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Abstract

If A is a finite alphabet and T is a finitely generated amenable group,
Ceccherini—Silberstein, Machi and Scarabotti have proved that a local
transition function defined on the full shift A" is surjective if and only if it
is pre—injective; this equivalence is the so—called Garden of Eden theorem.
On the other hand, when I is the group of the integers, the theorem holds
in the case of irreducible shifts of finite type as a consequence of a theorem
of Lind and Marcus but it no longer holds in the two—dimensional case.

Recently, Gromov has proved a GOE-like theorem in the much more
general framework of the spaces of bounded propagation. In this paper
we apply Gromov’s theorem to our class of spaces proving that all the
properties required in the hypotheses of this theorem are satisfied.

We give a definition of strong irreducibility that, together with the fi-
nite type condition, allows us to prove the GOE theorem for the strongly
irreducible shifts of finite type in A" (provided that I' is amenable). Fi-
nally, we prove that the bounded propagation property for a shift is strictly
stronger than the union of strong irreducibility and finite type condition.

1 Introduction

A cellular automaton (CA) is given by the set AT of all functions defined on (the
Cayley graph of) a finitely generated group I' with values in a finite alphabet A
and by a transition function T : AU — AU which is local (i.e. the value of 7(c),
where ¢ € Al is a configuration, at a point v € ' only depends on the values
of ¢ at the points of a fixed neighborhood of v). The Garden of Eden (GOE)
theorem, as proved in [CeMaSca] (see also [MaMi)), states that if T is a finitely
generated amenable group, then the local transition function of a CA has a
GOE pattern (i.e. a configuration with finite support that has no pre-image
under 7), if and only if it has two mutually erasable patterns (that is, a sort of
non-injectivity of the transition function on the “finite” configurations). This
theorem is a generalization of the theorem that Moore [Moo] and Myhill [My]
proved in the case T’ = Z2.



Instead of the non-existence of mutually erasable patterns, we deal with
the notion of pre—injectivity (a function 7 : X C A — Al is pre-injective if
whenever two configurations ¢, ¢ € X differ only on a finite non—empty subset of
T, then 7(c) # 7(€)); this notion has been introduced by Gromov in [G]. In fact,
these two properties are equivalent for local functions defined on the full shift,
but in the case of proper subshifts the former may be meaningless. On the other
hand, the non—existence of GOE patterns is equivalent to the non—existence of
GOE configurations, that is to the surjectivity of the transition function. Hence,
in this language, the GOE theorem states that 7 is surjective if and only if it
is pre—injective. We call Moore’s property the implication surjective = pre—
injective and Myhill’s property the inverse one. We call Moore—Myhill property
(MM-property) the union of these two properties and this last is an invariant
of the shift.

As is well known, A" is a compact metric space, and the local transition
functions are those that are both continuous and commute with the natural
action of I on AT. We investigate the extent to which the MM-property holds
for the closed and T'-invariant subsets of AT, the so—called shifts. As proved
in [Fio] it is possible to prove, as a consequence of a theorem due to Lind and
Marcus [LinMar, Theorem 8.1.16], that the irreducible shifts of finite type in
AZ have the MM-property.

Recently, Gromov has proved a GOE-like theorem in a setting of graphs
much more general than Cayley graphs, for alphabets not necessarily finite and
for subset of the “universe” not necessarily invariant under translation. Because
of the weakness of these hypotheses, in his theorem are needed properties that
are stronger than ours, for example the bounded propagation of the spaces. In
Section 3 we apply Gromov’s theorem to our cellular automata proving that all
the properties required in the hypotheses of this theorem are satisfied.

In Section 4, we generalize the previous result showing that the MM—property
holds for strongly irreducible shifts of finite type of Al (and we also show that
strong irreducibility together with the finite type condition is strictly weaker
that the bounded propagation property).

In this paper the notation A C B means that the set A is contained in the
set B and A C B means that A C B and A # B.

2 Shift Spaces and Cellular Automata

In this section we recall some definitions and we state some preliminary results
about our class of CA.

If T is a finitely generated group and X is a fixed finite set of generators for
I, then each v € I' can be written as
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where the z;,’s are generators and J; € Z. The length of v (with respect to X')



is defined as the natural number
|7l := min{|d1| + |d2| + -+ - + [dn| | v is written as in (1)}

so that T' is naturally endowed with a metric space structure, with the distance
given by
distx (a, f) := [la™" Bl|x (2)
and
Dy =={yeT|lhllx <n}

is the disk of radius n centered at 1. Notice that D is the set X U X' U {1}.
The asymptotic properties of the group being independent on the choice of the
set of generators X, from now on we fix a set X which is also symmetric (i.e.
X' = X) and we omit the index X in all the above definitions.

