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Abstract

If Z is the group of integers, A a finite alphabet and A
Z the set of

all functions c : Z → A, the equivalence between pre–injectivity and
surjectivity of a local function holds for irreducible shifts of finite type
of A

Z (see [Fio1]). In [Fio2] we give a definition of strong irreducibility

that, together with the finite type condition, allows us to prove the above
equivalence for the strongly irreducible shifts of finite type in A

Γ, if Γ is
an amenable group. In this paper, we define the semi–strong irreducibility

for a shift; this property allows us to prove the implication “pre–injective
⇒ surjective” for a local function on a semi–strongly irreducible shift of
finite type of A

Γ, if Γ has non–exponential growth. We also see that in
the one–dimensional case irreducibility and semi–strong irreducibility are
equivalent. As a by–product, we generalize a well–known result about
the entropy of a shift: the entropy of a proper subshift of a semi–strongly

irreducible shift X is strictly smaller than the entropy of X.

Key Words: irreducible shifts, amenable groups, entropy. AMS Classification: 37B10

– 43A07.

1. If Γ is a finitely generated group, one can consider the space AΓ (the
so–called full A–shift) of functions defined on Γ with values in a finite alphabet

A. An element c ∈ AΓ is also called a configuration. This space is naturally
endowed with a compact topology; a subset X of AΓ which is Γ–invariant and
topologically closed is called subshift, shift space or simply shift. In this setting a
local function τ : X → AΓ is a continuous function commuting with the natural
action of Γ on X .

In Section 2 we state a few basic results about the subshifts of AΓ. We give
the fundamental notion of a shift of finite type and that of irreducibility for a
shift, generalizing the corresponding concepts that are well–known in the one–
dimensional case (i.e. the case Γ = Z). In particular, we will see that a shift of
finite type has a useful “overlapping” property; this will be used in Section 3.

∗The results of this paper are taken from my PhD thesis written under the supervision of

Prof. Antonio Mach̀ı at the University of Rome “La Sapienza”.
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The notion of entropy as defined by Gromov in [G] is given. We prove that
if the group has non–exponential growth, the entropy of a subshift of AΓ can be
calculated relative to a suitable sequence of disks in Γ with increasing radius.

Finally, the notion of pre–injective function is given; it is a sort of injectivity
of the function on the set of the “finite” configurations. We consider under
which hypotheses pre–injectivity of a local function defined on a shift implies
surjectivity.

From a result of Gromov [G] under much more general hypotheses it follows
(see [Fio2]) that the equivalence between pre–injectivity and surjectivity holds
for local function on shifts of bounded propagation contained in AΓ, if Γ is
amenable. In [Fio2] we generalize this result, proving that it holds for strongly

irreducible shifts of finite type of AΓ.
In the one–dimensional case the above equivalence holds for irreducible shifts

of finite type of AZ. Moreover, using this result it is proved in [Fio1] that the
implication “pre–injective ⇒ surjective” holds when the local function is defined
on an irreducible sofic shift of AZ (that is, the set of the bi–infinite words which
are labels of all bi–infinite paths in a finite graph). On the other hand, in [Fio1]
we give a counterexample of an irreducible sofic shift X ⊆ AZ but not of finite
type for which the inverse implication does not hold.

The difference between irreducibility and strong irreducibility lies in the way
in which two different “finite” configurations of the shift may appear simulta-
neously in a global configuration. These two irreducibility conditions are not
equivalent, not even in the one–dimensional case. Hence our general result
about strongly irreducible shifts of finite type is strictly weaker than the one–
dimensional one 1. In the attempt of using weaker hypotheses to prove our
result, in Section 3 a new notion of irreducibility, the semi–strong irreducibility,
is given. This notion is motivated by the fact that a sofic subshift of AZ is irre-
ducible if and only if is semi–strongly irreducible. Furthermore, in Section 3 we
prove that the implication “pre–injective ⇒ surjective” holds for semi–strongly
irreducible subshifts of finite type of AΓ, if Γ has non–exponential growth. This
result is a consequence of Corollary 3.9 which generalizes a well–known result
about shifts entropy; indeed we prove that, under the above conditions, the en-

tropy of a proper subshift of a semi–strongly irreducible shift X ⊆ AΓ is strictly

weaker than the entropy of X .

