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Abstract

If Z is the group of integers, A a finite alphabet and A” the set of
all functions ¢ : Z — A, the equivalence between pre-injectivity and
surjectivity of a local function holds for irreducible shifts of finite type
of A% (see [Fiol]). In [Fio2] we give a definition of strong irreducibility
that, together with the finite type condition, allows us to prove the above
equivalence for strongly irreducible shifts of finite type in AT, if T is an
amenable group. In this paper, we define semi-strong irreducibility for
a shift. This property allows us to prove the implication “pre-injective
= surjective” for a local function on a semi-strongly irreducible shift of
finite type of AT, if T' has non—exponential growth. As a by-product, we
prove that the entropy of a proper subshift of a semi—strongly irreducible
shift X is strictly smaller than the entropy of X.

Key Words: irreducible shifts, amenable groups, entropy. AMS Classification: 37B10
— 43A07.

1 Introduction

The notion of a cellular automaton has been introduced by Ulam [U] and von
Neumann [vN]. In this classical setting, the “universe” is the lattice of integers
Z" of Euclidean space R". The set of states is a finite set A (also called the
alphabet) and a configuration is a function ¢ : Z" — A. Time t goes on in
discrete steps and represents a transition function T : A" — A”" (if ¢ is the
configuration at time ¢, then 7(c) is the configuration at time ¢ + 1), which is
deterministic and local. Locality means that the new state at a point v € Z™ at
time ¢t + 1 only depends on the states of certain fixed points in the neighbor-
hood of v at time ¢. For these structures, Moore [Moo] has given a sufficient
condition for the existence of the so—called Garden of Eden (GOE) patterns,
that is those configurations with finite support that cannot be reached at time ¢
from another configuration starting at time ¢ — 1 and hence can only appear at
time ¢t = 0. Moore’s condition (the existence of mutually erasable patterns, that
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is, of two different patterns with the same support and such that each pair of
configurations extending them and coinciding out of the support, have the same
image under the transition function), was also proved to be necessary by Myhill
[My]. This equivalence between “local injectivity” and “local surjectivity” of
the transition function is the classical well-known GOF theorem.

The purpose of this work is to consider this kind of problems in the more
general framework of symbolic dynamics theory, with particular regard to GOE-
like theorems restricted to the subshifts of the space Al (where T is a finitely
generated group and A is a finite alphabet).

More precisely, if T is a finitely generated group, we consider the space A"
(and we call it full A-shift) of functions defined on T' with values in a finite
alphabet A. This space is naturally endowed with a metric and hence with an
induced topology, this topology being equivalent to the usual product topology,
where the topology in A is the discrete one. We call subshift, shift space or
simply shift, a subset X of A" which is I'-invariant and topologically closed. A
function 7 : X — AT is local if the value of 7(c), where ¢ € X is a configuration,
at a point v € I' only depends on the values of ¢ at the points of a fixed finite
neighborhood of 7.

In Section 2 we formally define all these notions, recalling from [Fio2] many
basic results on the subshifts of A'. We give the notion shift of finite type. As
in the one—dimensional case (i.e. the case I' = Z), such a shift has an useful
“overlapping” property that will be necessary in Section 4. Then we give the
fundamental notion of irreducibility for a shift. This notion is well-known in
the one-dimensional case. It means that given any pair of words u, v in the
language of the shift (i.e. the set of all finite words appearing in some bi-infinite
configuration), there is a word w such that the concatenation uwwv still belongs
to the language.

Finally, the notion of entropy as defined by Gromov in [G] is given. We prove
that if the group has non—exponential growth, the entropy of a subshift of AT
can be calculated relative to a suitable sequence of disks in I" with increasing
radius.

The GOE—-theorem has been proved by Machi and Mignosi [MaMi] more
generally for local functions in which the space of configurations is the whole
A-shift AT and the group T has non-exponential growth. More recently it
has been proved by Ceccherini-Silberstein, Machi and Scarabotti [CeMaSca]
for the wider class of the amenable groups. Instead of the non—existence of
mutually erasable patterns we deal here with the notion of pre—injectivity (a
function 7 : X C AY — AU is pre-injective if whenever two configurations of
X differ only on a finite non—empty subset of I', then their images under 7
are different). This notion has been introduced by Gromov in [G]. In fact,
it is easy to prove that these two properties are equivalent for local functions
defined on the full shift, but in the case of proper subshifts the former may
be meaningless. On the other hand, the non—existence of GOE patterns is
equivalent to the non—existence of GOE configurations (see [MaMi, Theorem
5]), that is the surjectivity of the local function. Hence, in this language, the



GOE—-theorem states that 7 is surjective if and only if it is pre—injective. In the
one—dimensional case we have that this equivalence holds for irreducible shifts
of finite type of AZ(see [Fiol]). Moreover, in [Fiol] we have proved that Myhill’s
implication holds for irreducible sofic shifts of A% (recall that a one—dimensional
shift is sofic if it is the set of labels of all bi—infinite walks on a labeled graph).
On the other hand, we give there a counterexample of an irreducible sofic shift
X C A% but not of finite type for which the inverse implication does not hold.

