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Abstract

We consider the Garden of Eden theorem of Moore and Myhill in the
case of the shifts of AZ. The theorem still holds in the case of irreducible
shifts of finite type; this follows easily from a theorem of Lind and Marcus.
We give examples showing that neither the finite type condition nor the
irreducibility condition can be removed.

1. The Garden of Eden (GOE) theorem concerns cellular automata (CA)
on the plane grid. More precisely, in this setting the “universe” is the lattice
of integers Z* of Euclidean plane R?. The set of states is a finite set A (also
called the alphabet) and a configuration is a function ¢ : Z> — A. Time ¢ goes
on in discrete steps and represents a transition function T : AZ 5 A7 (if
¢ is the configuration at time ¢, then 7(c) is the configuration at time ¢ + 1),
which is deterministic and local. Locality means that the new state at a point
v € Z? at time ¢ + 1 only depends on the states of certain fixed points in the
neighborhood of v at time ¢. More precisely, if ¢ is the configuration reached
from the automaton at time t then 7(c), = d(cn,), where § : AN 5 Ais
a function defined on the configurations with support the finite set N (the
neighborhood of the point (0,0) € Z?), and N, = v+ N is the neighborhood of
v obtained from N by translation. For these structures, Moore [Moo] has given
a sufficient condition for the existence of the so—called GOFE patterns, that is
those configurations with finite support that cannot be reached at time ¢ from
another configuration starting at time ¢ — 1 and hence can only appear at time
t = 0. Moore’s condition (i.e. the existence of mutually erasable patterns— a sort
of non—injectivity of the transition function on the “finite” configurations) was
also proved to be necessary by Myhill [My]. This equivalence between “local
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injectivity” and “local surjectivity” of the transition function is the classical
well-known GOE theorem.

This theorem holds much more generally for finitely generated amenable
groups ([CeMaSca], see also [MaMi]). In this paper we consider CA having Z
as universe; in this case the set of all configurations is the set A% of all bi-
infinite words on the finite alphabet A. As it is well known, this is a compact
metric space and the local functions are the functions that are both continuous
and commute with the natural action of Z on A% [LinMar, Theorem 6.2.9].
We investigate the extent to which the GOE theorem holds for the closed and
Z—invariant subsets, the so—called shifts or subshifts.

Instead of the non—existence of mutually erasable patterns, we deal with
the notion of pre—injectivity (a function 7 : X C A% — AZ is pre-injective if
whenever two configurations ¢,¢ € X differ only on a finite non—empty subset
of Z, then 7(c) # 7(¢)); this notion has been introduced by Gromov in [G]. In
fact, these two properties are equivalent for local functions defined on the full
shift AZ, but in the case of proper subshifts the former may be meaningless.
On the other hand, the non—existence of GOE patterns is equivalent to the
non—existence of GOE configurations, that is to the surjectivity of the transition
function. Hence, in this language, the GOE theorem states that 7 is surjective if
and only if it is pre—injective. We call Moore’s property the implication surjective
= pre—injective and Myhill’s property the inverse one. We call Moore—Myhill
property (MM-property) the union of these two properties; it can be easily seen
that this last is an invariant of the shift.

2. Let X be a subset of AZ.

Definition 2.1 The language of X is the set L(X) of all the finite words ap-
pearing in some bi—infinite word of X.

We denote with X,, = L(X) N A™ the set of the words in L(X) with length
n.

Proposition 2.2 [LinMar, Theorem 6.1.21] The set X is a shift if and only if
there exists a set F of finite words on A such that X is the set of all bi—infinite
words avoiding every word of F.

If X is a shift, a set F as in the Proposition 2.2 is called a set of forbidden
blocks for X.

Definition 2.3 A shift is of finite type if it admits a finite set of forbidden
blocks and is irreducible if for each pair of words u,v € L(X), there exists a
word w € L(X) such that uwv € L(X).



