have w' =
wv' with o' € R, if and only if f~!(w')R! C f~!(w)R!. This proves that wRw’'



in R if and only if f~!(w)Rf~'(w') in S. In the same way, one can prove the
same statement for the relation £ and hence for the relation H. O

A similar statement holds for (Q', Q')-H-classes.

Lemma 3. Let w,w' € R of type (Q,Q). Then w <z w' in R if and only if
fYw) <7 f~Y(w') in S. This implies that wJw' in R if and only if f~1(w)
J @' in S.

Proof The first statement can be prooved as in the previous lemma. O

Similar results hold between 7" and R. As a consequence we get the following
lemma.

Lemma 4. The bijection f between S and the elements of R belonging to (f(A))*,
induces a bijection between the non null H-classes of S and the (Q,Q)-H-classes
of R. Moreover this bijection keeps the relations J, <7 and the rank of the H-
classes.

A similar statement holds for the bijection g.

We now come to the main lemma, which shows the link between the ele-
mentary strong shift equivalence of the symbolic adjacency matrices and the
conjugacy of some idempotents in the semigroup. This link is the key point of
the invariant.

Lemma 5. Let H be a regular (Q,Q)-H-class of R. Then there is a regular
(Q',Q")-H-class in the same D-class as H.

Proof Let e € R be an idempotent element of type (@), Q). Let uyv ...upv, in
(UV)* such that e = uqvy .. . unv,. We define € = vy ... upvpur. Thus eus = ui€
in R. Remark that € depends on the choice of the word uj v - - . unv, representing
ein R.

If w denotes vy ...unv, and v denotes u1, we have e = vw and € = wv. It
follows that e and & are conjugate, thus e? = e and &2 are conjugate. Moreover

3= WIWVWV = weev = wev = Wwowv = éz.

€
Thus &2 is an idempotent conjugate to the idempotent e. As a consequence e
and &2 belong to a same D-class of R (see Section 2), and &2 # 0. The result
follows since &2 is of type (Q',Q'). O

Note that the number of regular (Q,Q)-H-classes and the number of regular
(Q',Q")-H-classes in a same D-class of R, may be different in general.

We now prove Theorem 2.

Proof[of Theorem 2] By Nasu’s Theorem [15] we can assume, without loss of
generality, that the symbolic adjacency matrices of the right Fischer covers of
X and Y are elementary strong shift equivalent. We define the bipartite shift Z



as above. We denote by S, T and R the syntactic semigroups of X, Y and Z
respectively.

Let D be a non null regular D-class of S. Let H be a regular #H-class of
S contained in D. Let H" = f(H). By Lemma 4, the groups H and H" are
isomorphic. Let D" the D-class of R containing H"”. By Lemma 5, there is at
least one regular (Q', Q')-H-class K" in D", which is isomorphic to H". Let
H' = g71(K") and let D' be the D-class of T containing H'. By Lemma 4, the
groups H' and K" are isomorphic. Hence the groups H and H' are isomorphic.

By Lemmas 4 and 5, we have that the above construction of D' from D is a
bijective function ¢ from the non null regular D-classes of S onto the non null
regular D-classes of T'. Moreover the characteristic group of D is isomorphic to
the characteristic group of ¢(D) and, by Lemma 4, the rank of D is equal to the
rank of ¢(D).

We now consider two non null regular D-classes D; and D of S. By Lemma 4
and Lemma 5, D; <7 D, if and only if ¢(D;) <7 ¢(D2). It follows that the
syntactic graphs of S and T are isomorphic through the bijection ¢. O

Nasu’s Classification Theorem holds for reducible sofic shifts by the use of
right Krieger covers instead of right Fischer covers [15]. This enables the ex-
tension of our result to the case of reducible sofic shifts. This extension is not
described in this short version of the paper.

4 How dynamic is this invariant?

We briefly compare the syntactic conjugacy invariant with other classical con-
jugacy invariants. We refer to [13] for the definitions and properties of these
classical invariants.

First, on can remark that the syntactic invariant does not capture all the
dynamic. Two sofic shifts can have the same syntactic graph and a different
entropy, see the example given in Figure 6.

a a
c
b S
j NS
c
Fig. 6. The two above sofic shifts X,Y have the same syntactic graph and a different

entropy. Indeed, we have b = ¢ in the syntactic semigroup of Y. Hence the shifts X
and Y have the same syntactic semigroup.



The comparison with the zeta function is more interesting. Recall that the
zeta function of a shift X is ((X) =exp}_, -, pn%-, where p, is the number of
bi-infinite words z € X such that ¢"(z) = z. We give in Figure 7 an example
of two irreducible sofic shifts which have the same zeta function and different
syntactic graphs.

Irreducible shifts of finite type can be characterized with this syntactic in-
variant. Other equivalent characterizations of finite type shifts can be found in
[14] and in [8].

Proposition 1. An irreducible sofic shifts is of finite type if and only its syn-
tactic graph is reduced to one node of rank 1 representing the trivial group.

Another interesting class of irreducible sofic shifts can be characterized with
the syntactic invariant. It is the class of aperiodic sofic shifts [1].

Let z € X, we denote by period(x) the least positive integer n such that
o™(x) = x if such an integer exists. It is equal to 0o otherwise.

Let X,Y be two subshifts and let ¢ : X — Y be a block map. The map is
said aperiodic if period(z) = period(¢(z)) for any z € X. Roughly speaking,
such a factor map ¢ does not make periods decrease.

A sofic shift X if aperiodic if it is the image of a shift of finite type by an
aperiodic block map. A characterization of irreducible aperiodic sofic shifts is
the following,.

Proposition 2. An irreducible sofic shift is aperiodic if and only if its syntactic
graph contains only trivial groups.

Schiitzenberger’s characterization of aperiodic languages (see for instance [16,
Theorem 2.1]) asserts that the set of blocks of an aperiodic sofic shift is a regular
star free language.

b b b c
a a
T Y T Y
a d
Fig. 7. Two sofic shifts X,Y which have the same zeta function m (see for
instance [13, Theorem 6.4.8], or [2] for the computation of the zeta function of a
sofic shift), and different syntactic invariants. Indeed the syntactic graph of X is

(rank 2,Z/2Z) — (rank 1,Z/Z) while the syntactic graph of Y has only one node
(rank 1,Z/Z). Thus they are not conjugate. Notice that Y is a shift of finite type.
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