Cours 5 : Les arbres AVL

Arbres binaires equilibres

Rappel sur les arbres binaires
de recherche

« Ordre » sur les nceuds
Les plus petits a gauche
Les plus grands a droite

Pour acceélérer les recherches d'un
elément dans l'arbre

ODbjecitif : dichotomie (on ne parcourt que
la moitié de l'arbre)

2013-2014 Algorithmique 2

Exemple

2/\9
1 6\ 11

8
Si on cherche 7

3 <7 :pas besoin de chercher dans le sous-arbre

gauche -
Algorithmique

Exemple (2)

A
6\ 11

8
7 <9 : pas besoin de chercher dans le sous-arbre

droit

2013-2014 Algorithmique

Exemple (3)

6
T~

8
6 < 7 :on cherche a droit

2013-2014 Algorithmique

Exemple (4)

8
7 <8 etle nceud 8 n'a pas de sous-arbres donc la

recherche a échoué

2013-2014 Algorithmique

Rappel sur les ABR (suite)

En géneéral, la recherche dans un ABR
coute ©(h), ou h est I'hauteur de I'arbre

La hauteur minimale pour un arbre binaire
avec n noceuds est log(n)

Donc dans le mellleur de cas, le cout de la
recherche dans un ABR est log(n) ou n est
le nombre des noeuds de I'arbre

2013-2014 Algorithmique 7

Probleme

Est un ABR n

2013-2014 Algorithmique

ldentification du probleme

On ne gagne rien au niveau de la
recherche
On est obligé de chercher dans le s.-a. droit
Recherche en ©(n) forcement

Solution
Obliger I'arbre a étre relativement symetrigue

Hauteur du s.-a. gauche proche de la hauteur
du s.-a. droit

2013-2014 Algorithmique 9

Arbres AVL

Arbres de recherche equilibrés
Principe :

Pour chaque nceud, les hauteurs du s.-a. gauche et
du s.-a. droit difféerent au plus de 1

Modele proposé par G.M. Adelson-Velsky et

E.M. Landis (d’ou son nom)

Notion de facteur d'equilibrage d'un nceud
Difference entre les hauteurs des sag et sad

Un arbre est AVL si tous les noeuds ont un facteur de
-1,0o0ul

2013-2014 Algorithmique 10

2013-2014

9

Exemple

50

N

/\ /\
SN N

14 19 67

Algorithmique

11

Les changements

Cette fois, on a systématiguement la
moitie, ou pres de la moitié de l'arbre de
chaque cote de la racine

Et cecl pour tous les nceuds

Chaqgue choix entre s.-a. gauche et s.-a.
droit elimine la moitié des noceuds restants

On a un vral parcours dichotomique
Complexité ©(log(n)) dans le pire des cas

2013-2014 Algorithmique 12

Implémentation habituelle

Rajouter un attribut a I'arbre
Sa profondeur
ou
Son facteur d’equilibrage

A mettre a jour a chague modification
(ajout ou suppression)

2013-2014 Algorithmique

13

Probléematique de 'ajout

On ajoute un elément

L'arbre (ou un de ses sous-arbres) peut
devenir déséquilibre

Facteur < -1 ou >1
Principe :

On fait I'ajout normalement

On remonte en mettant les profondeurs ou
facteurs a jour jusgu'a rencontrer un arbre
déseéquilibré

2013-2014 Algorithmique 14

Problématique de I'ajout (2)

SI on ne rencontre aucun arbre
déséquilibré, parfait

Sinon, on reequilibre le premier arbre qui
devient désequilibré lors de la remontée

Il redevient equilibré
Avec la méme profondeur gu’avant I'ajout

Donc inutile de remonter davantage

2013-2014 Algorithmique 15

Le rééquilibrage

Un principe : la rotation

En fait, selon le facteur de deséquilibrage
de l'arbre et celui de ses sous-arbres, on
va devolir faire une ou deux rotations (je ne
detaille pas)