Definition 2.4 Let X be a subshift of A%; a function 7 : X — A% is M-local
if there exists ¢ : Xop4+1 — A such that for every c€ X and z € Z

(T(C))‘Z = 5(C|z—M; e ;C|z+M)-

A relevant class of one—dimensional subshifts of finite type, is that of edge
shifts. This class is strictly tied up the one of finite graphs. This relation allows
us to study the properties of an edge shift (possible quite complex) studying the
properties of its graph.

Definition 2.5 Let G be a finite directed graph with edge set £. The edge
shift X is the subshift of £% defined by

X = {(e;)zez | t(ey) =i(ey41) for all z € Z}
where, for e € £, i(e) denotes the initial vertex of e and t(e) the terminal one.

It is easy to see that every edge shift is a shift of finite type with set of
forbidden blocks {ef | t(e) # i(f)}.

The class of sofic shifts has been introduced by Weiss in [Wei] as the smallest
class of shifts containing the shifts of finite type and closed under factorization
(i.e. the image under a local map of a sofic shift is sofic). Equivalently, one
can see that a shift is sofic if it is the set of all labels of the bi-infinite paths
in a finite labeled graph (or finite—state automaton). In automata theory, this
corresponds to the notion of regular language. Indeed a language (i.e. a set of
finite words over a finite alphabet) is regular if it is the set of all labels of finite
paths in a labeled graph.

Definition 2.6 Let A be a finite alphabet; a labeled graph G is a pair (G, £),
where G is a finite graph with edge set £, and the labeling £ : £ — A assigns
to each edge e of G a label L(e) from A.

If£=...e_1e9ey1 ... is a configuration of the edge shift Xqg, define the label
of the path & to be

L&) =...L(e_1)L(eg)L(ey)--- € AZ.
The set of labels of all configurations in X is denoted by
Xg:={c€ AZ | c= L(¢) for some ¢ € Xg} = L(Xg).

Definition 2.7 A shift X C AZ is sofic if X = Xg for some labeled graph G.
A presentation of a sofic shift X is a labeled graph G for which X¢g = X.

Obviously each edge shift is sofic. Indeed if G is a graph with edge set &,
we can consider the identity function on £ as a labeling £ : £ — & so that
Xa = X(g,de)- Moreover, each shift of finite type is sofic (see, for example,
[LinMar, Theorem 3.1.5]), but the converse does not necessarily hold.



In automata theory, a finite—state automaton is deterministic if, given a state
Q and a letter a, there is at most one successive state Q (determined by Q and
a). This corresponds, in the finite graph representing the automata, to the fact
that from a vertex ¢ (the state) there is at most one edge carrying the label a.
Although this restrictive condition, one can prove that for each regular language
there is a deterministic automaton accepting it. This property holds true for
sofic shifts: each sofic shift admits a deterministic presentation. A minimal
deterministic presentation of a sofic shift is a deterministic presentation with
the least possible number of vertices. We will see that the irreducibility of the
sofic shift implies the existence of only one (up to labeled graphs isomorphism)
minimal deterministic presentation of it.

Definition 2.8 A labeled graph G = (G, £) is deterministic if, for each vertex
i of G, the edges starting at i carry different labels.

Proposition 2.9 [LinMar, Theorem 3.3.2] Every sofic shift has a deterministic
presentation.

Definition 2.10 A minimal deterministic presentation of a sofic shift X is a
deterministic presentation of X having the least number of vertices among all
deterministic presentations of X.

One can prove that any two minimal deterministic presentations of an ir-
reducible sofic shift are isomorphic as labeled graphs (see [LinMar, Theorem
3.3.18]), so that one can speak of the minimal deterministic presentation of an
irreducible sofic shift.

In the following propositions, we clarify the relation between the irreducibil-
ity of a sofic (or edge) shift and the strong connectedness of its presentations.

Proposition 2.11 [LinMar, Lemma 3.3.10] Let X be an irreducible sofic shift
and G = (G, L) the minimal deterministic presentation of X. Then G is a
strongly connected graph.