Concerning general shifts over amenable groups, from a result of Gromov [G]
under much more general hypotheses it follows (see [Fio2, Section 3]) that the
GOE theorem holds for local function on shifts of bounded propagation contained
in AU, if T is amenable. In [Fio2, Section 4] we give the notion of strong
irreducibility and we generalize the result of Gromov, proving that it holds for
strongly irreducible shifts of finite type of AT.

The main difference between irreducibility and strong irreducibility is easily
seen in the one—dimensional case. Here the former property states that given
any word u, v in the language of the shift, there exists a third word w such
that the word wwv is still in the language. Strong irreducibility says that we
can arbitrarily fix the length of this word (but it must be greater than a fixed
constant depending on the shift). The same properties for a generic shift refers
to the way in which two different patterns in the language of the shift may
appear simultaneously in a global configuration. For irreducibility we have that
two patterns always appear simultaneously in some configuration if we translate
their supports. Strong irreducibility states that if the supports of the patterns
are far enough, then it is not necessary to translate them in order to find a
configuration in which the patterns both appear.

These two irreducibility conditions are not equivalent, not even in the one—
dimensional case. Hence our general result about strongly irreducible shifts of
finite type is strictly weaker than the one-dimensional one!. In the attempt
of using weaker hypotheses to prove our result, in Section 4 a new notion of
irreducibility, the semi—strong irreducibility, is introduced. This property states
that if the supports of the patterns are far enough (provided that one of this
is a ball), then translating them “a little” we find a configuration in which the
patterns both appear. The reason of this choice lies in the fact that using the
Pumping Lemma, we prove that a sofic subshift of A% which is irreducible has a
property quite similar to semi-strong irreducibility. Indeed such a shift has the
property that between two words of the language (and not, in general, between
a pattern and a word), we can write a third word “almost” of the length we
want (provided that it is long enough): we must allow it to be “a little” longer
or “a little” shorter. The length of this difference is bounded and only depends
on the shift.

In Section 4 we prove that the implication “pre—injective = surjective”
holds for semi-strongly irreducible subshifts of finite type of AT, if T has non—

IIndeed it can be easily seen by trivial counterexamples that none of the two implica-
tions “pre—injective = surjective” and “surjective = pre—injective” holds in general for local

functions defined on irreducible shifts of finite type of A7



exponential growth. This result is a consequence of Corollary 4.7 which is an
interesting result about shifts entropy: under the above conditions, the entropy
of a proper subshift of a semi-strongly irreducible shift X C AT is strictly weaker
than the entropy of X.

2 Shifts on Cayley graphs

In this section, we give the basic notion of Cayley graph of a finitely generated
group. We define a shift space as a suitable subset of the set of all functions
defined from this graph with values in a finite set A. Moreover, we recall the
definition of growth of a finitely generated group I'.

Let T be a finitely generated group and X a fixed finite set of generators for
I'. Then each v € T can be written as

v = a:fllscf: . :Uf: (1)
where the x;,’s are generators and d; € Z. We define the length of v (with
respect to X' ) as the natural number

|7]|x = min{|d1| + |d2| + - - - + |dn| | v is written as in (1)}.

A decomposition for 7 as in (1) such that ||y||x = 01|+ |02 +- - -+ |dn] is called
minimal representation of v. The group I' is naturally endowed with a metric
space structure, with the distance given by

distx (a, §) = [la™" Bl (2)

and we denote by D;’ the ball of T' centered at 1 and with radius n. Notice
that Df¥ is the set X U X~'. The asymptotic properties of the group being
independent on the choice of the set of generators X, from now on we fix a set
X which is also symmetric (i.e. X~ = X) and we omit the index X in all the
above definitions.

For each v € T, this set D,, provides, by left translation, a neighborhood of
7, that is the set yD,, = D(v,n), where D(v,n) is the disk of radius n centered
at 7.

Given a subset E C I'" and for each n € N we denote by
Etn .= U D(a,n), E":={a € E| D(a,n) C E} and §,E := ET"\E™ "
acE

the n—closure of E, the n—interior of E and the n—boundary of E, respectively.
By
OFfE:=E'™™\E and §,, E:= E\E™"

the n—external boundary of E and the n—internal boundary of E, respectively.
For all these sets, we will omit the index n if n = 1.



The Cayley graph of T', is the graph in which I' is the set of vertices and
there is an edge from v to 7 if there exists a generator x € X such that 5 = yzx.
Obviously this graph depends on the presentation of I'. For example, we may
look at the classical cellular decomposition of Euclidean space R™ as the Cayley
graph of the group Z™ with the presentation (a1,...,a, | a;a; = aja;).