2. Let Γ be a finitely generated group; we refer to [CeMaSca] and [MaMi]
for the notation and for the notions and properties of Cayley graphs and growth
functions. We denote by Dn the ball of Γ centered at 1 and with radius n.

The group Γ acts on AΓ on the right as follows:

(cγ)|α := c|γα

1Indeed it can be easily seen by trivial counterexamples that none of the two implications

“pre–injective ⇆ surjective” holds in general for local functions defined on irreducible shifts

of finite type of AZ
2

.
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for c ∈ AΓ and γ, α ∈ Γ (where c|α is the value of c at α).
With this, a shift is a subset X of AΓ which is topologically closed and

Γ–invariant (i.e. XΓ = X); as we shall see later, this topological definition is
equivalent (in the Euclidean case) to the classical combinatorial one.

For X ⊆ AΓ and E ⊆ Γ, we set

XE := {c|E | c ∈ X};

a pattern of X is an element of XE where E is a non–empty finite subset of Γ.
The set E is the support of the pattern; a block of X is a pattern of X with
support a disk. The language of X is the set L(X) of all the blocks of X . If X
is a subshift of AZ, a configuration is a bi–infinite word and a block of X is a
finite word appearing in some configuration of X .

Let X be a shift; a function τ : X → AΓ is M–local if there exists δ : XDM
→

A such that for every c ∈ X and γ ∈ Γ

(τ (c))|γ = δ((cγ)|DM
) = δ(c|γα1

, c|γα2
, . . . , c|γαm

),

where DM = {α1, . . . , αm}; a function is local if it is M–local for some M . Let
τ : X → AΓ be local; if c is a configuration of X and E is a subset of Γ, τ (c)|E
only depends on c|E+M . Thus we have a family of functions (τE+M : XE+M →
τ(X)E)E⊆Γ, this notation will be useful in the sequel.

There is a characterization of local functions which in the one–dimensional
case is known as the Curtis–Lyndon–Hedlund theorem; a shift being compact,
it holds for a general local function. It states that a function τ : X → AΓ is

local if and only if it is continuous and commutes with the Γ–action (i.e. for
each c ∈ X and each γ ∈ Γ, one has τ (cγ) = τ(c)γ). From this result, it is clear
that the composition of two local functions is still local, as it can also be easily
seen directly from the definition.

Observe that if X is a subshift of AΓ and τ : X → AΓ is a local function, then,
by the (generalized) Curtis–Lyndon–Hedlund theorem, the image Y := τ(X) is
still a subshift of AΓ. Indeed Y is closed (or, equivalently, compact) and Γ–
invariant. Moreover, if τ is injective then it is a homeomorphism (and commutes
with the shift). In this case X and Y are conjugate.

As mentioned above, it is easy to prove that the topological definition of a
shift space is equivalent to the following combinatorial one involving the avoid-
ance of certain forbidden blocks; this fact is well–known in the Euclidean case
(see [LinMar, Theorem 6.1.21]): a subset X ⊆ AΓ is a shift if and only if there

exists a subset F ⊆ ⋃

n∈N
ADn such that X = XF , where

XF := {c ∈ AΓ | cα
|Dn

/∈ F for every α ∈ Γ, n ∈ N}.