Proposition 2.12 [LinMar, Proposition 2.2.14] If G is a strongly connected
graph, then the edge shift Xg is irreducible.

As a consequence of this two facts, we have the following corollary that will
be useful in the sequel.

Corollary 2.13 Let X be an irreducible sofic shift and G = (G, L) the minimal
deterministic presentation of X. Then the edge shift X is irreducible.

Now we give the definition of entropy for a shift. Lind and Marcus [LinMar,
Chapter 4] give its basic properties also stating the principal result of the
Perron—Frobenius theory to compute it.



Definition 2.14 Let X be a shift. The entropy of X is defined as

ent(X) = lim M.

n— 00 n

In order to see that the above limit is well-defined, observe that | X, | <
| Xn||Xm|; hence setting a, := log|X,|, we have that the sequence (ap)nen is
sub—additive, namely aptm < an + @, We want to prove that

. an . an
lim — = inf —.
n—oo N n>1l n

Fix m > 1; then there exist ¢, € N such that n = mq + r and we have
an < Qam + ar so that 42 < L0m 4 2= Now

lim (_qam + %) = lim (gam + %) = dm

n—00 n n—oo \7N n m

n
and then limsup,,_, ., %= < 2= Hence

Using combinatorial methods, it is easy to see that the entropy of a sofic shift
X coincides with the entropy of the edge shift X of a deterministic presentation
of X, as stated in the following theorem.

Proposition 2.15 [LinMar, Proposition 4.1.13] Let X be a sofic shift and let
G = (G, L) be a deterministic presentation of X. Then ent(X) = ent(Xa).

Hence we have the following consequence.

Corollary 2.16 Let X be an irreducible sofic shift and let G = (G, L) be the
minimal deterministic presentation of X. Then ent(X) = ent(Xg).

Another fundamental result about entropy, is the following.

Theorem 2.17 [LinMar, Corollary 4.4.9] If X is an irreducible sofic shift and
Y is a proper subshift of X, then ent(Y) < ent(X).

As far as irreducible shifts of finite type are concerned, we have the following
result that stems from the work of Hedlund [H] and Coven and Paul [CovP].

Theorem 2.18 [LinMar, Theorem 8.1.16] Let X be an irreducible shift of finite
type, Y a shift and 7 : X = Y a local function. Then T is pre—injective if and
only if ent(X) = ent(7(X)).

Corollary 2.19 (MM-property for irreducible subshifts of finite type
of AZ) An irreducible subshift of finite type of A% has the MM-property.



PrOOF  If 7 is pre-injective, then by Theorem 2.18 we have ent(X) = ent(7(X)).
By Theorem 2.17, there does not exist a proper subshift of X whose entropy
equals that of X. Thus 7(X) = X and 7 is surjective. Conversely, if 7 is
surjective we have ent(X) = ent(7(X)) and Theorem 2.18 applies. O

We now prove that a result similar to Theorem 2.18 holds for irreducible
sofic shifts.

Theorem 2.20 Let X be an irreducible sofic shift, Y a shift and 7 : X —-Y a
local function. Let G = (G, L) be the minimal deterministic presentation of X.
Then T o L is pre—injective if and only if ent(X) = ent(r(X)).

ProOF  The labeled graph G = (G, £) being a presentation of X, we have
X = Xg = L(Xg). By Corollary 2.13, Xg is an irreducible shift of finite
type. Moreover 7o £ : Xg — Y is a local function; thus, by Theorem 2.18,
7o L is pre—injective if and only if ent(X¢) = ent(r(L(Xg))) = ent(7(X)). By
Corollary 2.16, ent(Xe) = ent(X) and the claim is proved. O

Corollary 2.21 (Myhill-property for irreducible sofic shifts) Let X be
an irreducible sofic shift and T : X — X a transition function. Then T pre—
injective implies T surjective.

