
Cours 5 : Les arbres AVL

Arbres binaires équilibrés

Rappel sur les arbres binaires
de recherche

�« Ordre » sur les nœuds :
• Les plus petits à gauche
• Les plus grands à droite

�Pour accélérer les recherches d’un
élément dans l’arbre

�Objectif : dichotomie (on ne parcourt que
la moitié de l’arbre)

2013-2014 Algorithmique 2

Exemple

3

92

1 6 11

8
�Si on cherche 7

• 3 < 7 : pas besoin de chercher dans le sous-arbre
gauche

Algorithmique 3

Exemple (2)

3

92

1 6 11

8
• 7 < 9 : pas besoin de chercher dans le sous-arbre

droit

2013-2014 Algorithmique 4

Exemple (3)

3

92

1 6 11

8
• 6 < 7 : on cherche a droit

2013-2014 Algorithmique 5

Exemple (4)

3

92

1 6 11

8
• 7 < 8 et le nœud 8 n’a pas de sous-arbres donc la

recherche a échoué

2013-2014 Algorithmique 6

Rappel sur les ABR (suite)

�En général, la recherche dans un ABR
coute Θ(h), où h est l’hauteur de l’arbre

�La hauteur minimale pour un arbre binaire
avec n nœuds est log(n)

�Donc dans le meilleur de cas, le cout de la
recherche dans un ABR est log(n) où n est
le nombre des nœuds de l’arbre

2013-2014 Algorithmique 7

Problème
1

2

3

4

5

nEst un ABR

2013-2014 Algorithmique 8

Identification du problème

�On ne gagne rien au niveau de la
recherche
• On est obligé de chercher dans le s.-a. droit
• Recherche en Θ(n) forcément

�Solution
• Obliger l’arbre à être relativement symétrique
• Hauteur du s.-a. gauche proche de la hauteur

du s.-a. droit
2013-2014 Algorithmique 9

Arbres AVL

�Arbres de recherche équilibrés
�Principe :

• Pour chaque nœud, les hauteurs du s.-a. gauche et
du s.-a. droit différent au plus de 1

�Modèle proposé par G.M. Adelson-Velsky et
E.M. Landis (d’où son nom)

�Notion de facteur d'équilibrage d'un nœud
• Différence entre les hauteurs des sag et sad
• Un arbre est AVL si tous les nœuds ont un facteur de

-1, 0 ou 1

2013-2014 Algorithmique 10

Exemple

50

7217

12 54 76

67

23

9 14 19

2013-2014 Algorithmique 11

Les changements

�Cette fois, on a systématiquement la
moitié, ou près de la moitié de l’arbre de
chaque côté de la racine

�Et ceci pour tous les nœuds
�Chaque choix entre s.-a. gauche et s.-a.

droit élimine la moitié des nœuds restants
�On a un vrai parcours dichotomique
�Complexité Θ(log(n)) dans le pire des cas

2013-2014 Algorithmique 12

Implémentation habituelle

�Rajouter un attribut a l’arbre
• Sa profondeur

ou
• Son facteur d’équilibrage

�A mettre a jour à chaque modification
(ajout ou suppression)

2013-2014 Algorithmique 13

Problématique de l’ajout

�On ajoute un élément
�L’arbre (ou un de ses sous-arbres) peut

devenir déséquilibré
• Facteur < -1 ou >1

�Principe :
• On fait l’ajout normalement
• On remonte en mettant les profondeurs ou

facteurs à jour jusqu'à rencontrer un arbre
déséquilibré

2013-2014 Algorithmique 14

Problématique de l’ajout (2)

�Si on ne rencontre aucun arbre
déséquilibré, parfait

�Sinon, on rééquilibre le premier arbre qui
devient déséquilibré lors de la remontée
• Il redevient équilibré
• Avec la même profondeur qu’avant l’ajout
• Donc inutile de remonter davantage

2013-2014 Algorithmique 15

Le rééquilibrage

�Un principe : la rotation
�En fait, selon le facteur de déséquilibrage

de l’arbre et celui de ses sous-arbres, on
va devoir faire une ou deux rotations (je ne
detaille pas)

�Deux actions
• Rotation à gauche
• Rotation à droite

2013-2014 Algorithmique 16

La rotation à droite

b

a

U V

W

a

U

b

V W

r. d.