If G = (V,€) is a graph with set of vertices V and set of edges £, the graph
distance (or geodetic distance) between two vertices vy,vy € V is the minimal
length of a path from v; to vo. Hence the distance defined in (2) coincides with
the graph distance on the Cayley graph of I'. Indeed a minimal representation
of an element v € T" represents a path of minimal length from 1 to ~.

We recall (see for example [Mil] or [CeMaSca]) that the function g : N - N
defined by

g9(n) := | Dy

which counts the elements of the disk D, is called growth function of T' (with
respect to X). One can prove that the limit
1

A= lim g(n)

n—oe

always exists. If A > 1 then, for all sufficiently large n,
g(n) 2 A",

and the group T has exponential growth. If X = 1, we distinguish two cases.
Either there exists a polynomial p(n) such that for all sufficiently large n

g(n) < p(n),

in which case T has polynomial growth, or T has intermediate growth (i.e. g(n)
grows faster than any polynomial in n and slower then any exponential function
z™ with z > 1). Moreover, it is possible to prove that the type of growth is
a property of the group I' (i.e. it does not depend on the choice of a set of
generators). For this reason we deal with the growth of a group. This notion
has been indipendently introduced by Milnor [Mil], Efremovi¢ [E] and Svarc [S].

Let A be a finite set (with at least two elements) and let T’ be (the Cayley
graph of) a finitely generated group. A configuration is an element of AT, that
is a function ¢ : ' — A assigning to each point of the graph a letter of A. We
denote by ¢/, the value of ¢ € A" at & € T'. On A", we have a natural metric and
hence a topology which is equivalent to the usual product topology, where the
topology in A is the discrete one. By Tychonoff’s theorem, A is also compact.

If ¢1,co € AT are two configurations, we define the distance

1

dist(01, CQ) = n—H

where n is the least natural number such that ¢; # ¢ in D, (i.e. the least
natural number such that ci|, # c2|o for some a € Dy,). If such an n does not



exist, that is if ¢;= ¢z, we set their distance equal to zero. Notice that ¢; = ¢y
on D,, if and only if dist(c1,c2) < n%%
The group I acts on A on the right as follows:

(C’Y)la = Clya

for c € A" and v,a € T.

With this, a shift is a subset X of AT which is topologically closed and T'-
invariant (i.e. X' = X). As we shall see later, this topological definition is
equivalent to the classical (well-known in the Euclidean case, that is the case
' = Z™) combinatorial one.

For X C AT and E CT, we set

Xg:={cg|ce X}.

A pattern of X is an element of Xg where E is a non—empty finite subset of T'.
The set E is the support of the pattern. A block of X is a pattern of X with
support a disk. The language of X is the set L(X) of all the blocks of X. If X
is a subshift of A%, a configuration is a bi-infinite word and a block of X is a
finite word appearing in some configuration of X.

Hence a pattern with support E is a function p: E — A. If v € ', we have
that the function p : yE — A defined as p|,, = pjo (for each a € E), is the
pattern obtained copying p on the translated support yE. Moreover, if X is
a shift, we have that p € X, if and only if p € Xg. For this reason, in the
sequel we do not make distinction between p and p (when the context makes it
possible). In the one-dimensional case, for example, a word a; . .. a, is simply
a finite sequence of symbols for which we do not specify (if it is not necessary),
if the support is the interval [1,n] or the interval [—n, —1].

Let X be a shift. A function 7 : X — Al is M-local if there exists ¢ :
Xp,, — A such that for every c€ X and y €T

(T(C))lfy = 6((CV)|DM) = 5(C|'ya1 3Clyags -+ C|’yam)7

where Dyr = {a1,...,an}. A function is local if it is M-local for some M.
Hence 7 is local if the value of 7(¢) at a point v € T only depends on the values
of ¢ at the points of the neighborhood yD s of v and this value is given by the
“local rule” 4.

In this definition, we have assumed that the alphabet of the shift X is the
same as the alphabet of its image 7(X). In this assumption there is no loss of
generality because if 7 : X C A" — BT, one can always consider X as a shift
over the alphabet AU B.

Let 7 : X — A be a local function. If ¢ is a configuration of X and E is a
subset of ', 7(c)|g only depends on ¢ g+n. Thus we have a family of functions
(Tg+m : Xg+m — 7(X)g)ecr. This notation will be useful in the sequel.



There is a characterization of local functions which in the one-dimensional
case is known as the Curtis-Lyndon-Hedlund theorem (see [LinMar, Theorem
6.2.9]). A shift being compact, it is easy to see that it holds for a general
local function. It states that a function 7 : X — AU is local if and only if it
is continuous and commutes with the T'—action (i.e. for each ¢ € X and each
v € T, one has 7(c¢7) = 7(c)?). From this result, it is clear that the composition
of two local functions is still local, as it can also be easily seen directly from the
definition.

Now, fix v € T and consider the function X — AT that associates with
each ¢ € X its translated configuration ¢”. In general, this function does not
commute with the I'-action (and therefore it is not local). Indeed, if T is not
abelian and ya # ary, then (¢7)® # (¢*)”. However, as proved in [Fio2, Section
2], this function is continuous.