PrOOF Let G = (G, L) be the minimal deterministic presentation of X; we
prove that if 70 L is not pre—injective, then 7 is not pre—injective either. Suppose
that there exist two bi—infinite paths ¢;,co € X which are different only on a
finite path and such that 7(£(c1))) = 7(L(c2)). Then one can write ¢; and ca,
respectively, as:

e—2 . e—1 . ey, - el €n—1 . €n - €n+41
[ =01 —> 0 —> U —> s by —> Ul — ...
and

e_g . e-1 . fo . 1 fr—1 . fan . en+1
Cco =211 ——> g — )1 —> " = Jn — lppl — ...,

with eg # fo. Setting a; := L(e;) and b; := L(f;), the graph G being determin-
istic we have ag # by and hence

L(c1) = a—2a-1 agay ... Apn—10p Gpi1 - --

and
E(CQ) =a_20_1 b0b1 . bn—lbn ap41 - - -

are two configurations in X which differ only on a finite (non empty) set and
whose images under 7 are equal. Therefore 7 is not pre—injective.

Thus, if 7 is pre—injective, then 7o £ is also pre—injective; by Theorem 2.20,
we have ent(X) = ent(7(X)). X being irreducible and by Theorem 2.17, 7(X)
cannot be a proper subshift of X. Hence 7(X) = X, i.e. 7 is surjective. DO



3. In this section we give an example of an irreducible sofic shift not of
finite type for which the transition function is surjective but not pre—injective
(that is, Moore—property no longer holds in general if the finite type condition is
dropped). Our example will be the even shift X, that is the subshift of {0,1}%

with forbidden blocks
{10*"*11 | n > 0}.

The shift X, is sofic, indeed it is accepted by the following labeled graph.
_______ 0
1O
—

We define a transition function 7 as follows:
T(c)|z = 6(0\2727 Clz2—15C|z> Clz+1> C\z+2)

where ¢ is the local rule:

1 if ajasaz = 000 or ajasasz = 111 or ajasasasas = 00100,
0(ara2030405) = 0 otherwise.

First we prove a Lemma.

Lemma 3.22 If a block 0™1 with n > 3, has a pre—image under 7 of length
n + 5 in the language of X,

ap | G2 | G3 | G4 | ... | An41 | And2 | OGn43 | Gnid | Qnis
0]0]... 0 0 1 ?

then this pre—image can be only of type
1. (i) araz zz (1 —z)(1 —x)...11 00 11 000G, 1-4Gn 45,
(i) aras zz (1 —z)(1 —x)...11 00 11 00100,
(#41) aras (1 —z)(1 —z) zz...00 11 00 111la,4Gnys,
when n is even and for a suitable x € {0,1};
2. (i) a1a2 (1 —2) zz...11 00 11 000Gy, +4Gnys5,
(4i) a1as (1 —z) xzz...11 00 11 00100



(#91) aras ¢ (1 —xz)(1 —2)...00 11 00 111an44Gn4s
when n is odd and for a suitable x € {0,1}.

ProOF  We prove the statement by induction on n > 3. Assume that
7(ayasasasasagarag) = 0001; we distinguish three cases.

) asasag = 000

ai a9 as 0 0 0 ar asg
01001

Then a3 = 1 otherwise §(azaqsasagar) = §(0000a7) =1 # 0.

e ayasagarag = 00100

ar |az |az |0 0|1]0|0
00|01

Then, for the same reasons as above, az = 1.

e ayasag = 111

ai as as 1 1 1 ar as
01001

Then a3 = 0 otherwise §(asasasagar) = §(1111ay) =1 # 0.

Now let us suppose that the statement is true for n and that we have
T(ay ...anye) = 0"H11:

aip | G2 | G3 | G4 | ... | Gp42 | On43 | Ondda | And5 | Ant6
0 01... 0 0 1

If n is even, by the inductive hypothesis one has either
ag...0p4a =22 (1 —2)(1 —x)...11 000
or
ag...an46 =zx (1 —z)(1 —2)...11 00100

or
a4...an4a=1—2z)(1 —2z) zz...00 111

for a suitable z € {0,1}.

In any case we have ay = a5. If ag = a4, then d(azasasasar) = d(asasasagar)
= 1#0. Thus a3 # a4.

