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Abstract. We survey the most recent and general results on Garden of Eden (briefly
GOE) type theorems in the setting of Symbolic Dynamical Systems and Cellular Au-
tomata. We present a GOE type theorem for (one-dimensional) irreducible sub-shifts of
finite type and show that a generalization to sofic shifts does not hold in general. We
also present a detailed and self-contained proof of a GOE type theorem of Gromov for
maps of bounded propagation, between strongly-irreducible stable spaces of finite type
over amenable graphs, admitting a dense pseudogroup of holonomy maps.

1. Introduction

The notion of a cellular automaton was introduced by Ulam [28] and von Neumann
[26]. In the classical situation [24, 25, 26, 28] the universe U is the lattice Z* of
integer points of Euclidean plane. If S is a finite set, the set of states or the alphabet,
a configuration is a map ¢ : U — S. A transition (or local) map is a function
7 : C — C from the set C of all configurations into itself such that the state 7[c](z)
at a point x € U only depends on the states c(y) at the neighbours y’s of z. In
the literature there are different nighbourhoods (corresponding to different metric
distances in the universe U = Z? ), for instance the Moore-neighbourhood [24] and
that of von Neumann [26]: to fix the ideas we choose the latter. Thus, denoting
by B(z;1) = {'T:yl =z+(1,0),y2 =2+ (-1,0),y3 =2+ (0,1),y4 =+ (0, _1)}a
the ball of radius 1 centered at z € U, there exists a function, called local rule,
f: §B(0.051) 4 G such that

7c(z) = fle(@), e(y1), c(y2), e(ys), c(ya)]- (L.1)

As U is countable, C is a compact metrizable space and one shows (see Propo-
sition 4.4 that 7 : C — C is a transition map induced by a local rule f (associated
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with a suitable metric distance on U) if and only if it is (uniformly) continuous and
7.2 — equivariant (or, equivalently, commutes with the shift): 7[c?] = 7[c]9, where
(using the multiplicative notation), ¢9(h) = c(g~th), for all ¢ € C and g, h € Z2.

One often speaks of 7 as being time: if ¢ is the configuration at time ¢, then
T[c] is the configuration at time ¢ 4+ 1. An initial configuration is a configuration
at time ¢ = 0. A configuration ¢ not in the image of 7, namely ¢ € C \ 7[C],
is called a Garden of Eden (briefly GOE) configuration, this biblical terminology
being motivated by the fact that GOE configurations may only appear as initial
configurations.

Given a non-empty finite subset F' C U, a pattern of support F is a map
p: F — S. A pattern p is called GOE if any configuration extending p outside
its support F' is a GOE configuration: 7(c)|r # p for all ¢ € C. Using topological
methods, namely a compactness argument, one shows (see Proposition 4.1), that
the existence of GOE patterns is equivalent to that of GOE configurations.

Two distinct patterns p and p’ with a common support F are said to be
T—mutually erasable if, for all configurations ¢ and ¢ extending p and p', re-
spectively and that are equal outside F', i.e. c|ynp = €|\ F, One has 7(c) = 7(c').

Also, 7 is pre-injective if for all ¢,¢’ € C such that ¢ # ¢ but differ only in
finitely many points, i.e. 3F C U finite s.t. c[g\p = ¢'|v\r, then T[c] # 7T[c']. Tt
is easy to show (see Proposition 4.2) that non-existence of 7—mutually erasable
patterns and pre-injectivity of 7 are equivalent notions.

Given a finitely generated group G =< A >, with a finite and symmetric
system of generators A = A~!, one can define, in perfect analogy with the above
setting, the notion of a cellular automaton over the universe G, [4, 9, 23].

One then says that a group G satisfies the Myhill property (resp. the Moore
property) if given any cellular automaton over G, 7 pre-injective = 7 surjective (7
surjective = 7 pre-injective, respectively).

The classical Garden of Eden Theorem, due to Moore and Myhill [24, 25],
states the equivalence between surjectivity and pre-injectivity of T for a cellular
automaton over G = Z2. In other words both the Moore and the Myhill properties
hold for Z2.

This theorem has been extended to groups of sub-exponential growth in [23]
and, more generally, to amenable groups [4]. In [4] it is also shown that for groups
containing the non-abelian free group F2 (thus highly non-amenable) both the
Myhill property and the Moore property fail to hold in general: it was posed as a
problem whether this failure holds also for all (other) non-amenable groups (e.g.
for the free Burnside groups B(m,n) or the Olshanskii groups, [3]); clearly a
positive answer to this question would give a new characterization of amenability.

A group G is surjunctive, [18, 20, 30] if, for any finite alphabet S, any transition
map 7 : S = SY is either surjective or non-injective; equivalently, 7 injective
= 7 surjective, which can be reharded as a sort of co-hopfianity condition (see
[5] for hopfianity and this latter notion). Since injectivity implies pre-injectivity,
we have that groups satisfying the Myhill property are surjunctive. We recall that
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sofic groups — a notion due to Gromov and Weiss, generalizing both amenable
groups and residually finite groups (e.g. the free groups) — are surjunctive.

Section 2 of the present paper is devoted to one-dimensional (i.e. with universe
U = Z) Garden of Eden type theorems. Basic notions like irreducibility, being
of finite type, are introduced in this setting where, we believe the reader has a
gentler approach than in the multi-dimensional case. Thus, although the main
result, namely Theorem A, cannot be recovered as a particular case of Theorem B
(i.e. Gromov’s theorem, which constitutes the main result of Section 3) because
different kinds of irreducibility are involved, this section should be interepreted as
a preparation thowards the much more articulated following section.

The book by Lind and Marcus [22] is an excellent comprehensive introduction
to the theory of symbolic dynamical systems. The theory of one-dimensional shifts
(or subshifts), i.e. closed shift-invariant subspaces of SZ, is investigated there in
full detail focusing the strong connections with other settings (graph theory, theory
of formal languages, Perron-Frobenius theory, etc.).

In her PhD dissertation [9], the second named author investigated GOE type
theorems for one-dimensional subshifts and for subshifts over amenable groups:
clearly the set up is slightly more delicate than in [4] since notions like irreducibil-
ity and finiteness (e.g. requirement for a subshift to be of finite type or to be sofic
[22, 29, 30]: see Section 2, for all the details) play a determinant role. Using the
notion of entropy (see, e.g., [20, 22]) one can relax the condition for a transition
map to be an endomorphism of a single sub-shift, by considering a transition map
between two distinct subshifts. The Garden of Eden Theorem in this setting then
becomes

Theorem A. Let X and Y be irreducible (one-dimensional) sub-shifts of finite
type and 7 : X — Y a transition map. Suppose that ent(X) = ent(Y), e.g. if
X =Y. Then 7 is pre-injective if and only if it is surjective.

Sofic shifts were introduced by B. Weiss [29] as the minimal class containing
all the shifts of finite type and closed under factorizations: a factor is the image
under a local map. A natural question then arises: what can one say about GOE
type theorems for sofic shifts? The answer is known from [9, 10]: the Myhill prop-
erty holds for irreducible sofic shifts, see Theorem 2.17, but the Moore property
in general fails to hold, see Counterexample 2.18.

The last section is devoted to a Garden of Eden type theorem due to Gromov.
In [20], using entropic arguments, Gromov generalized the Garden of Eden theo-
rem of [4] in the following way (see our Section 3 for all definitions and notions
involved in the statement).

Theorem B. Let A be an amenable graph. Suppose that X, Y C S are strongly-
irreducible stable spaces of finite type with the same entropy: ent(X) = ent(Y),
e.g9. if X =Y. Then a map of bounded propagation 7 : X — Y admitting a dense
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holonomy is surjective if and only if it is pre-injective.

The remarkable point is that Gromov does not restict himself to graphs A
which might occur as Cayley graphs of groups, but to graphs having a sufficient
regularity (dense pseudogroups of isometries and dense holonomy); also he con-
siders, more generally, subshifts rather than full shifts: the set of configurations
C is now a closed shift-invariant subset of S®. Thus [20] covers [4] and, in this
setting, the generalization can be formulated as follows (Garden of Eden Theorem
for strongly-irreducible amenable subshifts):

Corollary C. Let G be an amenable finitely generated group and X,Y C S two
strongly-irreducible subshifts of finite type with the same entropy ent(X) = ent(Y)
(e.g. if X =Y). Then a local map 7 : X — Y is surjective if and only if it is
pre-injective.

We analyze in detail all definitions and terminolgy considered by Gromov: since
these latter slightly differ from the usual ones from the current literature (e.g. from
[22]), our pourpose is to provide a “dictionary” between these different points of
view: the parallelism is not always complete and we shall point out the differences.
Also, although the key-point in Gromov’s proof is essentially of the fundamental
Lemma 3.18 on strict-monotonicity — all other statements, together with several
definitions and notions, being heavily sprouded, even with more general results,
between various preceeding sections of the long paper [20] — our proof should be
thought of as a completely self-contained and thus more accessible version of the
original proof.

2. GOE Theorem for one-dimensional sub-shifts

We start this section by reviewing some known facts about directed graphs and
their entropy. The fundamental entropic inequality for subgraphs of irreducible
graphs (Theorem 2.2) is presented here in a new version from [27] which avoids
the Perron-Frobenius theory, by means of which it is usually proved, but is based
on the techniques of Gromov [20] further developed in Section 3.