We now give the fundamental notion of a shift of finite type. The basic
definition is in terms of forbidden blocks: a shift is of finite type if it admits
a finite set of forbidden blocks. In a sense we may say that a shift is of finite
type if we can decide whether or not a configuration belongs to the shift only
by checking its blocks of a fixed size only depending on the shift.
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Since a finite set F of forbidden blocks of X has a maximal support, we can
always assume that in a shift of finite type each block of F has the disk DM as
support (indeed a block that contains a forbidden block is also forbidden). In
this case the shift X is called M–step and the number M is called the memory

of X. If X is a subshift of AZ, we define the memory of X as the number M ,
where M + 1 is the maximal length of a forbidden word.

For the shifts of finite type in AZ we have (see [LinMar, Theorem 2.1.8]),
the following useful property: a shift X ⊆ AZ is an M–step shift of finite type

if and only if whenever uv, vw ∈ L(X) and |v| ≥ M , then uvw ∈ L(X).
It is easy to prove that this “overlapping” property holds more generally for

subshifts of finite type of AΓ; this has the following useful consequence.

Proposition 2.1 Let X be an M–step shift of finite type and let E be a finite

subset of Γ; if p1, p2 ∈ XE+2M are two patterns that agree on ∂+
2ME, then

there exist two extensions c1, c2 ∈ X of p1 and p2, respectively, that agree on

∁E = Γ\E.

Where, given a subset E ⊆ Γ and for each n ∈ N we denote by

E+n :=
⋃

α∈E

D(α, n), E−n := {α ∈ E | D(α, n) ⊆ E} and ∂nE := E+n\E−n

the n–closure of E, the n–interior of E and the n–boundary of E, respectively;
by

∂+
n E := E+n\E and ∂−

n E := E\E−n

the n–external boundary of E and the n–internal boundary of E, respectively.
For all these sets, we will omit the index n if n = 1.

The natural generalization for a generic shift of the notion of irreducibility
which is well–known in the one–dimensional case is the following: a shift X ⊆ AΓ

is irreducible if for each pair of patterns p1 ∈ XE and p2 ∈ XF , there exists an
element γ ∈ Γ such that E ∩ γF = ∅ and a configuration c ∈ X such that
c|E = p1 and c|γF = p2. In other words, a shift is irreducible if whenever we
have p1, p2 ∈ L(X), there exists a configuration c ∈ X in which these two blocks
appear simultaneously on disjoint supports.

Next we give the definition of entropy for a shift. This definition involves
the existence of a suitable sequence of sets that for groups of non–exponential
growth (that is in the case in which the cardinality of the ball Dn grows slower
then any exponential function), can be taken as balls centered at 1 and with
increasing radius.

Definition 2.2 Let (En)n≥1 be a sequence of subsets of Γ such that
⋃

n∈N
En =

Γ and such that the Følner condition holds:

lim
n→∞

|∂En|
|En|

= 0; (1)
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if X ⊆ AΓ is a shift, the entropy of X respect to (En) is given by

ent(X) := lim sup
n→∞

log |XEn
|

|En|
.

Condition (1) is necessary in order to prove that the entropy is invariant under

conjugacy; other aspects of its importance will be seen in Section 3. A sequence
as in (1) is called amenable or Følner’s sequence.

If X is a subshift of AZ, we choose as En the interval [1, n] (or equivalently,
in order to have

⋃

n∈N
En = Γ, the interval [−n, n]), so that XEn

is the set of
words of X of length n (one can prove that in this one–dimensional case, the

above maximum limit is a limit and coincides with infm≥1
log |XEm |

m
; see [Fio1]).

In general, if Γ is a group of non–exponential growth, we choose as En a suit-
able disk centered at 1 ∈ Γ; indeed, setting ah = |Dh|, we have (by definition
of non–exponential growth) limh→∞

h
√

ah = 1, and hence lim infh→∞
ah+1

ah
=

1; it follows that for a suitable sequence (ahk
)k we have limk→∞

ahk+1

ahk

=

1. Hence lim infk→∞
ahk+1

ahk−1
= 1 and for a suitable sequence (ahkn

)n we have

limn→∞
ahkn

+1

ahkn
−1

= 1, i.e. we find a sequence of disks En := Dhkn
such that

limn→∞
|E+

n |

|E−
n |

= 1. Hence |∂En|
|En| =

|E+
n \E−

n |
|En| ≤ |E+

n \E−
n |

|E−
n |

=
|E+

n |

|E−
n |

− 1 −→n→∞ 0.