It follows, in the three cases, that either

a1...0n46 =a1az (1 —z) zz (1 —2)(1 —z)...11 000G, 50,16



or
ay...an4e =a1az (1—x) zxz (1 —2)(1 —2)...11 00100

or
a1...0py6 =a1az (1 —2)(1 — ) zx...00 11la,5a,+16-
If n is odd, by the inductive hypothesis we have either
a4...an44 = (1 —2) zz...11 000
or
a4 ...0n46 = (1 —z) zz...11 00100
or

ag...0p4a =2 (1 —2)(1 —2)...00 111

for a suitable z € {0,1}.

In any case a4 # a5 = ag- If az # a4, then azagas = asagas so that a4 =1
(otherwise we had a forbidden block). For the same reason, as = az = 0. This
implies d(az2asasasas) = 6(00100) = 1 # 0. Thus asz = a4.

It follows, in the three cases, that either

a1 ...0p16 =a102 (1 —2)(1 — ) zz...11 000G, 150,16
or
ai-..anye = araz (1 —z)(1 — ) zz...11 00100

or
ay .- -apye =a1a2 2z (1 —x)(1 —x)...00 111a, 50,16-

Then the statement is still true for 0*+11. O

Proposition 3.23 The local function T is a transition function, that is 7(X,)
C X..

PROOF  7(X.) being a subshift of {0, 1}%, it suffices to prove that no forbidden
block 10™1 with n odd, has a pre-image of length n + 6 in the language of X..
First we prove that there is no block ajasaszasasagar of length 7 such that
7(a1azazasasa6ar) = 101:

ap | a2 | az | a4 | G5 | Q6 | A7
1101

We distinguish two cases.

e asas =00

ap ao 0 0 as Qg ar




Then ay = 1 otherwise §(asasasasas) = §(000asas) = 1 # 0. Then §(ajazasaqas)
= 5((11100(15(16) =0 # 1.

e azasas = 111

ai as 1 1 1 Qg ar
11011

Then a; = 0 otherwise d(azasasasag) = §(1111ag) = 1 # 0. Thus §(a1a2a3a4a5)
= 0(a10111lag) = 0 # 1. We have proved that no block of length 7 goes to 101
under 7.

Let us now prove that no block a; ...an46 of length n+ 6 has 10™1 as image
under 7, where n € N is odd and strictly greater than 1. If

ay | G2 | a3 | G4 | G5 | --- | Gn4t3 | Qntd | Qnys | Qnt6
1 0 01... 0 1 ’
by Lemma 3.22 we have ajasag - .. = x(1—xz)(1—x) ..., and being §(a1a2a3a4as)

= 1, we distinguish two cases:

[ ] x:o

a1 |az a3 | 0| 1| 1| ... | apnts | Guntd | Qnys | Qnys
1 ({0]0]|0]... 0 1

Then a3z = 0 (otherwise we had a forbidden block) and as = 1 because §(azasaq
asag) = 0(a20011) = 0 and §(00011) = 1. Then §(a1a2aza4as) = 6(a11001) =
0+#1.

[ ] x:]_

a1 |az a3 |1 |0 |0 | ... | apts | Gnda | Qnys | Qnys
110(0]0]... 0 1

If a3 = 0 then as = 0 and d(azasasasag) = §(00100) = 1 # 0. Thus az =
1. Then §(a2a3100) = §(a21100) and §(a21100) = 0 implies a = 0. Thus
0(a1a2a310) = 6(a10110) = 0 # 1. Hence 10™1 has no pre-image under 7. 0O

Proposition 3.24 The transition function 7 : X, — X, is surjective.

Proor  To prove the surjectivity of 7, it suffices to prove the non—existence
of GOE words. To this aim, as it can be easily seen, it is enough to prove that
each block of kind 1071102 ...10™1 (where n1,...n; are even integers), has
a pre-image block. Indeed each word in L(X.) is contained in such a special
word.