Observe that if X is a subshift of AT and 7 : X — AT is alocal function, then,
by the (generalized) Curtis—Lyndon-Hedlund theorem, the image Y := 7(X) is
still a subshift of AT. Indeed Y is closed (or, equivalently, compact) and I'-
invariant:

Y= (X)) =71(X") =7(X) =Y.

Moreover, if 7 is injective then 7 : X — Y is a homeomorphism. If ¢ € Y then
¢ = 7(c) for a unique ¢ € X and we have
P ) = (@) = (@) = & = (7 ()

that is, 77! commutes with the I'-action. Hence 7! is local and the well-
known theorem (see [R]), stating that the inverse of an invertible local function
defined on Z" is still local, holds also in this more general setting. In the one—
dimensional case, Lind and Marcus [LinMar, Theorem 1.5.14] give a direct proof
of this fact.

This result leads us to say that two subshifts X, Y C Al are conjugate if
there exists a local bijective function between them (namely a conjugacy). The
invariants are the properties of a shift invariant under conjugacy.

As mentioned above, it is easy to prove that the topological definition of a
shift space is equivalent to the following combinatorial one involving the avoid-
ance of certain blocks (therefore called forbidden blocks). This fact is well-known
in the Euclidean case (see [LinMar, Theorem 6.1.21]). Let F be a set of blocks,
we denote by Xz the set of all configurations of AT avoiding each block of F.
With these notations we have that a subset X C AL is a shift if and only if
there exists a set of blocks F such that X = Xz. In this case, F is a set of
forbidden blocks of X.

We now give the fundamental notion of a shift of finite type. The basic
definition is in terms of forbidden blocks: a shift is of finite type if it admits
a finite set of forbidden blocks. In a sense we may say that a shift is of finite



type if we can decide whether or not a configuration belongs to the shift only
by checking its blocks of a fixed size (where this size only depends on the shift).

Since a finite set F of forbidden blocks of X has a maximal support, we can
always assume that in a shift of finite type each block of F has the disk Dy, as
support (indeed a block that contains a forbidden block is also forbidden). In
this case the shift X is called M-step and the number M is called the memory
of X. If X is a subshift of A%, we define the memory of X as the number M,
where M + 1 is the maximal length of a forbidden word.

For the shifts of finite type in AZ we have (see [LinMar, Theorem 2.1.8]),
the following useful property: a shift X C A% is an M—step shift of finite type
if and only if whenever wv,vw € L(X) and |v| > M, then uvw € L(X).

It is easy to prove that this “overlapping” property holds more generally
for M—step subshifts of finite type of A': if E is a subset of T and c1,¢c2 € X
are two configurations that agree on 8; ', then the configuration c € AT that
agrees with ¢1 on E and with ¢ on CE is still in X.

It is also easy to see that this property has the following useful consequence.

Proposition 2.1 Let X be an M-step shift of finite type and let E be a finite
subset of T'. If p1,p2 € Xg+am are two patterns that agree on 6;ME, then there
exist two extensions c1,ca € X of p1 and pa, respectively, that agree on CE.

The natural generalization for a generic shift of the notion of irreducibility
which is well-known in the one-dimensional case is the following: a shift X C A"
is #rreducible if for each pair of blocks p; and ps of X, there exists a configuration
¢ € X such that ¢|g = p1 and ¢ = pa, where E, F' C I are disjoint translations
of the supports of p; and ps respectively.

In other words, a shift is irreducible if whenever we have pq, p» € L(X), there
exists a configuration ¢ € X in which these two blocks appear simultaneously (on
disjoint supports). This definition could seem weaker than the one-dimensional
one, in fact in this latter we establish that each word v € L(X) must always
appear in a configuration on the left of each other word of the language. But,
as proved in [Fio2, Section 2], the two definitions agree.

The entropy of a shift is the first invariant we deal with in the present work.
It is a concept introduced by Shannon [Sha] in information theory that involves
probabilistic concepts. Later Adler, Konheim and McAndrew [AdIKoM] intro-
duced the topological entropy for dynamical systems. The entropy we deal with
is a special case of topological entropy and is independent on probabilities.

In this section we give the general definition of entropy for a generic shift.
We will see that this definition involves the existence of a suitable sequence of
sets that, in the case of non—exponential growth of the group can be taken as
balls centered at 1 and with increasing radius.

Definition 2.2 Let (E,),>1 be a sequence of subsets of I' such that UneN E, =
I' and such that the Fglner condition holds:
E,
lim |OFn| =

n—oo |E,|

0. (3)



If X C AL is a shift, the entropy of X respect to (E,,) is given by

log | X
ent(X) := limsup M.

Condition (3) is necessary in order to prove that the entropy is invariant under
conjugacy (see [Fio2, Theorem 2.12]). Other aspects of its importance will be
seen in Section 4.