For each v € T, the set D,, provides, by left translation, a neighborhood of -,
that is the set vD,, = D(y,n), where D(7y,n) is the disk of radius n centered at
7. Indeed, if @ € vD,, then a = v with ||3|| < n. Hence dist(c,7) = |la~y|| =
1837 < n. Conversely, if & € D(v,n) then ||[y~'a|| < n (that is v~ 'a € D,,),
and a = v v la.

Given a subset £ C T' and for each n € N we denote by

Et":= | ) D(a,n), E™":={a € E|D(a,n) C E} and 9,F := EY"\E™"
acE

the n—closure of E, the n—interior of E and the n—boundary of E, respectively;
by
OFE:=E™™\E and 8, E := E\E™"

the n—external boundary of E and the n—internal boundary of E, respectively.
For all these sets, we will omit the index n if n = 1.

The Cayley graph of T, is the graph in which T is the set of vertices and
there is an edge from v to 7 if there exists a generator x € X’ such that ¥ = .
Obviously this graph depends on the presentation of I'. For example, we may
look at the classical cellular decomposition of Euclidean space R" as the Cayley
graph of the group Z" with the presentation (a1,...,an | a;a; = aja;).

If G = (V,€) is a graph with set of vertices V and set of edges £, the graph
distance (or geodetic distance) between two vertices vi,vs € V is the minimal
length of a path from vy to ve. Hence the distance defined in (2) coincides with
the graph distance on the Cayley graph of I'.

Let A be a finite alphabet; in the classical theory of cellular automata, the
“universe” is the Cayley graph of the free abelian group Z" and a configuration
is an element of A%", that is a function ¢ : Z"™ — A assigning to each point
of the graph a letter of A. We generalize this notion taking as universe a
Cayley graph of a generic finitely generated group I' and taking suitable subsets
of configurations in A'. On this set we have a natural metric and hence a



topology. This latter is equivalent to the usual product topology, where the
topology in A is the discrete one. An element of A is called a configuration.
If ¢1,co € AT are two configurations, we define the distance

1

diSt(Cl, CQ) = n—-|—]_

where n is the least natural number such that ¢; # ¢ in D,,. If such an n does
not exist, that is if ¢;= c¢9, we set their distance equal to zero.

Observe that the group I' acts on A" on the right as follows:

(C’Y)la = Clya

for each ¢ € A" and each v,a € T (where ¢/, is the value of ¢ at a).

Now we give a topological definition of a shift space (briefly shift); as stated in
Theorem 2.5, this definition is equivalent (in the Euclidean case) to the classical
combinatorial one.

Definition 2.1 A subset X of Al is called a shift if it is topologically closed
and T-invariant (i.e. XT = X).

For every X C A and E C T, we set
XEg = {C|E | CEX};

a pattern of X is an element of Xg where E is a non—empty finite subset of I'.
The set E is called the support of the pattern; a block of X is a pattern of X
with support a disk. The language of X is the set L(X) of all the blocks of X.
If X is a subshift of A%, a configuration is a bi-infinite word and a block of X
is a finite word appearing in some configuration of X.

Hence a pattern with support E is a function p: E — A. If v € T, we have
that the function p : vE — A defined as p,, = pja (for each a € E), is the
pattern obtained copying p on the translated support vE. Moreover, if X is
a shift, we have that p € X,,g if and only if p € Xg. For this reason, in the
sequel we do not make distinction between p and p (when the context makes it
possible). For example, a word a; ...a, is simply a finite sequence of symbols
for which we do not specify (if it is not necessary), if the support is the interval
[1,n] or the interval [—n, —1].

Definition 2.2 Let X be a subshift of A'; a function 7 : X — Al is M-local if
there exists § : Xp,, — A such that for every c€ X and y €T

(T(Dy = 0((¢")1Dar) = 6(Clyans Clrans -+ Cyanm )

where Dy = {oa, ..., 0m}-



In this definition, we have assumed that the alphabet of the shift X is the
same as the alphabet of its image 7(X). In this assumption there is no loss of
generality because if 7 : X C A" — BT, one can always consider X as a shift
over the alphabet AU B.

Definition 2.3 Let I' be a finitely generated group with a fixed symmetric set
of generators X, let A be a finite alphabet with at least two element and let
Dy the disk in T' centered at 1 and with radius M. A cellular automaton is
a triple (X, Dys,7) where X is a subshift of the compact space AT, Dy is the
neighborhood of 1 and 7: X — X is an M-local function.

Let 7 : X — AT be an M-local function; if ¢ is a configuration of X and
E is a subset of ', 7(c)z only depends on c¢|g+m. Thus we have a family of
functions (TE+M : .XE+M — T(X)E)Egp.