First we prove that every block of the type 10™1 where n is even, has a
pre-image a; ...anp46 in the language of X, of length n + 6

10



ay as as a4 as e An42 An+43 An+4 An45 An+6
1 0 01... 0 0 1 ’

in each of the three cases in which a4 — 1.
Ifn=0

0 0 0 0 as Qg

111 ’
and
N 1 1 1 1 as ag
1)1
Ifn=2
o ai ap 1/0]01|0 as ag
1({0]0]1 ’
. a a [1]0[0]1[0]O0
1001 ’
and

00|01 |1|1]as]|as
110]0]1

If n > 4, for a suitable z € {0,1},

. l-z|l—2z|1—-2|2z|xz|... |0|0]|0]| ants | Gnys
1 0(0|...|0]0]1
Similarly
. l—-z|l1l—-z|l—-z |z |z 0y10(1]0]0
1 00 0]0]1
and, finally,
. z|lz|lz|l—z|1l—a|... |1 |1|1]|apnts | Gnys
1 0 0 ... 10101

Now, fix a word of kind 10™110™...10™*1; we can construct a pre—image of
this word starting from the first on the right block 10”1 (over the first on the

11



right 1 we can write, arbitrarily, 000**, 111** or 00100). In this way we get
a word aj ...as over the second on the left 1 and we can start from this word
over 1 to construct a pre-image for the second on the right block 10™*-11, and
SO on:

bl b2 b3 b4 b5 N ai as as a4 as

o(o(1{ojoj...10(0f1701]0

Ne—1 Nk

In each of the possible choices we can find a block whose image under 7 is
our fixed word.
For what we have stated before, 7 is surjective. O

Proposition 3.25 The transition function 7 : X, — X, is not pre—injective.

PrOOF  Let us consider the configuration ¢;:

[ Jo[ofo]0]0[1[0]0[1]0][0][0[0][0]. ]

and the configuration ca:

[ JofoJoJo]oJo [T[1][1]0]o]o]0]0]..].

These configurations are different only on a finite subset of Z, but they have
the same image under 7, that is the configuration

[ Ji[i[i[i[i[iJoJo[tJoJo[t[1[1]...].

Thus 7 is not pre—injective. 0O

4. In this final section we show that the irreducibility condition in Corollary
2.19 cannot be dropped.

Counterexample 4.26 Myhill-property no longer holds for a subshift of finite
type of AZ but not irreducible.

Let X be the full shift over the alphabet A = {0, 1}; clearly X is irreducible
and of finite type. Consider the set X C {0,1,2}% given by the union X U {2},
where 2 is the bi-infinite word constant in 2. The set X is a shift of finite type
over the alphabet A = {0, 1,2} with set of forbidden blocks:

{02,20,12,21}.

Moreover X is not irreducible; indeed we have 1,2 € L(X) but for no word

w € L(X) the word 1w2 belongs to L(X).

12




Consider the transition function 7 : X — X defined by:
(c) = c ifceX
=10 ife=2.

Clearly 7 is 1-local where the local rule is given by d(a) = a if a # 2 and
d(2) = 0. This function is not surjective because the word 2 has no pre-images,
but it is pre—injective. Actually, if ¢; and ¢y are different configurations which
only differ on a finite subset of Z, then they must belong to X and so their
images under 7 are different. 0O

Counterexample 4.27 Moore—property no longer holds for a shift of finite
type but not irreducible.

Let X be the shift over the alphabet A = {0,1,2} with set of forbidden
blocks {01,02}. The shift X is not irreducible; indeed for no word u € L(X)
the word Oul belongs to L(X).

Consider the transition function 7 : X — X defined by the local rule:

ifa3760

d(araza3) = { 82 if ay = 0.

The function 7 is surjective because a generic word of X, for example,
...1211122121212212121 0 0000000000000 . .

has two pre—images:
...1211122121212212121 1 0000000000000 . . .

and
...1211122121212212121 2 0000000000000 . .

This also shows that 7 is not pre—injective. O
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