A function τ : X ⊆ AΓ → AΓ is pre–injective if whenever c1, c2 ∈ X and
c1 6= c2 only on a finite non–empty subset of Γ, then τ (c1) 6= τ (c2). Recall that
a group Γ is amenable if it admits a Γ–invariant probability measure (with this
hypothesis on the group, it is proved in [CeMaSca] that a transition function

on the full shift AΓ is pre–injective if and only of is surjective).

3. As proved in [Fio1], the equivalence “pre–injective ⇔ surjective” holds
for transition functions defined on an irreducible subshifts of finite type of AZ.
If Γ is amenable, it holds for strongly irreducible subshifts of finite type of AΓ

(see [Fio2]). In this section we define another form of irreducibility: the semi–

strong irreducibility. For sofic shifts in the one–dimensional case this notion
is equivalent to irreducibility; if Γ has non–exponential growth it allows us to
prove the implication “pre–injective ⇒ surjective” for local functions defined on
subshifts of finite type.

Definition 3.3 A shift X is called (M, k)–irreducible (where M, k are natural
numbers such that M ≥ k) if for each pair of finite sets E, αD ⊆ Γ (the second
one is a ball centered at α) such that dist(E, αD) > M and for each pair of
patterns p1 ∈ XE and p2 ∈ XαD, there exists a configuration c ∈ X such that
c = p1 in E and c = p2 in αεD (that is the disk centered at αε), where ε ∈ Γ
is such that ‖ε‖ ≤ k. The shift X is called semi–strongly irreducible if it is
(M, k)–irreducible for some M, k ∈ N.
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A shift X is M–irreducible if for every pair of finite sets E, F ⊆ Γ such that
dist(E, F ) > M and every pair of patterns p1 ∈ XE and p2 ∈ XF , there exists
a configuration c ∈ X such that c = p1 in E and c = p2 in F . X is strongly

irreducible if it is M–irreducible for some M ∈ N. Hence the difference between
semi–strong irreducibility and strong irreducibility lies in the fact that in the
former the support of the second pattern must be a ball and the configuration c
merging the two patterns moves this support “slightly”. Notice that this motion
is a translation and hence it makes sense to say that the configuration c restricted
to αεD coincides with p2 ∈ XαD. Moreover, under the previous hypotheses,
the translated disk αεD is still contained in (αD)+M ; indeed if D = Dr and
γ ∈ αεDr, then dist(γ, α) ≤ dist(γ, αε) + dist(αε, α) ≤ r + ‖ε−1‖ ≤ r + k. In
particular E ∩ αεD = ∅.

In Definition 3.3 is in fact essential that, given a finite set F ⊆ Γ, there
exists α ∈ Γ\{1} such that the translated set αF is still contained in F+M . If
the group is not abelian, the set αF may be quite far from F . On the other
hand the set Fα is α–close to F , but it is not, in general, obtained from F by
translation 1. This is why we require that the second set in Definition 3.3 be
a ball centered at α; then we consider the new center αε (which is ε–near α).
The ball αεD having the same radius as αD, is obtained by translating αD. As
we have seen, if Γ has non–exponential growth we can fix a suitable sequence
(En)n of balls centered at 1 with property (1) of Section 2. Hence if M is large
enough we have εEn ⊆ E+M

n .

In the special case Γ = Z a shift X ⊆ AZ is (M, k)–irreducible if for each
n ≥ M and each pair of words u, v ∈ L(X), there exists a word w ∈ L(X) with
n − k ≤ |w| ≤ n + k, such that uwv ∈ L(X).