2.1. Directed Graphs and their entropy

A finite, directed graph G is given by a finite set V (G) of vertices, a finite set E(G)
of edges and two functions i,t : E(G) — V(G). If e € E(G) then i(e) and t(e)
are the initial vertex and the terminal vertex of e, respectively. We say that G is
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simple if e,e’ € E(V) and e # €' implies (i(e),t(e)) # (i(e'),t(e’)). A path of lenght
n in G is a finite sequence m = ejes - - - €, of edges such that t(ex) = i(ep41) for
k=1,2,...,n—1; w starts at edge i(7) = e; and terminates at edge t(7) = e,. A
bi-infinite path in G is a sequence £ = {ey }rez of edges such that t(er) = i(ex+1)
for any k € Z.

Let G be a finite, simple, directed graph. A word in G is a finite sequence
aias - - - a,, of vertices such that there is an edge starting in a; and terminating in
aiy1 fori =1,2,...m — 1. Define B,,,(G) as the set of all words in G of lenght m.
The entropy ent(G) of G is defined as

ent(G)= lim M.

m—r0o0 m

(2.2)

Such a limit always exists (use the Fekete-Polya lemma, see, e.g. Lemma 4.17
and Proposition 4.18 in [22]).

A graph G is irreducible when, given any ordered pair of vertices @ and b, there
exists a path from a to b. A word ajas -+ - a., in G is simple when all the vertices
are distinct; it is a cycle when a; = an, and a; # a; if {i,j} # {1,m}.

Given an arbitrary word w = aqasas - - - a,, we can form its decomposition into
cycles as follows. Let i1 be the largest index such that the vertices ai,a2...a;, 1
are all distinct; then a;; = aj, for a suitable j; < 4; and ¢ = aj,aj,41 - a;,
is the first cycle of the word; also set 11 = ajas---aj,. Successively consider
the largest index i3 > 41, such that the vertices a;,ai, 41 ---ai,—1 are all distinct;
then a;, = aj, for a suitable jo € {i1,i1 +1,...92 — 1} and ¢2 = aj,aj,41 " - Qi,

is the second cycle of the word; set 72 = ai,4+1ai,4+2---aj,. Continuing this
way we obtain a (unique) canonical decomposition w = ri¢172¢s « - TECET k41,
with some overlappings at the extremities, where ¢;,c2,... , ¢ are the cycles and
T1,T2,... ,Tk+1 are simple (possibly empty) words. With this notation we say that

W =ay---a;,_10;,ai,41 - - - Gy i obtained from w by collapsing the s—th cycle c;.

Lemma 2.1. Let G be an irreducible graph and e € E(G) an edge in G. Then
there exists n such that if w = ai1as - an is a word in G of lenght n then there
ezxists a word w' = aya} ---al,_,a, containing e.

Proof. From the irreducibility it follows the existence of a word v starting at a;,
terminating in a; and containing e. Also, if n is large enough, in the canonical
decomposition w = riciracs - - - rRCprr+1 of w there exists a cycle ¢ repeated many
times. If the lenght of ¢ is £, the lenght of v is m and the cycle ¢ is repeated at
least m times we may collapse the first m — 1 copies of ¢ and add £ — 1 copies of
v at the beginning obtaining the desired word. O

The following fundamental entropic inequality is usually proved by means of
the Perron-Frobenius theorem (see, e.g., [22]); we present a new proof from [27]
based on Gromov’s techniques in [20].

Theorem 2.2. If G is an irreducible graph and H is obtained from G by deleting
one edge e € E(G), then ent(H) < ent(QG).
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Proof. Let n be the integer of Lemma 2.1. We first show that setting

|Bn(G)|
one has, for k =1,2,...
|Bin(H)| < (1 = @)*[Bin(G))- (2:3)

Clearly we have |B,,(,_1)(G)| > a*|Bg,(G)|. In what follows a word w of lenght kn
will be represented as the concatenation of words of lenght n, i.e. in the form w =
wiws - - - Wk, where wy, is a word of lenght n for h = 1,2, ... k. Define 7, as the set
of all w € By, (G) such that wy, contains the edge i(e)t(e). By Lemma 2.1 for any
w' € B(r_1)n(G) there exists a word vw' € By, (G) such that v contains i(e)t(e).
Then [m1| > |Bpk—1)(G)|. Therefore |Bni(G) \ 71| < (1 — a)|Bui(G)|. Then
define B, (G) = Bnr(G) \ Uj=} m, C" = {w € B"(G) : wy, contains i(e)t(e)}
and D" as the set of all couples of words (vi,vs) such that v; € B h-1)(G),
V2 € Bp—n)(G) and there exists v € B,(G) such that vivvy € Bp, (G). By
Lemma 2.1, for any (vy,vs) € D" there exists w = v1v'vy € By, (G) such that v’
contains ab. Thus w € C". Therefore we have again: |[C"| > |D"| > a - |BE (G)|
and so:

|Bn(G) \ Up_y mt| = |(Bin(G) \ U} m) \ | = | BL,(G) \ m| = | B, (G) \ C*|
< (1-a)|B},(G)] < (1 - a)* B (G)],

where the last inequality follows by an obvious inductive argument on h. Then for
h = k we obtain (2.3).
Taking logarithms in (2.3), it follows that
log | Bin (H)| < log(l — a) + log | Bn(G)|
kn - n kn

and therefore, letting k — oo, we have

1-a)

ent(H) < % + ent(GQ) < ent(G).

2.2. Symbolic Dynamical Systems

We start by recalling from [22] some basic facts on symbolic dynamical systems.
Let S be a finite alphabet. A word w of lenght n over S is a finite sequence
w = x1To---T, of symbols z; € S,i = 1,2,... ,n. A bi-infinite word z is a bi-
infinite sequence of symbols of S: x = ---z_sx_1Tex122---. We say that a word
w of lenght n is contained in the bi-infinite word z if there is an index ¢ € Z such
that w = z;x;41 -+ - Ti+n—1 The set of all bi-infinite words is denoted as usual by
SZ and it is called the full shift. It is a compact space if endowed with the product
topology (S is a discrete space) and the map o : SZ — S% defined by o(z); = Tiy1,
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called the shift, is continuous. A subshift, or symbolic dynamical system, is a subset
of SZ that is closed and shift invariant. If X is a subshift, its language B(X) is
the set of all words {z;x;11%iy2 - Tiyn | £ € X, i € Z and n € N}. A subshift
X C 87 is always described by means of a set F of forbidden words: there exists a
set F of words over the alphabet S such that X is the set of all € S% containing
no words in F as subwords; conversely, for any set F, the set of all z € S% not
containig the words in F as subwords is a subshift, denoted X (see Proposition
4.3). A subshift X = X is of finite type if it is possible to describe it in terms
of a finite set F of forbidden words. If this is the case, the maximum M of the
lenghts of the world in F is called the memory of X. The shifts of finite type are
characterized by the following overlapping property: X is a shift of memory M if
and only if whenever uwv,vw € B(X) and |v| > M — 1 then uvw € B(X).

A subshift X is irreducible if, for every pair of finite words u,v € B(X), there
exists a word w € B(X) such that uwv € B(X).

Let X be a subshift. Define B,(X) as the set of all words in B(X) of lenght
n. The entropy ent(X) of X is defined as

ent(X)= lim log | B, (X)|

n— 0o n

(2.4)

and, as for the entropy of a graph (2.2), such a limit always exists.

Let now X be a shift of finite type with memory M. For m > M consider the
graph G = G(X,m) whose vertices are the allowed words of lenght m, i.e. V(G) =
B,,,(X) and the edges are the words of lenght m + 1 in B(X): E(G) = By+1(X)
with i(t) = ajas - - an, and t(e) = az - - - amamy1 for an edge e = ajas -+ - mGma1-
This construction comes from [22] where the shift associated to G(X,m) is called
the m—higher block shift. It is easy to show that if X is irreducible then also G
is irreducible. Note also that |B,(G)| = |Bptm—1(X)|, so that ent(G) = ent(X).
We can now prove the following.

Theorem 2.3. If X is an irreducible shift of finite type and Y is a proper subshift
of X then ent(Y") <ent(X).

Let X = Xr and Y = X with F finite and contained in F'. Choose W €
F'\ F and set m = max{M, |W|}, were M = max{|v|: v € F} is the memory of
X. Then if w € By, 41(X) contains W as a subword one has

ent(Y) < ent(XfU{W}) < ent (X]-'U{w}) < ent (X). (2.5)
Consider the graph G = G(X, m). Forbidding word w corresponds to deleting an
edge in G, thus Theorem 2.2 applies and the last inequality in (2.5) is strict. O

A map 7 : 5% = S% is k—local (compare with the notion of transition map for a
cellular automaton from the Introduction) if there exists a function 7 : §2k+1 — §
such that for all z € SZ% the bi-infinite word y = 7(z) is defined by:

Yn =T (Tn—ky>Tn—k41s--+ >Lny-v s Entk—1,LTntk)
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for every n € Z. We also say that 7 has memory k. It is a well known fact (see
Proposition 4.4) that if X and Y are subshifts then a function 7 : X — Y is
k—local for some k if and only if it is continuous and commutes with the shifts.
A local map 7 is called pre-injective if whenever z,y € X and the set {i € Z :
x; # y;} is finite and non-empty, then 7(z) # 7(y).
If Y is a subset of S% not necessarily a subshift, we can define

log |B;_ Y
ent(Y)=lim inf 08 | Bi=m1,m (V)|

m—0oQ 2m

; (2.6)

where Bi_p,11,m](Y) = {¥-mt1¥—mt2-- Yo" " Ym—1Ym : y € Y}. Then we have:
Proposition 2.4. If Y C SZ and 7 is a local map, then ent(7(Y)) < ent(Y).