If X is a subshift of A%, we choose as E,, the interval [1,n] (or equivalently,
in order to have |J,cn BEn =T, the interval [-n,n]), so that Xg, is the set of
words of X of length n (in [Fiol] we prove that in this one-dimensional case,
the above maximum limit is a limit and coincides with inf,>; logliiE’"l)

In general, if T' is a group of non—exponential growth, we choose as E,, a suit-
able disk centered at 1 € T'. Indeed, setting ap = |Dy|, we have (by definition

of non—exponential growth) lim,_,o, {/a, = 1, and hence liminf)_, a[’;% =
1. Tt follows that for a suitable sequence (ag,)r we have limy al’;z“ =
k

1. Hence liminfj_, o Z::i = 1 and for a suitable sequence (ap,, )n we have
lim,, o0 a::"i = 1, i.e. we find a sequence of disks E,, := Dy, such that
lim,, s 0o % = 1. Being D} = Dpy1 and D1 C D, we also have that
lim,, o0 llgi_rl‘ = 1. Hence ‘l‘ii"ll = |Eﬁ;ﬁ"_‘ < ‘Eé\f‘"_‘ = \lgi:: -1 — 0.

3 The Garden of Eden theorem and the Moore—
Myhill property

Let 7 be alocal function. Recall from [Moo] and [My] that two different patterns
with the same support are called T—mutually erasable if each pair of configura-
tions extending them and coinciding out of the support, have the same image
under 7. This notion is used in the original works of Moore and Myhill. Indeed
they prove that a local function 7 on the full shift A% admits two mutually
erasable patterns if and only if it admits a GOF pattern, that is a pattern with-
out pre-image. In this section we restate the GOE theorem using the notion of
pre—injective function. This notion has been introduced by Gromov in [G] and
it is equivalent to that of non—existence of mutually erasable patterns

The Garden of Eden (GOE) theorem is the union of the following two the-
orems.

Theorem 3.1 (E. F. Moore - 1962) If7: AZ — A% is a local function and
there exist two T—mutually erasable patterns, then there exists a GOE pattern.

Theorem 3.2 (J. Myhill - 1963) If 7 : AZ — A% is q local function and
there exists a GOE pattern, then there exist two T—mutually erasable patterns.



Now we recall the definition of amenability for a group I'. Using a character-
ization of it due to Fglner (see [F], [Gr] and [N]), Ceccherini-Silberstein, Machi
and Scarabotti have proved that the GOE theorem holds for local functions
defined on the full shift A" (see [CeMaSca).

Definition 3.3 A group I is called amenable if it admits a I'-invariant proba-
bility measure, that is a function g : P(I') — [0, 1] such that for A,B C T and
for every y €T

e ANB=0= pu(AUB) = u(A) + u(B) (finite additivity)
o u(vA) = u(A) (T—invariance)
e u(T) = 1 (normalization).

Theorem 3.4 (Fglner) A group T is amenable if and only if for each finite
subset F' C T and each € > 0 there exists a finite subset K C T" such that

|KF\K|

— < £
K|

This characterization is equivalent to the following one.

For each pair of finite subsets F, H CT" with 1 € H and each € > 0 there exists
a finite subset K O H such that

KP\K| __
K|
Indeed, suppose that there exists K such that

[KHF\K]| _ _
K|

We have that K C K H and hence

|KHF\KH| _|KHF\K]|
_ < _ <e.
|KH| K|

Tt suffices to set K := KH.

Using this characterization we can prove the existence of a (nested) sequence
(Ep)n>1 satisfying condition (3) in Definition 2.2.

Theorem 3.5 Let ' be an amenable group. Then there exists a sequence of
finite sets (Ey)n>1 such that:

e E,CEC...CE,C...

* UnZl E, =T,
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18mEa| _

e lim, .o

Proor  First, notice that in Fglner condition there is no loss of generality
if we suppose 1 € K. Now we construct, by induction, a nested sequence
1le K1 C...CK,C... such that, for eachn > 1

Kn(DEYNK,| _ 1
Let K be a finite subset 1 € K; C I such that

|K1(DFY)\Ki |

<1
| K

whose existence is guaranteed by Theorem 3.4. Suppose to have found K,,
there exists K41 2 K, such that

|Kn+1(Dﬁ41)\Kn+1|< 1
|Kn+1| 7’L+1

Observe that
e K,(DiM) = (K,D,)*™™
o Kn C Kn(D, ") C (KnDn) M
e K,, C KD,

hence

| D) ™M\(KnDa) ™| _ [Kn(DF*\E| _ 1
| KnDh| o | Knl n’
Setting F, := K,D,, we have the stated properties because D,, C K,,. O
A sequence as in Theorem 3.5 is called amenable (or Folner sequence). From

now on we fix an amenable sequence (E,),>1 (the one found at the end of Sec-
tion 2, if " has non—exponential growth) and the entropy of a shift will be defined

+
with respect to (E,)n>1. Notice that condition (3) implies lim,_, ‘af‘fgnEr =
and lim,,_, la‘%ﬁ"l =0.