In the one–dimensional case irreducibility and semi–strong irreducibility are
equivalent, as follows from the well–known Pumping Lemma.

Lemma 3.4 (Pumping Lemma) Let L be a regular language. There exists

M ≥ 1 such that if uwv ∈ L and |w| ≥ M , there exists a decomposition

w = xyz

with 0 < |y| ≤ M so that for each n ∈ N we have uxynzv ∈ L.

Moreover, one can take as M the number of vertices of a graph accepting L.

Corollary 3.5 If X ⊆ AZ is a sofic shift, then

X irreducible ⇐⇒ X semi–strongly irreducible.

Proof If X is irreducible, we claim that X is (M, M)–strongly irreducible,
where M is given by the Pumping Lemma. If n ≥ M and u, v ∈ L(X), there
exists w ∈ L(X) such that uwv ∈ L(X). We distinguish two cases.

1Consider, for example, the free group F2 generated by a and b. If F = {an, bn} with

n > M , it is easily seen that for no α 6= 1 we have αF = {αan, αbn} ⊆ F+M .
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If |w| > n + M , then w = x1y1z1 with 0 < |y1| ≤ M and if w1 := x1z1,
then uw1v ∈ L(X) and |w| − M ≤ |w1| ≤ |w| − 1. If |w1| ≤ n + M , we
have |w1| ≥ |w| − M > n > n − M . If |w1| > n + M , we repeat the above
construction to obtain, for some i ≥ 1, an element wi such that uwiv ∈ L(X)
and n − M < |wi| ≤ n + M .

The second case, when |w| < n − M , is analogous. 2

We now prove our main results. The following proposition holds in the case
of strongly irreducible shifts of finite type in AΓ, where the group Γ is amenable
(see [Fio2]).

Proposition 3.6 Let Γ be a group of non–exponential growth. Let X be a semi–

strongly irreducible shift of finite type and let τ : X → AΓ be a local and pre–

injective function. Then ent(τ (X)) = ent(X).

Proof Suppose that the memory of X is M , that X is (M, k)–irreducible
and that τ is M–local. Set Y := τ(X) and fix an amenable sequence of disks
(En)n; we have

|Y
E

+2M
n

| ≤ |YEn
||A||∂+

2M
En|.

Thus
log |Y

E
+2M
n

|
|En|

≤ log |YEn
|

|En|
+

|∂+
2MEn| log |A|

|En|
.

Being limn→∞
|∂+

2M
En|

|En| = 0, we have lim supn→∞

log |Y
E

+2M
n

|

|En| ≤ ent(Y ). Let l =

l(k) be the number of ε’s such that ‖ε‖ ≤ k and suppose that ent(Y ) < ent(X);
then

lim sup
n→∞

log |Y
E

+2M
n

|
|En|

< lim sup
n→∞

log |XEn
|

|En|
= lim sup

n→∞

log(
|XEn |

l
)

|En|
.

Then there exists n ∈ N such that
log |Y

E
+2M
n

|

|En| <
log(

|XEn
|

l
)

|En| that is |YE
+2M
n

| <
|XEn |

l
. Fix v ∈ X

∂
+

2M
E

+M
n

; since dist(∂+
2ME+M

n , En) = M + 1 > M for each

u ∈ XEn
there exists ε ∈ Dk and a pattern p ∈ X

E
+3M
n

that agrees with u on

εEn and with v on ∂+
2ME+M

n . Thus

|{p ∈ X
E

+3M
n

| p|∂+

2M
E

+M
n

= v}| ≥ |XEn
|

l
> |Y

E
+2M
n

|.