Proof. If T is k-local, then |B_y41,m)(T(Y))| < [Bi—m—k+1,m+k) (Y)]; dividing by
2m and taking the liminf we obtain the desired inequality. O

Let G be a finite, directed graph. The period of a vertex v € V(G) is the
greatest common divisor of the lenghts of the closed paths starting and terminating
at v. We recall from Sections 4.4 and 4.5 of [22] the following:

Lemma 2.5. Let G be an irreducible directed graph. Then:

(i) All vertices v € V(G) have the same period, called the period of G;

(i) if m is relatively prime with the period p of G then, for every u,v € V(Q),
there exist k € N and a path of lenght km starting at u and terminating at v.

Corollary 2.6. If X is an irreducible shift of memory M and the associated graph
G = G(X, M) has period p then, for every m > M prime with p, and for every
u,v € By, (X), there exist k € N and a word w € By, (X) such that uwv € B(X).

If X is a shift of memory M and m > M, the m-power shift X™ of X is the
2-memory shift defined by taking B,,(X) as the alphabet and forbidding all words
wv with u,v € B, (X) such that wv ¢ B(X). Form the Corollary 2.6 it follows
that if X is irreducible and m is prime with the period of the graph associated
with X, then X™ is irreducible too. There is a canonical bijection 9 : X — X™
given by

Y(T)k = Thmt1Zhkmt2 T (h+1)m

for any z € X. If ¢(z)r, = u for some k € Z we say that = contains u in an
m—position.

Theorem 2.7. Let X be an irreducible shift of memory M. Suppose thatY is the
subset of X obtained from X by forbidding a word in B, (X) in any m—position,
with m prime to the period of G(X,M). Then ent(Y) <ent(X).

Proof. First note that |Bi(X™)| = |Bmir(X)| so that ent(X™) = m - ent(X).
Moreover we may apply Theorem 2.3: Y corresponds under % to a proper subshift
Y' of X™ so that ent(Y’) < ent(X™). Finally, from |Bj_k41,ms(Y)| = |Bar(Y")]
and, recalling (2.6), we can deduce that m - ent(Y) < ent(Y’) and the theorem
follows. O
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We can now prove the following result that stems from the works of Hedlund
[16] and of Coven and Paul [7]; see also [20] pag. 268-269:

Theorem 2.8. Let X be an irreducible shift of finite type and 7 : X — A% a local
map. Then 7 is pre-injective if and only if ent(X)=ent(7(X)).

Proof. Let M denote the maximum between the memory of X and that of 7.
Firstly suppose that 7 is pre-injective. Let n > 2M; for each pair of u,v € By (X)
and w € B, (7(X)) there is at most one p € B, (X) from u to v such that 7(upv) =
w. Thus

| Br2nm (7(X))| < |Bn(X)] < |Bn(r(X))] - By (X)[*

and from the definition of entropy it follows that ent(X) = ent(7(X)).

Now suppose that 7 is not pre-injective. Then there exists z,y € X, x # y
but z; = y; for ¢ ¢ {1,2,...,k} for some k € N, such that 7(z) = 7(y). Define
U= T pp1-ToT1 Tk Thpe and © = Y arp1---YoYi- Yk - - - Yrse; where
t > M is choosen in such a way that the common lenght m = k+t+ M of u
and v is prime with the period of the associated graph G(X,M). If now 2’ is
obtained from 2z € X by replacing a given occurrence of u by v, then 2/ € X
and 7(2') = 7(2). Therefore if Y is obtained from X by forbidding u in any m-
position then 7(X) = 7(Y) and combining Theorem 2.7 with Proposition 2.4 we
get ent(7(X))< ent(Y)< ent(X). m|

Now we can prove Theorem A from the Introduction, namely the Garden of Eden
theorem for irreducible shifts of finite type.

Proof of Theorem A.1If T is pre-injective then, by Theorem 2.8, ent(7(X)) = ent(X)
and Theorem 2.3 applied to 7(X) C Y ensures the surjectivity of 7. Conversely, if
7 is surjective, then ent(7(X)) = ent(Y) = ent(X) so that, again from Theorem
2.8, it follows that 7 is pre-injective. O

Counterexample 2.9. Myhill property no longer holds for a 1-dimensional sub-
shift of finite type but not irreducible.

Proof. Set X = {0,1}% and X = X U {2}, where 2 is the bi-infinite word with
constant value 2. Then X is a subshift of finite type over the alphabet {0,1,2}
with set of forbidden words {02,20,12,21}.

Also, X is not irreducible; indeed 1,2 € B(X) but for no word w € B(X) the
word 1w?2 belongs to B(X). Consider the transition map 7: X — X defined by

(0) = c ifeceX
TEOZ10 ife=2

Then it is easy to show that 7 is pre-injective but not surjective. O

Counterexample 2.10. Moore-property no longer holds for a shift of finite type
but not irreducible.
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Proof. Let X be the shift over the alphabet {0,1,2} with set of forbidden words
{01,02}. Thus

X ={1,2}20 {0} U {wl" : w=---wswis1 ---w; w; € {1,2}}

where, {1,2}% denotes, as usual, the full shift on the letters 1 and 2; 0 is, as
above, the bi-infinite sequence of zeroes and, finally w is a left-infinite sequence
in {1,2}N and 0" = 00--- € {0}N is a right-infinite sequence of zeroes. X is not
irreducible, since for no word u € B(X) the word Oul belongs to B(X). Consider
the transition map 7 : X — X defined by the local rule:

_ aop ifalyéO
f(ahaO:al)_{ 0 a; =0

The function 7 is surjective because we have
7[0] =0
7[wl0"] = w00 for all w € {1,2}N
7[v] = v for all v € {1,2}7.

This also shows thay 7 is not pre-injective; indeed 7[w10'] = w00 = 7[w20']. O

In two-dimensions or, more generally for subshifts over finitely generated groups
there is a notion of irreducibility which extends naturally that for one-dimenional
sub-shifts: a shift X C S¢ is irreducible if for all pair of patterns p and p' with
supports F' and F', respectively, there exist g € G and a configuration ¢ € X such
that FNgF' =0, ¢|r = p and '|gpr = p' (here gF' = {gf' : f' € F'} is the
(left-)translation of F' by the element g). In topological terms, X is irreducible if
and only if for all pairs of open subsets U,V C X, there exists g € G such that
UNV9 #( (where VI = {¢? : ¢c € V} and, as usual, ¢?[h] = c[g~'h]); indeed for
any pattern p with support F' consider the set U, = {c € X : ¢|r = p} consisting
of all configurations extending p outside its support: this is and open set in the
topology of X.

It turns out — see the next counterexample — that this is too weak a notion
of irreducibility to guarantee a multi-dimensional GOE type theorem. There is a
notion of strong irreducibility (from [9]: see Definition 3.8 in our Section 3) which
ensures a GOE theorem (see, e.g. Theorem B and Corollary C).

Counterexample 2.11. The Garden of Eden theorem no longer holds, in general,
for two-dimensional irreducible shifts of finite type.

Proof. If X is a subshift of SZ, the subshift
X2 = {(Sij)i,jez : (Stj)jez € X, forall7 e Z}

consisting of (independent) horizontal copies of X, is always irreducible and it is
of finite type if X is so. A transition map 7 : X — X may be extended to a
transition map 7> : X2 — X2 acting independently on each horizontal line. Now,
to obtain counterexamples to the Garden of Eden Theorem it suffices to consider
the previous one-dimensional counterexamples and apply the above construction.Ol
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2.3. Sofic Shifts

Let G be a finite, directed graph. If S is a finite alphabet, a labelling of G is
amap L : E(G) — S. The label of a path m = ejes--- e, is the word L(nw) =
L(e1)L(ez) - L(ey). If € = {er }rez is a bi-infinite path in G, its label is given by

L(¢) = ---L(e-1)L(eo)L(er) --- € S”

The sofic shift X presented by (G, L) is the set of the labels of the infinite paths
in G:

X =X(G,L) ={L(&) | ¢is a bi-infinite path in G}

If S = E(G) and L is the identity map, then X is called the edge shift associated
with G it is of finite type with memory M = 2. Every sofic shift is a shift space
and every shift of finite type is sofic. A labelled graph (G, L) is deterministic or
right resolving if for each vertex v € V(@) the edges starting at v carry different
labels, i.e. e,e’ € E(G), e # €' and i(e) = i(e') implies L(e) # L(e'). We recall
a basic fact on irreducible sofic shifts (see Section 3.3 in [22] and, in particular,
Theorem 3.3.2):

Theorem 2.12. An irreducible sofic shift may be presented by an irreducible de-
terministic labelled graph.