Using the existence of an amenable sequence in the amenable group T,
Ceccherini-Silberstein, Machi and Scarabotti [CeMaSca] have generalized the
GOE theorem to local functions defined on the whole shift A",

In order to consider GOE-like theorems not in the whole of AT but in a sub-
shift X C AT, notice first that two patterns of X are not necessarily extendible
by the same configuration of X. Therefore it could happen that two patterns
with support F' for which there does not exist a common extension ¢gp, are
T—mutually erasable although the function 7 is bijective. The notion that seems
to be a good generalization of the non—existence of mutually erasable patterns,

11



is that of pre—injectivity. It can be easily seen that if X = A! then the non—
existence of 7—mutually erasable patterns is equivalent to the pre—injectivity of
T.

Definition 3.6 A function 7 : X C AT — AT is called pre—injective if whenever
c1,¢2 € X and ¢; # ¢z only on a finite non—empty subset of T', then 7(c1) #
7'(02).

One can prove (see [MaMi, Theorem 5]) that a local function on Al is
surjective if and only if there are no GOE patterns. A shift being compact, it
is easy to prove that this property holds also for the local functions between
shifts. Hence we can state the GOE theorem as follows: if ' is an amenable
group and 7 : AT — AU is a local function, then T is pre—injective if and only if
it is surjective.

In the following definition we introduce an interesting property concerning
shifts.

Definition 3.7 A shift X C A" has the Moore-Myhill property (briefly MM-
property), if every local function 7 : X — Al is pre-injective if and only if it
is surjective. The Moore—property is surjective = pre—injective and the Myhill-
property is pre—injective = surjective.

In the sequel we will distinguish between these properties and the GOE—-
theorems for a local function. Indeed the former are properties of a single shift.
For example it is easy to see that the composition of two local pre—injective
functions is still a (local) pre-injective function and hence one can prove that the
MM-—property is invariant under conjugacy. On the other hand, we will speak
of GOE-theorem whenever we have a GOE-like theorem for a local function
between two possibly different shifts.

4 Semi—strongly irreducible shifts

As proved in [Fiol], the MM-property holds for irreducible subshifts of finite
type of AZ. If T is amenable, it holds for strongly irreducible subshifts of finite
type of Al (see [Fio2]). In this section we define another form of irreducibility:
the semi—strong irreducibility. If ' has non—exponential growth it allows us to
prove the implication “pre—injective = surjective” for local functions defined on
a subshift of finite type.

Definition 4.1 A shift X is called (M, k)—irreducible (where M,k are natural
numbers such that M > k) if for each pair of finite sets E,aD C T (the second
one is a ball centered at «) such that dist(E,aD) > M and for each pair of
patterns p; € Xg and ps € X,p, there exists a configuration ¢ € X such that
c¢=p; in E and ¢ = ps in aeD (that is the disk centered at ag), where ¢ € T’
is such that ||e|]| < k. The shift X is called semi-strongly irreducible if it is
(M, k)—irreducible for some M,k € N.
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Recall from [Fio2] that a shift X is M-irreducible if for every pair of finite
sets B, F C T" such that dist(E, F') > M and every pair of patterns p; € Xg and
p2 € X, there exists a configuration ¢ € X such that ¢ = p; in E and ¢ = ps
in F. X is strongly irreducible if it is M—irreducible for some M € N. Hence
the difference between semi—strong irreducibility and strong irreducibility lies
in the fact that in the former the support of the second pattern must be a ball
and the configuration ¢ merging the two patterns moves this support “slightly”.
Notice that this motion is a translation and hence it makes sense to say that the
configuration ¢ restricted to aeD coincides with p» € X,p. Moreover, under
the previous hypotheses, the translated disk aeD is still contained in (aD)*M.
Indeed if D = D, and v € aeD,, then dist(y, a) < dist(7y, ae) + dist(ae, a) <
r+|le7t|| € r + k. In particular E N aeD = .

In Definition 4.1 is in fact essential that, given a finite set F' C I, there
exists @ € T'\{1} such that the translated set o F is still contained in F*M. If
the group is not abelian, the set aF may be quite far from F. On the other
hand the set F'a is a—close to F', but it is not, in general, obtained from F' by
translation®. This is why we require that the second set in Definition 4.1 be a
ball centered at . Then we consider the new center ae (which is e—near «).
The ball aeD having the same radius as aD, is obtained by translating aD. As
we have seen, if I' has non—exponential growth we can fix a suitable sequence
(En)n of balls centered at 1 with property (3) of Definition 2.2. Hence if M is
large enough we have ¢E, C EM.

In the one—dimensional case irreducibility is a property quite similar to that
of semi—strong irreducibility, as clarified in Corollary 4.3. To this aim, we restate
as follows the well-known Pumping Lemma.