Since τE
+3M
n

: XE
+3M
n

→ YE
+2M
n

is surjective, there exist two patterns p1, p2 ∈
X

E
+3M
n

such that p1 6= p2 but p1 = v = p2 on ∂+
2ME+M

n and τ
E

+3M
n

(p1) =
τ

E
+3M
n

(p2). By Proposition 2.1, there exist two configurations c1, c2 ∈ X which

extend p1 and p2 and which agree outside E+M
n . It is easy to prove that τ (c1) =

τ(c2), and hence that τ is not pre–injective. 2

Recall (see [Fio2, Lemma 4.3]), that if Γ is a finitely generated group, there
exists a sequence of disks (Fj)j∈N obtained by translating a disk D and at
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distance > M such that
⋃

j∈N
F+R

j = Γ for a suitable R > 0. We call the above
sequence a (D, M, R)–net. The following lemma is an essential result used in
the proof of the equivalence between pre–injectivity and surjectivity in the case
of strongly irreducible shifts of finite type and of amenable groups (see [Fio2,
Lemma 4.4]).

Lemma 3.7 Let Γ be an amenable group and let (En)n be a fixed amenable

sequence of Γ. Let (Fj)j∈N be a (Dr, 2M, R)–net, let X be an M–irreducible

shift and let Y be a subset of X such that YFj
⊂ XFj

for every j ∈ N. Then

ent(Y ) < ent(X).

For semi–strongly irreducible shifts, Lemma 3.7 does not necessarily hold.
Consider, for example, the shift X = {. . . 010101 . . . , . . . 101010 . . .} ⊆ AZ. It
is of finite type and (2, 2)–irreducible, but ent(X) = 0.

The following lemma is similar to Lemma 3.7 but as one can see the hy-
potheses are quite stronger.

Lemma 3.8 Let Γ be a group of non–exponential growth and let (En)n be a fixed

amenable sequence of disks . Let (Fj)j∈N = (D(βj , r))j∈N be a (Dr, 2M, R)–
net, let X be an (M, k)–irreducible shift and let Y be a subset of X such that for

each j ∈ N, there exists a pattern pj ∈ XFj
for which pj /∈ YD(βjε,r) whenever

ε ∈ Dk. Then ent(Y ) < ent(X).

Proof Let N(n) be the number of Fj ’s such that F+M
j ⊆ En and denote by

Fj1 , . . . , FjN
these disks. Set ξ := |XD+M | and denote by Pjm

⊆ XEn
the set of

the blocks p of XEn
such that p|D(βjm

ε,r) = pjm
for some ε ∈ Dk; we prove that

|XEn
\

N
⋃

i=1

Pji
| ≤ (1 − ξ−1)N |XEn

| (1)

by induction on m ∈ {1, . . . , N}. We have

|XEn
| ≤ |X

F
+M
j1

||X
En\F

+M
j1

|

and hence
|XEn

| ≤ ξ|X
En\F

+M
j1

|.

Since X is (M, k)–irreducible and since dist(Fj1 , En\F+M
j1

) > M , given a pat-
tern p ∈ X

En\F
+M
j1

there exists a pattern p̄ defined on all En that coincides with

p on En\F+M
j1

and with pj1 on some D(βj1
ε, r); then

|X
En\F

+M
j1

| ≤ |Pj1 |.

Hence
1

ξ
|XEn

| ≤ |Pj1 |
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so that

|XEn
\Pj1 | ≤ |XEn

| − 1

ξ
|XEn

| = (1 − 1

ξ
)|XEn

|.

Suppose that (1) holds for m − 1; we have

|XEn
\

m−1
⋃

i=1

Pji
| ≤ ξ|{p ∈ XEn\F

+M
jm

| p|D(βji
ε,r) 6= pji

for each i = 1, . . . , m − 1 and each ε|}.
Moreover, since X is (M, k)–irreducible,

|{p ∈ X
En\F

+M
jm

| p|D(βji
ε,r) 6= pji

for each i = 1, . . . , m − 1 and each ε}| ≤

≤ |{p ∈ XEn
\

m−1
⋃

i=1

Pji
| p|D(βjm

ε,r) = pjm
for some ε}|.