Proposition 2.13. Let (G, L) be a deterministic labelled graph, Y the edge shift
associated to G and X the sofic shift presented by (G,L). Then ent(Y) = ent(X).

Proof. Clearly L is a 1-local map from Y onto X. Then, by Proposition 2.4,
ent(X) < ent(Y). Moreover since (G, L) is deterministic every word in B, (X) has
at most |V (G)| preimages under L. Therefore |B,(X)| > |V(1—G)||B"(Y)| Taking

logarithms, dividing by n and letting n — oo we obtain the reverse inequality. O

Theorem 2.14. If X is an irreducible sofic shift and'Y is a proper subshift of X
then ent(Y)< ent(X).

Proof. From Theorem 2.12 there exists an irreducible, deterministic labelled graph
(G, L) that presents X. Let X' be the edge shift of G. Then, by Proposition 2.13,
ent(X) = ent(X'). Using the 1-local map L from X' onto X, define Y’ = L~ 1(Y),
which is a proper subshift of X'. Then, from Theorem 2.3,

ent(Y) < ent(Y') < ent(X') = ent(X)
0O

Remark 2.15. A finite-state-automaton is a labeled graph with a distinguished
initial state and a distinguished subset of terminal states. A language L is a set
of words over a finite alphabeth. The language associated with a finite-state-
automaton is the set of all labels of paths that begin at the initial state and
end at a terminal state, and a language is called a regular language if it is of
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this form; there are other equivalent constructive definitions of such languages in
terms of right- (or equivalently left-) linear grammars, see [15, 17]. As remarked
by W.Krieger [21], there is a connection between sofic shifts and regular languages:
the languages of sofic shifts are precisely the factorial (i.e. closed under subwords)
and prolongable (i.e. every word in the language can be extended to the left and
the right to obtain a longer word still in the language) regular languages. For
further reading on the connections between automata theory (= theory of formal
languages) and symbolic dynamics, see the nice survey of Béal and Perrin [1].

The above Theorem 2.14 is well-known in the setting of the theory of formal
languages and in that of geometric group theory [8, 19], where irreduciblility is
often called ergodicity, the logarithm of the entropy is usually called the (exponen-
tial) growth rate and “sofic shift” is replaced by “regular language”. This result
has been recently extended to irreducible unumbiguous non-linear context-free lan-
guages (a class of languages generalizing the regular languages) in [6]; “unumbigu-
ous” corresponds to “deterministic”.

Lemma 2.16. Let (G, L) be an irreducible deterministic labelled graph and denote
by X = X(G, L) the corresponding irreducible sofic shift. LetY be another shift
and 7 : X =Y a local map. Then 7o L is pre-injective if and only if ent(X) =
ent(7(X)).

Proof. Let X' be the edge shift of G. Then 7o L : X' — Y is a local map; thus by
Theorem 2.8 applied to the irreducible shift X' of finite type we have that 7o L is
pre-injective if and only if ent(X') = ent (7(L(X"))) = ent (7(X)). By Proposition
2.13, ent(X") = ent(X) and the assertion follows. O

Now we can prove the Myhill property for irreducible sofic shifts.

Theorem 2.17. Let X,Y be irreducible sofic shifts with the same entropy: ent(X)
=ent(Y) and let 7 : X — Y be a local map. Then T pre-injective implies T
surjective.

Proof. Let (G,L) be an irreducible deterministic labelled graph presenting X
and denote by X' the corresponding edge-shift on G. We first show that if 7
is pre-injective then 7 o L is pre-injective. Indeed if 7 o L is not pre-injective
then there exist two bi-infinite paths & = ---e_jeger---epepy1--- and & =
---e_1fofi- - fnens1 -+ in G which differ only for finitely many edges (in partic-
ular, say eg # fo) such that 7(L(&)) = 7(L(&)). Setting a; := L(e;),i € Z and
b; :== L(fi),i = 0,...,n, the labelld graph beeing deterministic we have ag # bg
and hence

L&) =---a_2a_1G0a1 - - Ap_1GnGpy1 - -
and
L(&) =---a—2a_1boby - - - bp_1bpan41 - -

are two configurations in X which differ only on a finite (non empty) set and whose
image under 7 are equal. Therefore 7 is not pre-injective.
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Thus, if 7 is pre-injective, the same is for 7 o L; by Lemma 2.16 we have ent(Y) =
ent(X) = ent(7(X)). By Theorem 2.14, 7(X) cannot be a proper subshift of the
irreducible shift Y. Hence 7 is surjective. O

Counterexample 2.18. There exists an irreducible sofic shift (not of finite type)
for which the transition map is surjective but not pre-injective; this yields a coun-
terexample to the Moore property.

Proof. Let X, denote the even shift, that is the subshift of {0,1}% with forbidden
words:

{10*"*11 | n > 0}.
The shift X, is sofic, indeed it is accepted by the following labeled graph:

1600

Consider the function f : S® — S defined by

1 if ajasasz = 000 or ajasasz = 111 or azazas = 010,
0 otherwise.

f(a1a2a3a4a5) = {

and denote by 7 : X, — SZ the induced local map, i.e.
7le](z) = fle(z — 2), c(z — 1), c(2), c(z + 1), c(z + 2)].

We want to show that 7 : X, — X, is well-defined and that it is surjecive but
not pre-injective. We devide the proof in a few steps. By abuse of notation, for a
word (often called also block) w = ajaz - - - ag, with k > 5 we set

7(w) = f(arazazaqas) f(azasasasag) - - - f(aAp—1ak—3aK—2aK—10a%)-

Step 1. If a block 0"1 with n > 3 has a pre-image under T of lenght n+ 5 in the
language of X., say

ap | a2 | Gz | G4 co-o | Op41 | Gp42 | Gn43 | Gnida Cln+5|
0 0 0 0 1 |’

then this pre—image is necessarily of one of the forms

1. (1) aras zz (1 —2)(1 —z)...11 00 11 000a,+4an+5,
(i7) ara2 zz (1 —z)(1 —2)...11 00 11 00100,
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(#41) azaz (1—2)(1 —2) zz...00 11 00 11la,44an4s5,

when n is even and for a suitable x € {0,1};

2. (i) ata2 (1 —2) zz...11 00 11 000a,+4Qn+5,
(1) a1a2 (1 —z) xzz...11 00 11 00100
(#91) araz © (1 —2)(1 —2)...00 11 00 111a,4Gn 45
when n is odd and for o suitable x € {0,1}.

Proof of Step 1. The statement may be proved by induction on n > 3. Suppose
n = 3. When 7(aja2as3a4asasazas) = 0001 we have three cases: if asasag = 000
then as = 1, if agasagarag = 00100 then again a3 = 1 and finally if ajasas = 111
then necessarily az = 0.

Now suppose that the statement is true for n and that 7(ay ...an46) = 0"H11:
if n is even, by the inductive hypothesis one has either

a4 ...anta =z (1 —2)(1 —2)...11 000
or

a4 ...an46 =z (1 —2)(1 —2)...11 00100
or

a4...anya = (1—2)(1 —2) 2z...00 111

for a suitable z € {0,1}.

In any case we have a4 = a5. If a3 = a4, then f(azasasasar) = f(asasasa6ar)
=1 # 0. Thus a3 # a4. Then the theorem follows by the inductive hypotesis.
The case n odd may be proved in a similar way. O

Step 2. The map 7 is an endomorphism of X, that is 7(Xe) C Xe.

Proof of Step 2. Tt suffices to prove that no forbidden word 10™1 with n odd, has
a pre-image of lenght n+6 in the language of X.. First of all one has to check that
there is no block ajasaszasasasar of lenght 7 such that 7(ajazasasasasar) = 101,
distinguishing two cases: azas = 00 and aszasas = 111.

We now prove that no block a; .. .an+¢ of length n+6 has 10”1 as image under
7, where n € N is odd and strictly greater than 1. If 7(a; . .. anye) = 10™1 then by
previous step we have aqasag ... = z(1 —z)(1 — z) ..., and being f(ajasazasas)
= 1, we distinguish two cases:

e £ = 0. Then az = 0 (otherwise we had a forbidden block) and a; = 1 because
flasazaqasag) = f(a20011) = 0. It follows that f(ajazazasas) = f(ay1001)
=0#1.

e x =1. If a3 = 0 then ay = 0 and f(azasasasag) = f(00100) = 1 # 0. Thus
a3 = 1. Then f(a2a3100) = f(a21100) and f(a21100) = 0 implies as = 0.
Thus f(aia2a310) = f(a;0110) = 0 # 1. Hence 10™1 has no pre-image
under 7.
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Step 3. The transition map 7 : X, — X, is surjective.