There is a characterization of local functions that, in the one-dimensional
case, is known as the Curtis—Lyndon—-Hedlund theorem. A shift being compact,
it holds for a general local function and states that a function 7 : X — AL is
local if and only if it is continuous and commutes with the T'—action (i.e. for
each ¢ € X and each v € T, one has 7(¢") = 7(¢)"). From this result, it is clear
that the composition of two local functions is still local. In any case, this can be
easily seen by a direct proof that follows Definition 2.2.

Now, fix v € T and consider the function X — AL that associates with
each ¢ € X its translated configuration ¢”. In general, this function does not
commute with the I'-action (and therefore it is not local). Indeed, if T' is not
abelian and ya # avy, then (¢7)® # (¢*)7. However, this function is continuous.
In order to see this, if n > 0, fix a number m > 0 such that vD,, C D,,; if
dist(c,¢) < #H’ then ¢ and ¢ agree on D,,, and hence on vD,,. If & € D,,, we
have ¢/, = €y and then ¢7, = ¢7|, that is ¢” and ¢” agree on D,, so that

. 1
dist(c”,¢7) < 735-

Observe that if X is a subshift of AT and 7 : X — AT is alocal function, then,
by the (generalized) Curtis-Lyndon—Hedlund theorem, the image ¥ := 7(X) is
still a subshift of A'. Indeed Y is closed (or, equivalently, compact) and I'-

invariant:
VI = (r(X) =71(X") =7(X) =Y.

Moreover, if 7 is injective then 7 : X — Y is a homeomorphism; if ¢ € Y then
¢ = 7(¢) for a unique ¢ € X and we have

P ) = 7 (@) = 7 (@) = = ()

that is, 77! commutes with the I'-action. By the Curtis-Lyndon-Hedlund
theorem, 77! is local. Hence the well-known theorem (see [R]), stating that the
inverse of an invertible Euclidean cellular automaton is a cellular automaton,
holds also in this more general setting. In the one-dimensional case, Lind and
Marcus [LinMar, Theorem 1.5.14] give a direct proof of this fact.



This result leads us to give the following definition.

Definition 2.4 Two subshifts X,Y C Al are conjugate if there exists a local
bijective function between them (namely a conjugacy). The invariants are the
properties of a shift invariant under conjugacy.

It is easy to prove that the topological definition of a shift space is equivalent
to the following combinatorial one involving the avoidance of certain forbidden
blocks, this fact is well-known in the Euclidean case.

Theorem 2.5 A subset X C Al is a shift if and only if there exists a subset
F CUpen AP such that X = X5, where

Xr:={ce A" | *|p, ¢ F for every a € T',n € N}.
In this case, F is a set of forbidden blocks of X.

Now we give the first, fundamental notion of irreducibility for a one—dimen-
sional shift and we see how to generalize this notion to a generic shift.

Definition 2.6 A shift X C AZ is irreducible if for each pair of words u,v €
L(X), there exists a word w € L(X) such that the concatenated word wwv €
L(X).

The natural generalization of this property to any group I is the following.

Definition 2.7 A shift X C AT is irreducible if for each pair of patterns p; €
Xg and ps € X, there exists an element v € T such that EN~+F = () and a
configuration ¢ € X such that ¢p = p1 and ¢/, r = pa.

In other words, a shift is irreducible if whenever we have py, ps € L(X), there
exists a configuration ¢ € X in which these two blocks appear simultaneously
on disjoint supports. This definition could seem weaker than Definition 2.6, in
fact in this latter we establish that each word v € L(X) must always appear
in a configuration on the left of each other word of the language. In order to
prove that the two definitions agree, suppose that X C AZ is an irreducible
shift according with Definition 2.7. If u,v are words in L(X), there exists a
configuration ¢ € X such that ¢, g = u and ¢jr = v where E and F are finite and
disjoint intervals. If max F < min F' then there exists a word w such that uwv €
L(X) (where w = ¢y and I is the interval [max E 4 1, min F' —1]). If, otherwise,
max F' < min E there exists a word w such that vwu € L(X); consider the word
vwu two times, there exists another word z such that vwu z vwu € L(X) and
hence uzv € L(X).

Now we give the fundamental notion of shift of finite type. The basic defini-
tion is in terms of forbidden blocks; in a sense we may say that a shift is of finite
type if we can decide whether or not a configuration belongs to the shift only by
checking its blocks of a fixed (and only depending on the shift) size. This fact
implies an useful characterization of the one—-dimensional shifts of finite type, a
sort of “overlapping” property for the words of the language. As stated below,
this overlapping property still holds for a generic shift of finite type.



Definition 2.8 A shift is of finite type if it admits a finite set of forbidden
blocks.

If X is a shift of finite type, since a finite set F of forbidden blocks of X has a
maximal support, we can always suppose that each block of F has the disk Dy
as support (indeed each block that contains a forbidden block is forbidden). In
this case the shift X is called M—step and the number M is called the memory
of X. If X is a subshift of A%, we define the memory of X as the number M,
where M + 1 is the maximal length of a forbidden word.