Deux actions
Rotation a gauche
Rotation a droite

2013-2014 Algorithmique 16

La rotation a droite

La rotation a gauche

La double rotation a gauche

La compression de données

Principes
Exemples
Codage de Huffmann

La compression de données

La compression de données traite de la maniere dont
on peut réduire I'espace nécessaire a la
representation d’'une certaine quantite d’information
Deux grandes catégories

Sans perte

Avec perte
Manipulée dans tous les secteurs

Données quelconques : zip, rar, gz

Graphiques : gif, png, jpg

Audio : wav, mp3, 0gg

Video : mpeg2, mpeg4, xvid, mkv

2013-2014 Algorithmique 21

Compression sans perte

Codage de Huffmann
Plus un symbole apparait, plus son codage est court

Codage RLE (Run-Length Encoding)
abab remplace par 2ab

Codage LZW (Lempel-Ziv-Welch)(- GIF)

De type « dictionnaire »

Des successions de caracteres se retrouvent plus
souvent que d'autres
e On peut donc les remplacer par un nouveau caractere

2013-2014 Algorithmique 22

Compression avec pertes

ldee : seule une partie des données est
utile

On ne garde que celles-la

Trois grands types
Transformée de Fourier (DCT) : jpeg
Compression par ondelettes
Compression fractale

2013-2014 Algorithmique

23

Le codage de Huffmann

Codage de type statistigue, analogue au
morse
ldee :
Plus un symbole (ici un caractere) revient
souvent, plus son code sera court

On commence par lire le texte et compter
le nombre d’occurences de chaque
caractere

L e reste est a base d’arbres binaires

2013-2014 Algorithmique 24

Construction de 'arbre de
codage

Au départ

Chaque caractere est racine d’un arbre dont
la valeur associée est le nombre
d’occurences du caractere
On dispose d'un tableau d'arbres (ou autre
structure)

* De préference trié par valeur

2013-2014 Algorithmique 25

Construction de l'arbre de
codage (2)
On va systématiguement « fusionner » les

deux arbres de colt minimal

On obtient un arbre dont les s.-a. sont les
deux arbres de départ

La plus petite valeur a gauche

La valeur de I'arbre fusionné est la somme
des valeurs des deux arbres de départ

On supprime les deux arbres du tableau et
on ajoute I'arbre fusionné

2013-2014 Algorithmique 26

13 15 20

2013-2014

Algorithmique

27

Construction de l'arbre de
codage (3)

On continue jusgu’a ce qu’il N’y ait plus
gu’'un seul arbre dans le tableau

On a construit I'arbre en « montant »

On va le « redescendre » pour construire
les codes

2013-2014 Algorithmique 28

Construction des codes

Code = mot binaire (des O etdes 1)
Principe :

Quand on descend a droite, on ajoute 1 en fin
de mot

Quand on descend a gauche, on ajoute 0 en
fin de mot

(Parfaitement arbitraire, on pourrait faire
I'inverse)

2013-2014 Algorithmique 29

13

2013-2014

Reprenons I'exemple

Le codededestl
Le code de c est 00
Le code de a est 010
Le code de b est 011

Algorithmique

30

Astuce du code

Le préfixe d’un code ne peut pas €tre un
code

S1 1001 est un code, 1,10 et 100 ne peuvent
pas étre des codes

Conséquence :
Pas de confusion possible
Code parfaitement déterministe

2013-2014 Algorithmique 31

Le fichier codé

Représentation de I'arbre

Il faut choisir une facon simple d’enregistrer
I'arbre

Le texte codé
Chaque lettre est remplacée par son code

2013-2014 Algorithmique

32

Décodage

On recrée l'arbre

On part de la racine
Si 0, on descend a gauche
Si 1, on descend a droite

Si on tombe sur une feuille
« Etiquetée par un caractére
* On écrit le caractere et on repart de la racine

2013-2014 Algorithmique 33