Proof of Step 3. By the compactness argument we alluded to before (see also
Proposition 4.1) it suffices to prove the non-existence of Garden of Eden words
(=patterns), and in our setting it suffices to prove that each block of the form
107110™2 ... 10" 1 (where nq, ... ,ny are even integers), has a preimage-block.
Suppose first that & = 1:

ap | a2 | Gz | G4 | A5 --- | Gp42 | Gn43 | Gntd | Qn45 | Qn46
1 0 0 0 0 1 ’

we distinguish the following three cases in which a,44 — 1.

e 1 = 0. Then either a;asazaqs = 0000, a,asa3a4a5a¢ = 000100 or ajasaszay =
1111.

e n = 2. Then either ayasasza4a5a6 = a1a11000, a1asasasasa6a7as = aya;100100
or aiasasasasag = 000111.

e n > 4. Then, for asuitable z € {0,1}, 7[(1—z)(1—z)(1—z)zz . .. 0000+ 50n+6] =
10m1. Similarly 7[(1 — 2)(1 — z)(1 — z)zz...00100] = 101, and finally
Tlzzz(l —2)(1 —z)...111lap+5an+6] = 10™1.

Now, given any word of the form 1011072 ...10™1 we can construct a pre-
image starting from the most right block 10n41: over the first on the right 1 we
can write arbitrarily 000, 111 or 00100. In this way we get a word ajazasasas
over the second on the left 1 and we can start from this word over 1 to construct
a pre-image for the second on the right block 10™*-1, and so on. In each of the
possible choices we can find a block whose image under 7 is our fixed word. O

Step 4. The transition map is not pre-injective.
Proof of Step 4. Consider the configuration c;:

[ JoJo[o[o]o0[1]0]o0[1]0[0]0][0][0] ...]

and the configuration cs:

| ...JoJoJoJoJoJoJxJaJ1JoJoJoJOoJO] ...].

These configurations differ only on a finite subset of Z, but they have the same
image under 7, namely the configuration

[ [i[i[T[i[iJi]ofo]t]oJo[1[1][1] ... ],

so that 7 is not pre—injective. O
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3. Gromov’s Theorem

This section is devoted to the GOE type theorem of Gromov [20]: all new defi-
nitions (with the exception of strong-irreducibility and the finite type condition)
are contained there. We analyze all these concepts and illustrate them with sev-
eral examples, counterexamples and remarks (in particular, Lemma 3.11 and the
related Counterexample 3.12 are from [9, 11]).

3.1. Pseudogroups of partial isometries of a graph.

Let A be a simple, infinite countable connected (undirected) graph of bounded
valency; i.e. A has no loops or multiple edges, each pair of vertices is connected
by a path and there is a positive integer d such that A has at most d edges at each
vertex. We will no distiguish between the graph and the set of its vertices, that will
be denoted A. As usual, define a metric distance on A by setting dist(d,d’) as the
minimal lenght of a path of edges joining § and §’; the ball of radious r and center
0 will be denoted D(4,r), that is D(d,r) = {8’ € A | dist(§,4") < r}. In general
A does not have isometries; thus we put our attention on the partial isometries of
the graph. A partial isometry ~ is a bijective map between two subsets Q and '
that preserves the metric dist. A has many partial isometries: since it is simple
and of bounded valency, for a positive integer r there are at most finitely many
isometry classes of balls of radious . A set T' of partial isometries of A will be
called a pseudogroup of partial isometries acting on A if it satisfies the following
four axioms:

(A) T contains the identity map Ida : A — A,
By yeT'=~y1lel,
O Ify:Q—>Qandy :Q - Q"arein T then vy oy: Q= Q" isin T,

(D) For every v € I, v : Q — Q, its restriction v : Qo — v(Qp) is also in I for
all Qo C Q.

Clearly, the set of all partial isometries is a pseuodogroup. A pseuodogroup I" is
cofinite on A if, for every r = 0, 1,2, ..., there are at most finitely many mutually
non-T-isometric balls of radiuos r. Since A is simple and of bounded valency, the
pseudogroup of all partial isometries is cofinite. We will also say that two points
6 and &' are r-equivalent with respect to I' if the r-balls centered at these points
are I'-isometric. T is dense on A if, for every r = 0,1,2,..., each non-empty class
A’ of r-equivalent points forms a net in A, that is there exists an R = R(A’) such
that A’ meets every ball of radious R in A (equivalently, Usica: D(d', R) = A).
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3.2. Subproduct systems on A.

Let now S be a finite or countable alphabet. An S-valued subproduct system on
A, denoted by {Xq}, consists of an assignement to each finite subset 2 of A of a
finite set Xq of S-valued functions defined on 2 yelding a projective system with
respect to inclusion of finite subsets; this means that, if ¥ C ) is an arbitrary
finite subset of  and z € Xgq, then the restriction z|x of z to X belongs to Xx.
The term “subproduct” comes form the fact that one might regard each Xgq as
a subset of the cartesian product XscoXysy. The projective limit X = hm Xq of
a subproduct system {Xgq} is the set of all functions z : A — S such that the
restriction z|g of = to Q belongs to Xq for every finite Q C A. An ezhaustion
of A by finite subsets is a sequence 3 C Oy C Q3 C ... C O, C ... of finite
subsets such that (J,-; Q, = A. It is not difficult to prove that 2 belongs to the
projective limit of {Xq} if and only if the restriction of z to 2, belongs to Xq,
for all n = 1,2,... The projective limits just defined are always non-empty:

Proposition 3.1. The projective limit of a subproduct system {Xq} is non empty.

Proof. Let 1 C s C Q3 C ... C Q, C ... be an exhaustion of A by finite
subsets. For j > i, let X} be the set of the restrictions to Q; of the functions
in Xg;. Then the intersection X°= ﬂ;’iz X zj is non empty. In fact, this is the
intersection of a decreasing (Xf > Xg“) sequence of non empty finite subsets.
Now denote by m;11,; the projection (restriction of functions) from Xg,,, to Xg;.
We claim that 7; 1 ; is onto from X7 to X°. Infact, if z € X° and j > i+1 then

z € X; J. that is there exists z; . Setting z' = x;
we have x = x'|q, so that =’ € 7rH_1 z( )ﬂXz.Jrl # 0. Then, as before,

7Tz'_+11 i sz+1 = ﬂ (771'_+11 i szH)

Jj=t

Qi41

Now we can construct an element of the projective limit of { Xq}: choose a function
of X7°, it may be extended to a function of X5°, that may be extended to a function
of X$° and so on, obtaining a function on all A. O

Remark 3.2. Observe that the local finiteness of the projective system {Xq} is
essential. For instance if S ={0,1,2,...}and Q3 CQ C N3 C...C N, C ... is
an exhaustion of A by finite subsets, setting

Xo, ={z:Q; = {i,i+1,i+2,...}}
we clearly have that liin Xgq, is empty.
Now let X be a set of S-valued functions defined on A. X is locally-finite
if the set X5 = {z(6) : = € X} is finite for every § € A. If, in addition,

sup{|X(s|: 6 € A} < oo, then X is uniformiy-locally-finite. Clearly, if S is finite,
every X C S2 is (uniformly) locally-finite. Now consider a locally-finite set of
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S-valued functions defined on A. For every finite subset Q of A let X be the
space of the restrictions of the functions of X to Q. Clearly {Xgq} is a subproduct
system; we call it the subproduct system generated by X.

We now present two examples that show what may happen.

Example 3.3. Let S = {0,1} and denote by X be the set of S-valued functions
on A defined by the following condition (finite support): =z : A — S is in X if
and only if there exists a finite subset ¥ = ¥(z) C A such that z(d) = 0 for every
0 ¢ ¥. Then if {Xq} is the subproduct generated by X, for any Q, Xq is equal to
the set of all S-valued functions defined on ; consequently the projective limit X'
of {Xgq} is equal to the space of all S-valued functions defined on A. In particular
X CcX'.

Example 3.4. Let A be the usual Cayley graph of the integers (the bi-infinite
line graph). If Q is a (finite) subset of A we say that three consecutive integers
i — 1,4i,4 + 1 contained in ) are in the interior of 2 if 4 — 2 and ¢ 4+ 2 are in )
as well. Let S = {0,1} and define the subproduct system {Xgq} by the following
condition: z : @ —» Sisin Xq if and only if z(¢ — 1) = z(i + 1) and z(i) # z(i — 1)
whenever 4 — 1,4, + 1 are in the interior of Q. This means that z : Q@ — S is
in Xq if and only it has period 2 except (possibly) at the boundary of Q. Then
the projective limit X’ of {Xgq} consists of two functions: those that have period
2. Now, denoting by {X{,} the subproduct system generated by X', one has that
z:Q — Sisin X}, if and only if it has period 2 on the whole of ; this shows
that, for all finite Q C A with non-empty interior, the strict inequality X{, C Xo
holds.

These examples suggest the following definition, which is not considered, at least
in this form, in [20]:

Definition 3.5. A subproduct system {Xq} is stable when it is equal to the
subproduct system generated by its projective limit. Analogously, we will say that
a locally-finite set X of S-valued functions is a stable space if it is the projective
limit of the subproduct system generated by it.

Remark 3.6. Let X be a set of S—valued functions on A and denote by {Xa}
the projective system induced by the restrictions. If X' = li<£n Xq then X C

X'. Thus {Xq} is stable. On the other side, starting from a projective system
{Xq}, denoting by {X{} the projective system induced by the projective limit
X' = li<£n Xq, we have X{, C X and therefore X' is stable. In other words, the
projective limit of any projective system or any induced subproduct system are
stable.