For the shifts of finite type in A%, we have the following useful property.

Proposition 2.9 [LinMar, Theorem 2.1.8] A shift X C AZ is an M —step shift
of finite type if and only if whenever uwv,vw € L(X) and |v| > M, then uvvw €
L(X).

It is easy to prove that this “overlapping” property holds more generally for
subshifts of finite type of AT, as stated in the following proposition.

Proposition 2.10 Let X be an M-step shift of finite type and let E be a sub-
set of I'. If c1,co € X are two configurations that agree on 6;ME, then the
configuration ¢ € AU that agrees with ¢, on E and with c2 on CE is still in X.

Corollary 2.11 Let X be an M-step shift of finite type and let E be a finite
subset of T'; if p1,ps € Xg+2m are two patterns that agree on 8;'ME, than there
exist two extensions ci,co € X of p1 and py, respectively, that agree on CE.

Now we give the definition of entropy for a generic shift. This definition
involves the existence of a suitable sequence of sets that, as one can see, in the
case of non—exponential growth of the group can be taken as balls centered at
1 and with increasing radius.

Let (E,)n>1 be a sequence of subsets of T' such that |J,, . B =T and

1mm

n—o00 |En|

=0; 3)
if X C AT is a shift, the entropy of X respect to (En)n>1 is defined as

log | X
ent(X) := limsup M
Condition (3) is necessary to prove next theorem and hence that the entropy is

invariant under conjugacy; other aspects of its importance will be clarified in
Section 4.

Theorem 2.12 Let X be a shift and 7 : X — AU a local function. Then
ent(7(X)) < ent(X) (that is, the entropy is invariant under conjugacy).



ProOF Let 7 be M-local and let Y := 7(X); we have that the function
Tty : Xp+n — Y, is surjective and hence

+
Ve, | < | Xgim| < |XE"||X8$,E,,| < |Xg, ||A%En|

From the previous inequalities we have

log Vg, | _ log|Xg 031 Enllog | 4]

n |

and hence, taking the maximum limit, ent(Y) < ent(X). O

Now we give the definition of a pre—injective function. This notion is equiv-
alent to the notion of non—existence of mutually erasable patterns used in the
original works of Moore [Moo] and Myhill [My]. Indeed they prove that a tran-
sition function 7 of a Euclidean cellular automaton on a full shift admits two
mutually erasable patterns if and only if it admits a GOFE pattern, that is a
pattern without pre—image. Recall that two different patterns with the same
support are called 7—mutually erasable if each pair of configurations extending
them and coinciding out of the support, have the same image under 7.

In order to consider GOE-like theorems not in the whole of A" but in a sub-
shift X C A", notice first that two patterns of X are not necessarily extendible
by the same configuration of X. Therefore it could happen that two patterns
with support F' for which there does not exist a common extension ¢gp, are
T-mutually erasable although the function 7 is bijective. The notion that seems
to be a good generalization of the non—existence of mutually erasable patterns,
is that of pre—injectivity; it can be seen that if X = A" then the non-existence
of T-mutually erasable patterns is equivalent to the pre—injectivity of 7.

Definition 2.13 A function 7 : X C AT — Al is called pre-injective if when-
ever ¢1,c2 € X and ¢; # ¢ only on a finite non—empty subset of I', then

7'((31) 75 T(CQ).

One can prove (see [MaMi, Theorem 5]) that a transition function on AT is
surjective if and only if there are no GOE patterns. It is easy to prove that this
property holds also for the local functions between shifts. Hence we can state
the GOE theorem as follows.

Theorem 2.14 If 7 : AZ 5 AZ s q transition function, then T is pre—
injective if and only if it is surjective.

Definition 2.15 A shift X C A! has the Moore—Muyhill property (briefly MM-
property), if for every cellular automaton (X, D, 7) the transition function 7
is pre—injective if and only if it is surjective. The Moore—property is surjective
= pre—injective and the Myhill-property is pre—injective = surjective.

In the sequel we will distinguish between these properties and the GOE
theorems for a local function. Indeed the former are properties of a single shift



but, on the other hand, we will speak of GOE theorem whenever we have a
GOE-like theorem for a local function between two possibly different shifts.

As can be easily seen, the composition of two local pre—injective function is
still a (local) pre-injective function. Hence we have that the MM-property is
invariant under conjugacy.