Hence

1

ξ
|XEn

\
m−1
⋃

i=1

Pji
| ≤ |{p ∈ XEn

\
m−1
⋃

i=1

Pji
| p|D(βjm

ε,r) = pjm
for some ε}|

and then

|XEn
\

m
⋃

i=1

Pji
| = |

(

XEn
\

m−1
⋃

i=1

Pji

)

\ Pjm
| ≤

≤ |
(

XEn
\

m−1
⋃

i=1

Pji

)

\ {p ∈ XEn
\

m−1
⋃

i=1

Pji
| p|D(βjm

ε,r) = pjm
for some ε}| ≤

≤ |XEn
\

m−1
⋃

i=1

Pji
| − 1

ξ
|XEn

\
m−1
⋃

i=1

Pji
| ≤ (1 − 1

ξ
)(1 − ξ−1)m−1|XEn

|.

Hence (1) holds, and since |YEn
| ≤ |XEn

\⋃N
m=1 Pjm

|, we have

log |YEn
|

|En|
≤ N(n) log(1 − ξ−1)

|En|
+

log |XEn
|

|En|
. (2)

Observe that

En ⊆
N
⋃

i=1

F+R
ji

∪ (En\E−(R+2r+M)
n )

and hence we have

|En| ≤ N(n)|D+R| + |En\E−(R+2r+M)
n |

so that

1 ≤ N(n)

|En|
|D+R| + |∂−

R+2r+MEn|
|En|

;
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taking the minimum limit and being limn→∞
|∂−

R+2r+M
En|

|En| = 0,

ζ := lim inf
n→∞

N(n)

|En|
> 0.

Taking the maximum limit in (2), it follows

ent(Y ) ≤ ζ log(1 − ξ−1) + ent(X) < ent(X). 2

The following statement is an easy consequence of Lemma 3.8 and generalizes
the result in [LinMar, Corollary 4.4.9].

Corollary 3.9 Let Γ be a group of non–exponential growth and let X be a semi–

strongly irreducible subshift of AΓ. If Y is a proper subshift of X then ent(Y ) <
ent(X).

Proof Let X be (M, k)–irreducible. If Y ⊂ X , there exists a configuration
c ∈ X which does not belong to Y and then there exists a disk Dr such that
c|Dr

∈ XDr
\YDr

. Let (Fj)j∈N = (D(βj , r))j∈N be a (Dr, 2M, R)–net; then
c|Dr

/∈ YD(βjε,r) whenever ε ∈ Dk; by Lemma 3.8, ent(Y ) < ent(X). 2

Proposition 3.10 Let Γ be a group of non–exponential growth. Let X be a

shift, let Y be a semi–strongly irreducible shift and let τ : X → Y be a local

function such that ent(τ (X)) = ent(Y ). Then τ is surjective.

Proof Let X and Y be as in the above hypotheses and let τ : X → Y be a
local function. Clearly τ(X) is a subshift of Y . By Corollary 3.9, we have that
if τ (X) ⊂ Y , then ent(τ (X)) < ent(Y ). 2

Theorem 3.11 Let Γ be a group of non–exponential growth, let X be a semi–

strongly irreducible shift of finite type and let Y be a semi–strongly irreducible

shift. If τ : X → Y is a local function and ent(X) = ent(Y ), then τ pre–injective

implies τ surjective.

Proof If τ is pre–injective we have, by Proposition 3.6, that ent(τ (X)) =
ent(X). Then ent(τ (X)) = ent(Y ) so that, by Proposition 3.10, τ is surjective.
2

Hence we may conclude with the following (partial) generalization of the
result of [Fio2] about strongly irreducible shifts of finite type.

Corollary 3.12 Let Γ be a group of non–exponential growth. Let X be a semi–

strongly irreducible subshift of finite type of AΓand let τ : X → X be a transition

function. Then τ pre–injective implies τ surjective.
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