Our definition has a simple topological interpretation. Endowing the space
SA of all S-valued functions with the product topology (S is a discrete countable
space), a subspace X of S2 is closed (in fact compact, by local finiteness) if and
only if it is stable.
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Gromov gives local conditions of stability [20], slightly different from ours;
our definition seems more natural since it also ensures the following fundamental
properties: if {Xq} is stable and X is its projective limit, then the projection
(restriction) from X to each Xgq is onto, and, if Q9 C Q then the projection
Xo = Xq, is also onto.

3.3. Irreducibility conditions for subproduct systems

Definition 3.7. A subproduct system {Xq} has propagation < £ if it satisfies the
following condition: z : Q — S belongs to Xq if (and only if) the restrictions of x
to the intersections 2 N D(9,£) are contained in Xonp(s,e) for all 6 € €.

For two subsets Q,Q' C A set dist(2, ')=min{dist(d,d') : 6 € 2, € Q'}.

Definition 3.8. A subproduct system {Xq} and its projective limit X are M-
irreducible if, for each pair of finite sets 2, Q' C A such that dist(Q2, 2')> M and
for each z € Xq and y € Xq, the function z : QUQ’ — S that equals 2 on 2 and y
on Q' belongs to Xqugr, equivalently Xquqr = Xq X Xqr. X is strongly-irreducible
if it is M-irreducible for some M > 0.

Definition 3.9. A stable subproduct system {Xq} has memory M if it satisfies
the following condition: z : A — S is in the projective limit X = liin Xq if (and

only if) the restriction of z to D(d, M) is in Xp(s,ar) for any § € A. We say that
it is of finite type if it has memory M for some M > 0.

Remark 3.10. Let X be a (stable) subproduct system. It is obvious that if it
has propagation < £ then it also has propagation < £ + 1, etc.: one says simply
that it has bounded propagation. The same holds for strong-irreducibility and for
the memory. Thus, in the remaining of this section, when thinking of a strongly-
irreducible space X of bounded propagation and of finite type, it is not restrictive
to suppose that, for a common £, the space X is —irreducible, with propagation
< £ and memory /4.

Lemma 3.11. A stable space of bounded propagation is strongly irreducibile and
of finite type.

Proof. Let X be a system of propagation < £. Suppose that Q and €' are finite
subsets of A such that dist(Q2,Q') > £. A ball of radious £ centered in a point
in QU Q' cannot intersect both Q and Q'. From this fact it follows immediately
the /—irreducibility. Now suppose that the restrictions of z : A — S to D(4,£) is
in Xps,0 for any 6 € A. Then for any finite set {2 C A and for any J € (2 the
restriction of z to QN D(4,£) is in Xonp(s,e), SO that, by the bounded propagation
property, the restriction of x to Q belongs to Xq and, in virtue of the stability
condition, z € X. This latter shows that X is of finite type with memory £. O
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For a partial converse of the above statement in the 1-dimensional setting see
Proposition 3.5.11 of [9]. In general such a converse does not hold as the following
counterexample shows.

Counterexample 3.12. Strong irreducibility and finite type conditions do not
imply, in general, bounded propagation.

Proof. Let X be the subshift of {0,1}% determined by the set of forbidden blocks:
{010,111}.

It is easy to show that X is a strongly-irreducible (in fact 3-irreducible) shift of
finite type; for any £ > 1 consider the following pattern p whose support F' consists
only of the boxes containing a digit.

(ot [ [t [ [t ..[t] [ [1] ] |1[O]

£ copies ofv

We have p|rpnp(a,t) € XrnD(a,r) but p € Xr: indeed one can locally insert zeroes
in the empty boxes yielding admissible words (or patterns); this is no more possible
globally, i.e. for all the 3¢ + 3 boxes.

Hence X is not of bounded propagation < £ for each ¢ > 1. O

3.4. Maps of bounded propagation.

If Q is a finite subset of A define Q= *={§ € A : D(4,¢) is contained in Q} as
the £—interior of Q. Let {Xq} and {Yo} be S-valued subproduct systems on A
(if {Xq} and {Yu} have different alphabets, say Sx and Sy we may take the
union S = Sx U Sy); a morphism of bounded propagation < £ between the two
subproduct systems consists of a set of functions 7q : Xq — Yq-¢, denoted by
{mq}, commuting with the (respective) restrictions. Clearly {mq} gives rise to a
function 7 between the projective limits X of Xq and Y of Yg: if x € X and
0 € A then y = 7(x) is defined on § by: y(d) = Tp(s,¢)[2D(s,¢)](0), Where z|p(s,¢)
denotes, as usual, the restriction of x to D(4,£). In other words, for every § € A
we have a map from X p(s ) to Y(5) and the set of all these maps determines both
{TQ} and 7.

3.5. Holonomy maps.

Let {Xq} be a subproduct system. Fix two balls D and D' in A. A holonomy
map h between the projective systems {Xq}ocp and {Xq }orcp consists of the
following data:
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(i) an isometry v =y, : D — D' sending the center of D to that of D',

(ii) a set of bijective maps hq : Xo — X, (q) for all  C D which commute with
the restriction maps.

A holonomy over A is defined as a set H of holonomy maps defined between
certain pairs of balls D and D’. The balls admitting holonomies betweeen them
are called equivalent. According to Gromov [20], we say that H is a pseudogroup
of holonomies if it satisfies the following axioms:

(1) The identity Idp, given by the identity map D — D and the identity map
XD - XD isin H.

(2) he H=h"' € H.

(3) If h and h' are in H, h is defined between D and D' and h' is between D’
and D", then their composition h' o h between D and D" is also in H.

(4) If a ball Dy is contained in D then the obvious restriction of each holonomy
from D to Dg belongs to the holonomy over Dy (where Dg is not necessarily
a concentric ball).

If H is a pseudogroup of holonomies we denote by I'(H) the associated pseu-
dogroup of partial isometries: I'(H) = {v, : h € H}. H is called cofinite or dense
whenever I'(H) is such. Given a morphism f = {fq} of bounded propagation < ¢
between two projective systems over A we shall consider holonomies that commute
with {fq}. This corresponds to the notion of G—equivariance we alluded to in the
Introduction when A is the Cayley graph of a finitely generated group.

3.6. Entropy.

Let X be a set of S-valued functions defined on A and Q,, C A;n =1,2,..., be
a sequence of finite subsets. Denote as usual by Xgq, the set of the restrictions of
the functions of X to 2, and by |A| the cardinality of a set A. Then we define
the entropy of X with respect to {Q,} by setting:

ent(X) = ent(X : {0, })=lim inf 28 /X9 |

n—oo |Qn| ’

(3.7)

Clearly, the entropy is monotone for inclusion: if X' C X then ent(X') <
ent(X). Note that if S is finite and X is the space of all S-valued functions on A
then | Xq| = |S|I’l and therefore ent(X) = log|S].
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3.7. Amenability.

If Q is a subset of A, its £-boundary 0,52 is the set of all § € A such that the ball
D(6,¢) intersects both  and A\ Q. The 1-boundary will be denoted simply by
99 and called the boundary. We also set Qt¢=0QU8,Q. The proof of the following
proposition is trivial:

Proposition 3.13. Let A a graph and Q C A a (not necessarily finite) subset.
(i) 9.2 € |J D(s,0);

5€0Q
(ii) 0 = | ] D, 0);
§eQ
(i) if a = max{|(D(4,£)| : 6 € A} and Q is finite then |0, < a-|Q).

O
A sequence Q,, C A,n =1,2,... of finite subsets is called amenable if
0]
T
L. . . : |8€Qn| _
Clearly, by Proposition 3.13, if {2,} is amenable we have also lim =0

for every positive integer £. (The converse is also true since 9,02 D 99Q).

The graph A is amenable if it admits an exhaustion by finite substs Q; C Qy C
Q3 C...CQ, C... that is amenable.

From now on, as the graphs A we shall deal with, are always amenable, when
referring to the entropy of a stable space X C S?, we shall assume that an
exhausting amenable sequence {Q2,} C A has been fixed once for all. Thus we
shall simply denote the entropy by ent(X) instead of ent(X : {Q2,}).

The following is an analogue of Proposition 2.4.

Proposition 3.14. Suppose that A is an amenable graph and that X and Y
are uniformly-locally-finite sets of S-valued functions defined on A. If a map of
bounded propagation 7 : X — Y is surjective then ent(Y') < ent(X). Equivalently,
one has ent(7(X)) < ent(X) for all maps T of bounded propagation (not necessarily
surjective).

Proof. Since Q,, C (Q}9)~¢, by the surjectivity of 7, the cardinality of Yo, does
not exceed that of Xqie. Setting b=sup{|X(s| : 6 € A}, one has [Xq4e| <
|Xq, |- b2, thus
log [Ya, | _ 108 Xoue| _ log|Xo, | +1og(5) |0
O N A ||
and taking the liminf we get the desired inequality. O
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3.8. Splicable spaces.

Given Q C A and two S-valued functions z and 2’ on A, define their splice over
Q as the function z which is equal to z on  and to ' outside Q. A space X of
S-valued functions on A is ¢-splicable if the conditions z,z' € X and x = 2’ on
0¢2 imply that their splice x over 2 belongs to X whenever (2 is a finite subset of
A.