A group T is called amenable if it admits a I'-invariant probability measure;
using the following characterization of it due to Fglner (see [F], [Gr] and [N]),
the GOE theorem holds in the case of local transition functions 7 : AT — AL

Theorem 2.16 (Fglner) A group I' is amenable if and only if for each finite
subset F' C T and each € > 0 there exists a finite subset K C T" such that

|KF\K|
K|

Using this characterization we can prove the existence of a (nested) sequence
(En)n>1 satisfying condition (3). Such a sequence is called amenable (or Fglner
sequence); from now on we fix the amenable sequence (E,),>1 found above

and the entropy of a shift will be defined with respect to (E,)n>1. Notice that

... . . . ot E., . 87, En
condition (3) implies lim,_, o l \1515 i | — 0 and limy, oo | "‘J/‘E | —
n n

Using the existence of an amenable sequence in the amenable group T,
Ceccherini—Silberstein, Machi and Scarabotti have proved, in our language, the
the full shift A' has the MM-property.

3 Gromov’s Theorem

In [G], Gromov has proved a GOE-like theorem in a setting of graphs much
more general than Cayley graphs, for alphabets not necessarily finite and for
subset of the “universe” not necessarily invariant under translation. Because
of the weakness of these hypotheses, in his theorem are needed properties that
are stronger than ours (as we will see in next section), for example the bounded
propagation of the spaces. In this section we apply Gromov’s theorem to our
cellular automata proving that all the properties required in the hypotheses of
this theorem are satisfied.

Definition 3.1 A closed subset X C Al is of bounded propagation < M if for
each pattern p € A with support F one has

P|FAD(a,M) € XFOD(a,M) foreacha € F = pe Xp.

If v € T, the left translation i, : I' — T" defined by i, (o) = ya is an isometry.
Consider a subgroup I' C T and the set Z(T') consisting of all restriction to
each finite subset F' of T' of the left translations by an element of T'; a generic
element of Z(T') is iyjp : F' = 7F. Theset T (T) is, following Gromov’s definition,



a pseudogroup of partial isometries. Now consider a stable (i.e. closed) and T'-
invariant space X C AT if we consider the finite subsets of I' and the elements
of I, a family of functions

Hry : Xr = Xyr = Xi (F)

which commute with the restriction (i.e. (Hr,(cir))ye = HEg(cg)), gives
rise to a set of holonomy maps. In particular, we have a set of holonomy maps
H(T) defining
HF,W(C\F) = C’Y 1|’YF‘

Following Gromov’s definition, the set H(T') is a pseudogroup of holonomies
and if Z(T) is dense (that is, if T has finite index), we have defined a dense
pseudogroup of holonomies.

If Y C AT is another stable and T-invariant space, a function 7 : X —
Y is of bounded propagation < M if it is the limit of a family of functions
7r : Xrp — Yp_-m that commute with the restrictions; then a function of
bounded propagation is such that 7(c)ja = Tp(a,nm) (€ D(a,ar)),, and, in gen-

eral, TF(C|F) = T(C)‘F—M.

|

If 7 is a function of bounded propagation, one can see that the holonomies in

H(T') commute with 7 if 7 commutes with the I'-action and in this case, provided

that Z(T') is dense, we say that the function 7 admits a dense holonomy.

Under these hypotheses and supposing that I' is amenable, we have the
following theorem.

Theorem 3.2 (Gromov) [G] Let X,Y C Al be stable spaces of bounded prop-
agation and 7 : X =Y a map of bounded propagation admitting a dense holon-
omy, then ent(X) = ent(Y) implies that T is surjective if and only if it is
pre—injective.

Suppose that 7 is a bounded propagation < M function between two I'—
invariant stable spaces and 7 commutes with the I'-action, if the pseudogroup
Z(T) is dense, we can write eacha € Tasa =~d (y €[, d € Dg) and

7()ja = T(S)|ya = (T(c"))1a = TD(a,m) (¢ D(@,M))|d = TDryr (€7 |Drrir)ld-

This means that in order to know the function 7 it is sufficient to know how
the image under 7 of a configuration in X acts on Dg. In other words, it is
sufficient to know the function 7p,,,, : Xppyr = 7(X)Dg-

On the other hand, if 7 is M—local between two shift spaces, we have

7(€)ja = 7(c*)n = TDu (¥ Dy )1

that is it suffices to know how the image under 7 of a configuration in X acts
on the identity of T, i.e. the local rule §.

10



For this reasons, the notion of bounded propagation is a generalization of
the notion of local function as far as stable spaces not necessarily I'-invariant
are concerned. Hence, if I is amenable, the next theorem follows from Theorem
3.2.

Corollary 3.3 (GOE theorem for shifts of bounded propagation) Let
X,Y C AU be shift spaces of bounded propagation and 7 : X — Y a local
function, then ent(X) = ent(Y") implies T surjective <= T pre—injective.

As a consequence of this fact, we have that a shift of bounded propagation
has the MM-property.