2013-2014 Algorithmique 17

La rotation à gauche

b

a

U V

W

a

U

b

V W

r. g.

2013-2014 Algorithmique 18

La double rotation à gauche

d. r. g.
b

c

a

U

V

Z

W

c

a

U V W Z

b

19

La compression de données

Principes
Exemples

Codage de Huffmann

La compression de données

� La compression de données traite de la manière dont
on peut réduire l’espace nécessaire à la
représentation d’une certaine quantité d’information

�Deux grandes catégories
• Sans perte
• Avec perte

�Manipulée dans tous les secteurs
• Données quelconques : zip, rar, gz
• Graphiques : gif, png, jpg
• Audio : wav, mp3, ogg
• Video : mpeg2, mpeg4, xvid, mkv

2013-2014 Algorithmique 21

Compression sans perte

�Codage de Huffmann
• Plus un symbole apparaît, plus son codage est court

�Codage RLE (Run-Length Encoding)
• abab remplacé par 2ab

�Codage LZW (Lempel-Ziv-Welch)(→GIF)
• De type « dictionnaire »
• Des successions de caractères se retrouvent plus

souvent que d'autres
• On peut donc les remplacer par un nouveau caractère

2013-2014 Algorithmique 22

Compression avec pertes

�Idée : seule une partie des données est
utile

�On ne garde que celles-là
�Trois grands types

• Transformée de Fourier (DCT) : jpeg
• Compression par ondelettes
• Compression fractale

2013-2014 Algorithmique 23

Le codage de Huffmann

�Codage de type statistique, analogue au
morse

�Idée :
• Plus un symbole (ici un caractère) revient

souvent, plus son code sera court

�On commence par lire le texte et compter
le nombre d’occurences de chaque
caractère

�Le reste est à base d’arbres binaires
2013-2014 Algorithmique 24

Construction de l’arbre de
codage

�Au départ
• Chaque caractère est racine d’un arbre dont

la valeur associée est le nombre
d’occurences du caractère

• On dispose d'un tableau d'arbres (ou autre
structure)

• De préférence trié par valeur

2013-2014 Algorithmique 25

Construction de l’arbre de
codage (2)

�On va systématiquement « fusionner » les
deux arbres de coût minimal
• On obtient un arbre dont les s.-a. sont les

deux arbres de départ
• La plus petite valeur à gauche
• La valeur de l’arbre fusionné est la somme

des valeurs des deux arbres de départ

�On supprime les deux arbres du tableau et
on ajoute l’arbre fusionné

2013-2014 Algorithmique 26

Exemple

20 28 50
c d

a b

13 15 20 50
a b c d

48 50
d

c
a b

98

d
c

a b
2013-2014 Algorithmique 27

Construction de l’arbre de
codage (3)

�On continue jusqu’à ce qu’il n’y ait plus
qu’un seul arbre dans le tableau

�On a construit l’arbre en « montant »

�On va le « redescendre » pour construire
les codes

2013-2014 Algorithmique 28

Construction des codes

�Code = mot binaire (des 0 et des 1)
�Principe :

• Quand on descend à droite, on ajoute 1 en fin
de mot

• Quand on descend à gauche, on ajoute 0 en
fin de mot

• (Parfaitement arbitraire, on pourrait faire
l’inverse)

2013-2014 Algorithmique 29

Reprenons l’exemple

d
c

a b

2013-2014

13 15 20 50
a b c d

Le code de d est 1
Le code de c est 00
Le code de a est 010
Le code de b est 011

Algorithmique 30

Astuce du code

�Le préfixe d’un code ne peut pas être un
code
• Si 1001 est un code, 1,10 et 100 ne peuvent

pas être des codes

�Conséquence :
• Pas de confusion possible
• Code parfaitement déterministe

2013-2014 Algorithmique 31

Le fichier codé

�Représentation de l’arbre
• Il faut choisir une façon simple d’enregistrer

l’arbre

�Le texte codé
• Chaque lettre est remplacée par son code

2013-2014 Algorithmique 32

Décodage

�On recrée l’arbre
�On part de la racine :

• Si 0, on descend à gauche
• Si 1, on descend à droite
• Si on tombe sur une feuille

• Étiquetée par un caractère
• On écrit le caractère et on repart de la racine

2013-2014 Algorithmique 33