Example 3.15. Let S be any countable set and let A be the bi-infinite line graph.
Let X (£) denote the set of all £-periodic functions. Then X (¢) is [“]-splicable.

Proposition 3.16. A stable space X of finite type with memory £ is 20— splicable.

Proof. Let € be a finite subset of A, z,2' € X such that 2 = 2’ on 92,Q and z
their splice over 2. Then for every ball D of radious /¢, the restriction of x to D
is equal either to the restriction of z (when D C Q+2¢) or to the restriction of 2’
(when D N Q = 0), thus in any case it belongs to Xp and since X has memory ¢
we have that =z € X. O

3.9. Preinjectivity.

A map 7 : X = Y between two spaces X and Y of S-valued functions on A is
pre-injective if whenever z,z' € X are such that x # z' in a finite non-empty
subset Q C A and z = 2’ outside Q, then 7(z) # 7(z').

The following corresponds to one implication in the statement of Theorem 2.8
(the Hedlund - Coven - Paul theorem):

Proposition 3.17. Let A be an amenable graph and let X be a uniformly-locally-
finite irreducible stable space of finite type. If T : X — S® is a pre-injective map
of bounded propagation, then ent(7(X)) = ent(X).

Proof. Denote by Y = 7(X) the image of X and by {Yo} the corresponding
subproduct system. Set b = sup{|X(s}| : 6 € A} and ¢ = sup{|Yi5| : § € A}.
Since |Y92-2£| < |an| . Cl({)uQ"l7 |XQn| < |XQ;2£| . b‘Q"\QT_’ﬂl, |angn|/|Qn| — 0 and
|\ 95,2/ 10| < (1092,] - max{|D(d,20)| : 6 € A})/|Q,] = 0 as n — 0o, we have

log [Yyae | < log |Ya, | + 02¢80n|
Q, - 0, |2

logc

and
log [ Xa| _ 108 Xoga| |00\ 0%
Q, - Q, ||

ogb.
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Suppose, by contradiction, that ent(Y) < ent(X). Then taking the liminf in
the above formulas we get:

log |YQ’1-22| IOg |XQ;21|

lim inf < liminf
n—o0o |Qn | n—00 |Qn |

and we can find n such that:
|YQ74L-2£| < |XQ;2£|.

Now take z € XQiu\Qn; then for every y € X —2¢ by the strong irrducibility
there exists ' € Xq-2¢,q+at\q ) that is equal to z on QF2\ Q, and to y on
Q2. Using the stability of X, 2’ may be extended to a function z € Xoor.
Thus |[{z € Xg42e : ¢ =z on >\ Q,}| > ¥ qz2e)—i|- Tt follows that there exist
To,T1 € Xﬂizz such that: xg # x1, xo = T1 = z on Qﬁu \ Q, and T2t (xo) =
Tq+2¢(71). Then, using the stability of X, we can extend zo and z; to functions
Zo,Z1 on all A. By Proposition 3.16 X is 2/-splicable; thus the splice Z of Zg
and Z; over 2, belongs to X. But now & # #; on Q,, & = %; outside Q,, and
7(%) = 7(%1), since 7 has bounded propagation < £ and a ball of radious ¢ cannot
intersect both €, and A\ Q;}2¢. This makes 7 not pre-injective and proves the
proposition. O

3.10. Strict monotonicity.

Now we prove the following fundamental analogue of Theorems 2.2, 2.7 and 2.14.

Lemma 3.18. Let A be an amenable graph and let X C S2 be a uniformly
locally-finite irreducible stable space. Suppose a set {D; :j =1,2,...} of balls of
radious p constitutes a net in A (i.e. some R-neighbourhood of their union equals
the whole of A). If X' is a subspace of X such that X’Dj is strictly smaller than

Xp; on every ball D;: | Xp | <|Xp,|, then
ent(X') < ent(X).

Proof. We may assume (throwing away some balls if necessary) that the mutual
distances between the balls are large say > 10¢. Consider a large 2,, and suppose

that D;,,Dj,,...,Dj,, where N = N(n), are all the balls that are contained in

Q2% Set
= (max{|X (0| 16 € A}) 7
We prove by induction that
X0, 1 < (1= a)¥"|Xq,|. (3.8)
For i =1,2,...N choose z; € Xp,, \X’Dji and denote by m; the projection from
Xgq, to Xp,,. Setting Y = XQn\D;“’ we have [Y| > a-|Xq, | and |77 (z1)| > |Y;
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the last inequality follows from the strong irreducibility of X: the distance between
Dj, and Q,\ DZ” is > 2¢, thus every y € Y may be extended to a function on
Q,, which is equal to z; on D;,. It follows that |Xq, \ 77" (z1)| < (1 — a)|Xq
Now suppose (inductive hypothesis) that

n|'

N-1
1Xa, \ [ m @) £ (1 — )V Xg, |-
k=1
Define X, = Xa, \Ur 77 (zx), B = {2 € Xq, : 2= &y on Dj, } and denote
by Y the set of the restrictions of the functions of X, to Q, \ D}?*. By strong

irreducibility, given any y € Y we can find z € Xq, such that z = y on €, \D;fe

and z = zy on Dj,. But for k = 1,2,... N -1, 2 = y # zj on Dj,: thus
z € Xq, and so z € B. Therefore we have again: |B| > Y| > a - |Xq,| so that,
being B C mx'(zN), one has

X, \ Uy ™t @6)] = [(Xa, \ Uiy 7 @) \ 7t ()] = [Xa, \ 7yt (@n)] <
< [Xa, \ Bl < (1-0a)|Xa,| <1 -a)¥|Xaq,|.

n

Thus (3.8) is proved:

N
X6, | < [ Xo, \ | 7 (@)l < (1 - )V [Xq, |-
k=1

Set now 3 = max{|D(0, R+ p+{)|: 6 € A}. Since all the balls D;,,... ,D;,

are contained in Q,,%¢, we have:

N(n)
Q. c | DEU (@, \ ; (BH20H20),
k=1

thus
Q0] < N (1) - B+ |2 \ Q20420
and, from the amenability of {§2,}, it follows that

liminfw > 1 >0

n—oo || I}
Then from (3.8) we have:

log|Xg,|  N(n)

' log | Xq..|
|20 €20

2]

log(1—a) <

and taking the lim inf we obtain:

ent(X') < ent(X') — 4 log(1 — @) < ent(X).



26 T. Ceccherini-Silberstein, F. Fiorenzi and F. Scarabotti

3.11. Preinjectivity corollary.

The following corresponds to the other implication (see Proposition 3.17 for the
first one) of the Hedlund-Coven-Paul theorem (Theorem 2.8).

Proposition 3.19. Let X be a strongly-irreducible stable space of finite type.
Suppose that T : X — S® is a map of bounded propagation admitting a dense
pseudogroup of holonomies. Then the equality ent(7(X)) = ent(X) implies that T
18 pre-injective.

Proof. If T is not pre-injective, there exist z and z’ in X and a ball D such that:
z # z' on D, x = ' outside D and 7(z) = 7(z'). Using the density of the
holonomy pseudogroup we can form a net of balls {D;”u} with corresponding

H ) ! -y ! . = ol +2¢ .
functions z; and 2 in Xp+2¢ such that: z; # 7 on Dj, z; = 2} on D"\ D;

J
and Tp+2e(x5) = Tp+2e (). Then define X' as the set of those functions in X such
7 J

that no restriction to D}** equals z;.

We claim that 7(X') = 7(X). In fact, if z € X \ X’ then there exists a non-
empty set of integers J such that z = z; on Dju for all j € J. Then define 2’ as
follows: 2’ = z outside U Df”, and 2'| 42 = 2 for all j € J. Clearly, 2’ € X'

jeJ ’
since X is a stable projective limit of memory ¢; since 7 is of bounded propagation
< £ we also have 7(z') = 7(2).

From Proposition 3.14 and Lemma 3.18 it then follows that ent(r(X)) =

ent(7(X")) < ent(X') < ent(X). O

3.12. Surjectivity corollary.

Proposition 3.20. Let 7 : X —» Y be a map of bounded propagation admitting
a dense holonomy and suppose that Y is stable and strongly-irreducible. Then the
equality ent(Y) = ent(7(X)) implies that T is surjective.

Proof. If Y' = 7(X) C Y misses some y € Y, there exists a ball D such that the
restriction of y to D does not belong to Y},. Then the dense holonomy carries
D densely over A and Lemma 3.18 (with X and X' substituted by ¥ and Y,
respectively) applies, yielding ent(7(X)) = ent(Y”') < ent(Y'). O

3.13. Garden of Eden theorem for stable spaces and for
amenable shifts

Proof of Theorem B. If T is surjective then ent7(X) = ent(X) and Proposition
3.19 implies that 7 is pre-injective.
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On the other hand if 7 is pre-injective, then, by Proposition 3.17, ent(7(X))
ent(X) and, by Proposition 3.20, 7 is surjective.

o

Remark 3.21. The original statement of Gromov is slightly weaker: instead of
strong-irreducibility and finite type conditions, he assumes, in the hypotesis the
bounded propagation property for the stable space X, which, as shown in Lemma
3.11 and the relative Counterexample 3.12, is a stronger condition.