4 Strongly Irreducible Shifts

In this section we give the definition of strong irreducibility for a shift. In
general, as we have seen, it is possible to give a definition of irreducibility that
generalizes the one—dimensional one. But although we can prove the MM-
property for irreducible shifts of finite type of AZ (see [Fio]), there are simple
counterexamples showing that this irreducibility is too weak in the general case
of subshifts of finite type of A% We prove the MM—property for the strongly
irreducible shifts of finite type of AT. On the other hand, we will see that a shift
of bounded propagation (that has, by Gromov’s theorem, the MM-property),
is strongly irreducible and of finite type, but the converse does not hold.

Definition 4.1 A shift X is called M—irreducible if for each pair of finite sets
E,F CT such that dist(E, F) > M and for each pair of patterns py € Xg and
p2 € X, there exists a configuration ¢ € X that satisfies c = p; in E and ¢ = po
in F. The shift X is called strongly irreducible if it is M—irreducible for some
M e N.

In the particular case I' = Z, it can be easily seen that a shift X C AZ is
M—irreducible if for each n > M and for each pair of words u,v € L(X), there
exists a word w € L(X) with |w| = n, such that vwv € L(X).

Proposition 4.2 Let ' be an amenable group. Let X be a strongly irreducible
shift of finite type and let 7 : X — AU be a local and pre—injective function.
Then ent(7(X)) = ent(X).

PrROOF  Suppose that the memory of X is M, that X is M—irreducible and
that 7 is M-local. Set Y := 7(X) and fix an amenable sequence (E,),; we have

|Vipone | < [V, || A| %o Bn]

and then

log [Vigza| _ log Vi, | , |05y Pl log| 4]
Bl B B
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Taking the maximum limit and being lim,, =0, we have

log |,
lim sup M <ent(Y).
Suppose that ent(Y) < ent(X); then there exists n € N such that

log |42 |  log | X, |
| Enl | Enl

that is |Yg+em| < |Xp,|. Fixv € Xg+ pru;since dist(0),, EFM, E,) = M+1>
A AR O

M for each u € X, there exists a pattern p € X M that coincides with u on

E,, and with v on 85;,E;/™. Then

D € Xppsare | Do paw = v} > |Xp, | > [Vgon |

Since 7 EreM X oM — YE:—2M is surjective, there exist two patterns p;,ps €
Xprsm such that py # pe but pp = v = ps on 6;ME;LLM and T pgism () =
Tg+sm (p2). By Corollary 2.11, there exist two configurations c1,c2 € X which
extend p; and p» and which coincide outside E;f M We prove that 7(c;) =
7(c2), and hence that 7 is not pre-injective. If v € E}*M we have yDy C
EF*M and hence, if Dy = {a1,...,an}, T(c1)ly = 0(Cijyars-++sCllyam) =
0(P1yans > Pilyam) = Tpm (P1)ly = Tt (P2)ly = 6(P2pyayr - > P2lyan) =
8(C2yars -5 C2yan) = T(C2)y. I v ¢ EF?*M we have yDyr C C(EM) and

hence 7(c1)|, = 7(c2)), since ¢; coincide with ¢ on C(E;fM). O

The proof of the following lemma only depends on the regularity of the Cay-
ley graph of a finitely generated group. It is also implicit that the group is not
finite and we do not treat the finite case because in this latter the implications
between surjectivity and injectivity are trivial.

Lemma 4.3 If T is a finitely generated group, there exists a sequence of disks
(Fj)jen obtained by translation of a disk D and at distance > M such that
Ujen FJ.“LR =T for a suitable R > 0. We call the above sequence o (D, M, R)-
net.

Proor Let D be the disk centered at 1 and of radius p; define the following
sequence of finite subsets of I':
Fo = {1},
Fi:={yel|lyl=20+M+1}

and, in general,
Lni={y €T ||l =n2p+ M+1)}.

It is clear that for each n, dist(T',,,Tpy1) = 2p + M + 1. Inside the set Ty, fix
Yn, and eliminate all the points in I',, whose distance from =, ; is less than
2p+ M +1.
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Next, fix v,, , among the remaining points and eliminate all the points whose
distance from v,, 5 is less than 2p + M + 1. In this way, we will get a set T,
whose elements have mutual distance > 2p + M + 1 and such that for each
element +,, of T',, there exists an element of ', whose distance from +,, is less
than 2p+ M + 1.

We now prove that, denoting by (8 j) jen the sequence of the elements of
Unen Tn, the sequence (8;D)jen is a (D, M, R)-net with R := 2p 4+ 2M; so
that we can set Fj := 3,D.