Lemma 4.2 (Pumping Lemma) Let L be an infinite reqular language. There
exists M > 1 such that if vwv € L and |w| > M, there ezxists a decomposition

w = TYz
with 0 < |y| < M so that for each n € N we have uzy™zv € L.
Moreover, one can take as M the number of vertices of a graph accepting L.

Corollary 4.3 If X C A% is a sofic shift, then X is irreducible if and only
if there exist M,k € N such that for each n > M and each pair of words
u,v € L(X), there exists a word w € L(X) withn — k < |w| < n+ k and such
that vwv € L(X).

Proor If X is irreducible, let M = k, where M is given by the Pumping
Lemma. If n > M and u,v € L(X), there exists w € L(X) such that uwv €
L(X). We distinguish two cases.

If lw| > n+ M, then w = z1y121 with 0 < |y1| < M and if wy := 2121,
then wwiv € L(X) and |w| — M < |wy| < |lw| = 1. If jwi| < n+ M, we

2Consider, for example, the free group F» generated by a and b. If F = {a™,b"} with
n > M, it is easily seen that for no a # 1 we have oF = {@a”,ab”} C F+M,
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have |wi| > |w|— M >n >n— M. If lwi| > n+ M, we repeat the above
construction to obtain, for some ¢ > 1, an element w; such that vw;v € L(X)
and n— M < |w;| <n+ M.

The second case, when |w| < n — M, is analogous. O

Hence, by Corollary 4.3, one has that the notion of semi—strong irreducibility
given in Definition 4.1 is satisfied by irreducible sofic shifts of Z whenever the
support E mentioned in this definition is a disk as well.

We now prove our main results. The following proposition holds in the case
of strongly irreducible shifts of finite type in A", where the group I' is amenable
(see [Fio2]).

Proposition 4.4 LetT be a group of non—exponential growth. Let X be a semi—
strongly irreducible shift of finite type and let T : X — AT be a local and pre—
injective function. Then ent(7(X)) = ent(X).

PROOF  Suppose that the memory of X is M, that X is (M, k)—irreducible
and that 7 is M—local. Set Y := 7(X) and fix an amenable sequence of disks
(En)n. We have

|Vigsant| < [Vig, || A1 %5 En

Thus
log [Vpgem| _ log |Vig, | N |05, En|log |A]
|Enl = B4 |Ey| '
|63, B | log [V yam |

Being lim,, 0o =3 = 0, we have limsup,,_,, —* <ent(Y). Let | =
(k) be the number of €’s such that ||| < k and suppose that ent(Y") < ent(X).
Then

_— 10g|YE;|—2M| < lims log | XE,| lims log(—lenl)
msup ————— msup ————— = limsup ———-
n—sco |En| n—oo  |Enl n—oo  |Enl
. log |Y, 4om | 10g(M) .
Then there exists n € N such that A o that is [Ygyem| <

p(lﬂ‘. Fix v € Xyt pam. Since dist(0f,,EfM,E,) = M +1 > M for each
u € X, there exists € € Dy and a pattern p € Xp+sm that agrees with u on
eE,, and with v on 8, E™. Thus
X5, |
Hp € Xpgsn | Doy, mym = v} 2 == > [Vgpau].

Since T grom : Xpiam — Ypiom is surjective, there exist two patterns py,p2 €
Xptsu such that pi # ps but p1 = v = py on 05 EfM and Tpem (p1) =
T oM (p2). By Proposition 2.1, there exist two configurations ¢, ¢y € X which

extend p; and p» and which agree outside EFM. Tt is easy to prove that 7(c;) =
7(e2), and hence that 7 is not pre-injective. 0O
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Recall (see [Fio2, Lemma 4.3]), that if T is a finitely generated group, there
exists a sequence of disks (Fj)jen obtained by translating a disk D and at
distance > M such that |J;cy FJTLR =T for a suitable R > 0. We call the above
sequence a (D, M, R)-net. The following lemma is an essential result used in
the proof of the equivalence between pre—injectivity and surjectivity in the case
of strongly irreducible shifts of finite type and of amenable groups (see [Fio2]).

Lemma 4.5 Let T' be an amenable group and let (E,), be a fizred amenable
sequence of I'. Let (Fj)jen be a (D,,2M,R)-net, let X be an M-irreducible
shift and let Y be a subset of X such that Yr, C X, for every j € N. Then
ent(Y) < ent(X).

For semi—strongly irreducible shifts, Lemma 4.5 does not necessarily hold.
Consider, for example, the shift X = {...010101..., ...101010...} C A% It
is of finite type and (2, 2)—-irreducible, but ent(X) = 0.

The following lemma is similar to Lemma 4.5 but as one can see the hy-
potheses are quite stronger.

Lemma 4.6 LetT be a group of non—exponential growth and let (E,), be a fized
amenable sequence of disks . Let (Fj)jen = (D(B;,7))jen be a (Dy,2M, R)-net,
let X be an (M,k)—irreducible shift and let Y be a subset of X such that for
each j € N, there exists a pattern p; € Xr, for which p; ¢ YD(ﬁjs,T) whenever
€ € Dy,. Then ent(Y) < ent(X).