Also, one could further generalize the statement by assuming the holonomy to
be big in the sense of Furstenberg (see [14] and the nice survey on Ergodic Ramsey
Theory of Bergelson [2]), rather than dense, to obtain a more general statement.

Finally observe that Gromov statement holds for uniformly-locally-finite spaces.
If the alphabet S is finite (as we assumed in the Introduction) all subsets X C S
are clearly uniformly-locally-finite.

We can now show why Theorem B generalizes the Garden of Eden theorem for
amenable subshifts [4, 9].

Proof of Corollary C. Let A denote the Cayley graph of G with respect to a
suitable finite symmetric generating system A. Then A is simple, with the same
cardinality of G, thus at most countable, and of bounded valency: the graph is
indeed regual of degree |A|.

Because of the strong-regularity of A we might consider as holonomy the pseu-
dogroup Hg of partial isometries generated by all the translations t, : A = A,
9 € G, where t,(6) = gd, 6 € A. In other words we set

HG:{tg|Q:Q—>gQ; g € G, QCA}

The holonomy H¢ is clearly cofinite (indeed all r—balls are Hg—equivalent) and
dense.

A subspace X C SY is always uniformly-locally-finite and, as we observed in
Remark 3.6, it is closed if and only if it is stable.

On the other hand, a map 7 : X — Y is of bounded propagation (< £) if and
only if (tautologically) it is (f—)local. Also, 7 admits Hg as a (dense) pseudogroup
of holonomies if and only if it is G—equivariant.

Finally it is well-known, see e.g. [3], that G is amenable (as a group) if and
only if A is amenable (as a graph). O

Remark 3.22. As for Theorem A, in the statement of Corollary C we can relax
the finite type condition for the subshift Y by requiring Y to be sofic (see Lemma,
3.5.4 in [9]).
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4. Appendix

Proposition 4.1. Let X,Y C SY be two subshifts over a finitely generated group
Gand1:X =Y a transition map. Then the following are equivalent:

(i) there exist GOE patterns;

(ii) there exist GOE configurations (i.e. T is not surjective).

Proof. By a pattern p in Y, with support say F', we clearly mean a p=c|rp € Yp
withce Y.

(i) = (ii). It is clear that the surjectivity of 7 implies the non—existence of
GOE patterns (in Y).

(ii) = (i). Suppose that for each finite set FF C G and each pattern p € Y
there is a configuration ¢ € X such that 7(c)|r = p; we prove that 7 is surjective.
Let {Q,}n C G be an exhausting increasing sequence of finite subsets of G. If
¢ €Y, let ¢, € X be such that 7(¢c,)|q, = ¢|a,; hence lim,, o 7(c,) = ¢'. X
being compact, there is a subsequence (¢, )r that converges to a configuration
¢ € X and 7 being continuous, we have that ¢ = limy_,o 7(cn,, ) = 7(c). O

Proposition 4.2. For a transition map 7 : S — S the following are equivalent:
(i) T is pre-injective;
(ii) there erist no T—mutually erasable patterns.

Proof. (i) = (ii). Let p1 and p» be two 7—mutually erasable patterns with support
F. Fix s € S and define ¢;,c; € S¢ that coincide, respectively, with p; and p; on
F and that are constant, with value s, elsewere, i.e. ci|g\r = 5 = C2|g\F-

Then ¢; and ¢; differ only on a non—empty finite set (since this set is contained
in F), and 7(c1) = 7(c2), so that 7 is not pre-injective.

(ii) = (i). Suppose conversely, that 7 is not pre-injective; there exist two
configurations ¢; and ¢ such that, for some non empty finite set F, ¢1|r # c2|r,
CI|G\F = CQ|G\F, and ‘T(Cl) = T(Cz).

Set p1 := c1|p+2m and ps = ca|p+em, where M is such that 7 is M-local.
Observe that p; # p2 and if &1, ¢ are two configurations such that Ci|p+2M =i,
C2|p+2m = p2 and €1 = G out of F+2M then 1(c1) = 7(c3), as it immediately
follows from the M —locality of 7. Thus p; and ps are T—mutually erasable. 0O

The following is a generalization of a classical result for 1-dimensional subshifts
(see e.g. [1] or Thm. 6.1.21 of [22]). We include both the statement and the proof,
in this generalized version, for the sake of completeness and for the convenience of
the reader.

Proposition 4.3. A subset X C S is a subshift (i.e. it is a closed and G—invariant
subspace) if and only if there exists a subset F of patterns such that X = Xz where,
denoting by F(p) the support of a pattern p,

Xr = {CESG:CQ|F(1,) ¢ F, for allg € G and p € F}.
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Proof. Suppose that X C S is a shift. X being closed, for each ¢ ¢ X there
exists an integer n. > 0 such that

L) 5o\ X,

c

BsG (C,
Let F be the set

F:={cp,, :c¢ X};
we prove that X = Xr. If ¢ ¢ X, there exists ¢ ¢ X such that ch|DnE =7Tp,.
for some h € G. Then dist(c",¢) < -~ and hence c* € Bge (¢, o) € S%\ X which
implies ¢ ¢ X, by the G—invariance of X. This proves that X C Xz. For the
other inclusion, if ¢ ¢ X then, by definition of 7, ¢|p, € F and hence ¢ ¢ X#.

Now, for the converse, we have to prove that a set of type X r is a shift. Observe
that

Xr= () X
pEF
and, if the support of p is F(p) = {h1,...,hn},

N
Xy = [(HeeS9:Ppp #pt =) (U{C € 59 : M(hy) #P(hi)})-

heG heG i=1

Thus, in order to prove that Xz is closed, it suffices to prove that for any i =
1,..., N the set

{c€ 8% :c"(hi) # p(hi)} (4.9)

is closed. We have

({c € 8% M (hi) #p(hi)})" = {c € S : c(hi) # p(ha)}

and then the set in (4.9) is closed being the pre-image of a closed set under a
continuous function. Finally we have to prove that X is G—invariant. If g € G
and ¢ € X, for every h € G and every p € F we have ¢9" g, ¢ F = (cg)h‘F(p) ¢
F and hence ¢? € X . O

The following generalizes the well-known Curtis-Lyndon-Hedlund theorem (see
[22], Thm. 6.2.9).

Proposition 4.4. Let X C SY be a subshift. A function 7 : X — SY is a
local map (i.e. induced by a local rule f) if and only if it is G—equivariant (i.e.
T[c?] = T[c]? for all c € X and g € G) and continuous.

Proof. Suppose that 7 is M—local, induced, say by a local rule f. Then, denoting
by Dy = {h1,..., hn} the ball of radius M centered at the neutral element 1 € G
we have that for g € G and c € X,

T[c?](h) = f[c?(hh1),c? (hh2),. .., (hhy)] = fle(ghhi), ..., c(ghhny)]
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and

7] (h) = 7lc](gh) = fle(ghhi), - - -, c(ghhm)],

so that 7 commutes with the G—action.
We prove that 7 is continuous. A generic element of a sub-basis of S¢ is

E=¢&(hys) ={ce 89 :c(h) =s}
with h € G and s € S. It suffices to prove that the set

E=rl () = {ce X :r[d(h) = s}
is open in X. Actually, if ¢ € £ and
r:=min{n € N : hhy,... ,hhy, € D,}, (4.10)

we claim that the ball Bx (¢, =) is contained in &. Indeed, if ¢ € Bx (¢, 47) then
L
r+1’
i.e. ¢p, =Cp,. Asby (4.10), hh; € D, we have 7[c](h) = f[¢(hh1),...,c(hhny)] =
fle(hhy), ..., c(hhy)] = T[c](h) = s, so that € € &.

Conversely, suppose that 7 is continuous and commutes with the action of G.

Since X is compact, 7 is uniformly continuous; fix M in N such that for every
c,ceX,

dist(c,¢) <

dist(c, @) < M# = dist(r[c], 7[e]) < 1.

+1
Thus, if ¢ and T agree on Dys,7(c) and 7(2) agree at the neutral element 1 € G:
7[c](1) = 7[€](1) so that, the function f: SPM — S defined by f(Shys--- »Sha) =
T[c](1), where ¢ is any configuration s.t. ¢(h;) = sp;, @ =1,... , M, is well defined.
In addition f serves as a local rule for ; indeed, since 7 commutes with the action
of G, we have

7le)(h) = 7[e]" (1) = 7[c"](1) = fle(hh), . .., e(hhm)];
this shows that 7 is M-local and ends the proof. ]

From the above Proposition it is clear that the composition of two local func-
tions is still local. In any case, this can be easily seen by a direct proof. Also,
one gets immediately the fact that the inverse of an invertible transition map is
still local; in the terminology of cellular automata this can be rephrased as “the
inverse of an (invertible) cellular automaton is a cellular automaton” : this is usu-
ally proved in a combinatorial way combined with a compactness argument (see,
e.g. [1,22)):

Corollary 4.5. Suppose that a transition map 7 : X — Y is invertible (i.e.
surjective and injective). Then its inverse 71 : Y — X is also a local map.
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