Let then v € T; there exists ,, € ', such that dist(y,v,) < p+ M. Since
7, belongs to 'y, there is 4,, € T, such that dist(vy,,%,) < 2p+ M and hence
dist(,7%,) < 3p + 2M; then v € (3,,D)tZ+2M) O

Recall that a subshift of AZ is soficif it is the set of all labels of the bi-infinite
paths in a finite labeled graph (or finite—state automaton). A fundamental result
given Section 4.4 of [LinMar], is that if X is an irreducible sofic shift and Y is
a proper subshift of X, then ent(Y) < ent(X). Now we prove a theorem of this
kind in a much more general setting.

Lemma 4.4 Let T’ be an amenable group and let (E,), be a fized amenable
sequence of I'. Let (Fj)jen be a (Dr,2M,R)-net, let X be an M-irreducible
shift and let Y be a subset of X such that Y, C X, for every j € N. Then
ent(Y) < ent(X).

PROOF  Let (pj)jen be a sequence of patterns such that p; € Xr;\Yr;; let
N(n) be the number of Fy’s such that F;*" C E, and denote by Fj,,...,F,

JN
these disks. Set & := | Xp+m| (where D = D,. and we omit the index r denoting
the radius, if it is not necessary), and denote by 7;, : Xg, — X F;, the restriction
to Fj, of the patterns of X, . We prove that

N
X\, wi) < (1= 6N Xp,| (4)
i=1
by induction on m € {1,...,N}. We have
|XEn| < |XFJ.*;M||XEH\FJ?*1'M|

then
| Xk, | < §|XE,,\F;;M |

Since X is an M—irreducible shift and since dist(Fjl,En\FlerM ) > M, given a

pattern p € X, \FHM there exists a pattern p defined on all E,, that coincides
mA
with p on E,\F;"™ and with pj, on Fj,; then
-1
|XEn\FJT*1'M| <m0 (P4)]-
Hence

1 -
ElXE,.l < |5 o)
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and
Xp \m; p)] < | Xp, | — —IXEnl =(1-¢YXg, |

Suppose that (4) holds for m — 1; we have

m—1
X, \ U 3 03l < EHpp,\rov | P € X\ U 75t (93}
i=1
Moreover, since X is M—irreducible,
m—1 m—1
1P apr | p€Xp\ 73 @)} < Hp € Xp\ U 73 03) | pigs,, = 2y Y-
i=1 i=1

Hence
| X, \Uvr i)l = (X \"U (p3)) \ 5, (23] <

m—1

(XEn\ U '(pj: ) \{pe X\ |J 7, @) | piF;,, = P}l <

=1
m—1 1 m—1
<|xXg\ U 7, i)l - ElXEn\ U = i)l <
=1 i=1
<(1- %)(1 — e Xy | = (1- €™ X |.

Hence (4) holds, and since |Yg, | < | XE, \Uz_1 L Lp;)

, we have

IOg |YEn | < N(’l’l) log(l - g_l) log |XEn | (5)
|Enl  — | En| |En|

Observe that N
E, C | FjP U (B, \E, (Frrerti)), (6)
i=1
Indeed suppose that v € E, and v ¢ Uf\;l F]-J:R; (Fj); being a (D,,2M, R)-
net, we have that v € F,jR for some k, that is v € AD+E with 8 such that
BD*M ¢ E,. Hence dist(v, 8) < r+ R so that 8 € yD*+E. If y € E, B2+,
then 8 € yD+E C E,; "™ g0 that FtM = BD+M C E,, which is excluded.
From (6), we have

|Enl < N(0)|DHE| + | B\ B, (240

so that

(n) R |8IE+2 +MEn|
1< |DF| 4 ——
En| |Enl

14



|0r42ryarEn]
R42r4+M — 07

taking the minimum limit and being lim,,_, N

N(n)

| En

>0

¢ :=liminf
n—oo

and then from (5) it follows
ent(Y) < Clog(1 — &™) +ent(X) < ent(X). O

Proposition 4.5 Let X be a strongly irreducible shift of finite type, let 7 : X —
AL be a local function such that ent(7(X)) = ent(X). Then T is pre—injective.

PrOOF  Suppose that X has memory M, that is X is M—irreducible and that
T is M-local. Moreover suppose that 7 is not pre—injective; then there exist
c1,¢2 € X and a disk D contained in ', such that ¢; # ¢ on D, ¢; = ¢3 out of
D and 7(c1) = 7(c2). Set (Fj)jen = (8;DT?M)jen a (DF?M,2M, R)-net and
denote by Y the subset of X defined by

Y = {C eX | (Cﬂj)‘D+2M # C2|p+2M for every j € N},

that is the subset of X avoiding the pattern cz p+2m on the disk Dt2M and
on the translated disks F; = 8,Dt?M. The set Y is a subset of X such that
Yr, C Xp;; we prove that 7(Y) = 7(X). Indeed if ¢ € XY, there exists a
subset J C N such that for every j € J, we have (Cﬂj)‘D+2M = ¢y p+2m. Define
¢ € X in the following way:

-1
e c=c% on F; for every j € J,
e ¢ = cout of the union J,.; F}-

That is, ¢ is obtained from c substituting all the occurences of ¢y p+2m with
C1|D+2M.