PrROOF  Let N(n) be the number of F}’s such that F]-JFM C E, and denote by
F; Fj, these disks. Set & := |Xp+m| and denote by P;,, C Xg, the set

VIR

of the blocks p of Xg_ such that DD, =) = Pim for some € € Dj,. We prove

that
N

Xe\J Pil < =€)V XE,| (4)

i=1

by induction on m € {1,..., N}. We have
1 XB, | < | Xpru|| X\ prna|
J1 J1

and hence
X | < €1 -

Since X is (M, k)-irreducible and since diSt(Fjl,En\FjJ'l_M ) > M, given a pat-
ternp € X, \FFM there exists a pattern p defined on all E,, that coincides with
™\t

p on E,\F;*" and with pj;, on some D(8;,¢,r). Then
|XEn\F?"M| < Py l-
71
Hence

1
FARCARSEN
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so that 1 1
| XE \Pj| < [XE,| - EIXEnI =(1- E)IXE,.I-

Suppose that (4) holds for m — 1. We have

m—1
X5\ J Pil < €Hp € X\ pie | P03, ) # P
i=1

for each i =1,...,m — 1 and each ¢|}.

Moreover, since X is (M, k)—irreducible,

{p € XEH\F;-M | PID(8;,e,r) # Pj; for each i =1,...,m —1 and each e}| <

m—1
<|{p € Xg.\ U Pj; | pip(s,, e,r) = Pj,, for some e}|.
i=1
Hence
1 m—1 m—1
E|XEn\ LJI Pji' < |{p € XEn\ LJI P'i p\D(ﬂjme,r) = DPjm for some 6}|
1= 1=
and then
m m—1
Xe,\ J Pl = 1(Xm,\ J Pir) \ Pl <
i=1 =1
m—1 m—1
< |(XE"\ U P~i) \ {p € Xg,\ U Pj, | pip(s;, e,r) = Pjn for some e}| <
i=1 i=1

m—1 m—1
<X\ | P, —§|XE"\ U Pl < <1—§)(1—§-1)W-I|XEH|-
=1 =1

Hence (4) holds, and since |Yg, | < |Xg, \ UZ=1 P;,.|, we have

IOg |YEn| < N(’I’L) log(l - f_l) log |XEn | ) (5)
|Enl  — |En| |En|

Observe that v
E, C |J Ft? u (B,\E, (FH2r+M))

i=1

and hence we have
|En| < N(n)|DVE| + | E,\E, (FH2r M)

so that

N(n) 10k +2r+ 1 Enl
1 S |D+R| + +2r+
|En| | En|
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[Ty 2
R+2r4+M — 07

Taking the minimum limit and being lim,,_, o, L]

N(n)

| En

¢ := liminf > 0.

n—oo
Taking the maximum limit in (5), it follows

ent(Y) < Clog(1 — &%) +ent(X) < ent(X). O

The following statement is an easy consequence of Lemma 4.6 and generalizes
the result in [LinMar, Corollary 4.4.9].

Corollary 4.7 LetT be a group of non—exponential growth and let X be a semi—
strongly irreducible subshift of A'. If Y is a proper subshift of X then ent(Y) <
ent(X).

PrROOF  Let X be (M, k)—irreducible. If Y C X, there exists a configuration
¢ € X which does not belong to Y and then there exists a disk D, such that
¢p, € XDT\YDT- Let (Fj)jeN = (D(ﬂj,T))jeN be a (D,,2M, R)-net. Then
¢ip, ¢ Yp(s,e,r) whenever € € Dy. By Lemma 4.6, ent(Y) < ent(X). O

Proposition 4.8 Let T be a group of non—exponential growth. Let X be a shift,
let Y be a semi—strongly irreducible shift and let T : X — 'Y be a local function
such that ent(7(X)) = ent(Y'). Then 7 is surjective.

PROOF Let X and Y be as in the above hypotheses and let 7: X — Y be a
local function. Clearly 7(X) is a subshift of Y. By Corollary 4.7, we have that
if 7(X) C Y, then ent(7(X)) <ent(Y). O

Theorem 4.9 Let T' be a group of non—exponential growth, let X be a semi—
strongly irreducible shift of finite type and let Y be a semi—strongly irreducible
shift. If 7: X = Y is a local function and ent(X) = ent(Y), then T pre—injective
implies T surjective.

Proor If 7 is pre-injective we have, by Proposition 4.4, that ent(7(X)) =

ent(X). Then ent(7(X)) = ent(Y) so that, by Proposition 4.8, 7 is surjective.
O

Hence we may conclude with the following (partial) generalization of the
result of [Fio2] about strongly irreducible shifts of finite type.

Corollary 4.10 Let T be a group of non—exponential growth. A semi—strongly
irreducible subshift of finite type of AU has the Myhill-property.
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