By Proposition 2.10, we have ¢ € X and moreover ¢ € Y; we prove that
7(2) = 7(c).

If v € ﬂjDJrM for some j € J, we have yDy C Fj; and then 7(¢), =

—1 -1

T(Cl'gi )\’Y = T(Cl)‘ﬁj—l,y = T(Cg)lﬁj—l,y = T(CQﬁj )|’Y = T(C)|’Y‘

Suppose that v ¢ ;D™ for every j € J; then vDys C B(8;D) and hence
7(€)}y = 7(c)},- Indeed ¢ and c coincide on [, C(ﬂjD): if j € Jand v €
93y B;D = F;\B,;D, we have ¢, = (clﬂi‘_l)h = ¢1)5-1,. Since B;'y € 0y D

-1
_ = - = J =
one has Clipriy = C2)571, (€25 )|y = ¢|y-

Then, by Theorem 2.12 and Lemma 4.4,
ent(7(X)) = ent(7(Y)) < ent(Y) < ent(X). O

Proposition 4.6 Let T' be an amenable group. Let X be a shift, let Y be a
strongly irreducible shift and let 7 : X — Y be a local function such that
ent(7(X)) = ent(Y). Then 7 is surjective.
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ProoF Let X and Y be as in the hypotheses and let 7 : X — Y be a local
function. We prove that if 7(X) C Y, then ent(7(X)) < ent(Y). Indeed if
7(X) C Y, there exists a configuration ¢ € Y which does not belong to 7(X)
and then there exists a disk D such that ¢p € Yp\(7(X))p. Let (F})jen be
a (D,2M, R)-net; then (7(X))r; C YF;; by Lemma 4.4, ent(7(X)) < ent(Y).
O

Theorem 4.7 Let T' be an amenable group. Let X be a strongly irreducible
shift of finite type, let Y be a strongly irreducible shift and let 7 : X =Y be a
local function with ent(X) = ent(Y). Then 7 is pre—injective if and only if is
surjective.

ProOOF  If 7 is pre-injective we have, by Proposition 4.2, that ent(7(X)) =
ent(X). Then ent(7(X)) = ent(Y") so that, by Proposition 4.6, 7 is surjective.

If, conversely, 7 is surjective then ent(7(X)) = ent(Y") that is ent(7(X)) =
ent(X). By Proposition 4.5, 7 is pre-injective. O

Corollary 4.8 (MM-property for strongly irreducible shifts of finite
type) If T is an amenable group, a strongly irreducible subshift of finite type of
AT has the MM-property.

We conclude this section proving that the property of bounded propagation
for a shift is strictly stronger than the union of strong irreducibility and finite
type condition. The following characterization of the finite type condition is an
easy consequence of the definition.

Lemma 4.9 A shift X is of finite type with memory M if and only if each
configuration ¢ € AU such that ¢|D(a,M) € XD(a,m) for every a € T, belongs to
X.

Now we can prove the following statement.

Proposition 4.10 If X C A" is a shift of bounded propagation, then X is
strongly irreducible and of finite type.

PROOF  Suppose that X has bounded propagation < M; if E, F C T are such
that dist(E,F) > M and p; € Xg, p» € XF are two patterns of X, consider
the pattern p with support F U F' given by the union of the functions p; and
pa. Clearly p € Xgur because if a € E U F and, for instance a € E, we have
(EUF)NaDuy C E and hence pj(gur)napy € X(BuF)naDy - A configuration
in X extending p is such that ¢jg = p1 and ¢|p = p». Hence X is M—irreducible.

Now suppose that ¢ € AT is such that ¢|p(a,M) € XD(a,m) for every a €T
Then if n > M and o« € D,, we have

¢ D, D(a,M) = (€|D(a,M))|DnnD(a,M) € XD, AD(a,M);

X being of bounded propagation we have ¢|p, € Xp,. X being closed we have
ceX. O
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Recall that an edge shift is the set of all the bi-infinite paths in a finite
graph. If I' = Z and X is an edge shift, it can be seen that also the converse of
the previous theorem holds.

Now we prove that in general strong irreducibility and finite type condition
do not imply the bounded propagation property. Consider the subshift X C
{0,1}% with set of forbidden blocks:

{010,111},

Clearly X is a strongly irreducible (in fact 2-irreducible) shift of finite type; if
M > 1 consider the following pattern p with F' := supp(p)

o[ [ [x] [ Jrf...[x[ ] [t] ] ]1[0]

~~

M copies of ..

In this case we have pjrnp(a,m) € XrnD(a,m) but p ¢ Xp; hence X is not of
bounded propagation < M for each M > 1.
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