Cours 4 : PL/SQL
Procedural Language/SQL

Blocs, variables, instructions, structures de
controle, curseurs, gestion des erreurs,
procédures/fonctions stockées, packages,
triggers



PL/SQL

Chapitre 3 de la norme SQL3 sous le
nom SQL/PSM (Persistent Stored
Modules)

Langage procédural plus portable

Un script SQL Developeur peut contenir
des blocs de sous-programmes en
PL/SQL

Traitement de transactions
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PL/SQL (2)

Construction de procédures ou
fonctions stockees qui améeliorent le
mode client-serveur par stockage des
procédures ou fonctions souvent
utilisées au niveau serveur

Gestion des erreurs (a la ADA)

Construction de triggers (ou
déclencheurs)
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Structure d’un bloc

Un programme ou une procedure
PL/SQL est un ensemble de un ou
plusieurs blocs. Chaque bloc comporte
trois sections :

Section déclaration
Section corps du bloc
Section traitement des erreurs
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1. Section déclaration

Contient la description des structures
et des variables utilisées dans le bloc

Section facultative

Commence par le mot clé DECLARE
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2. Section corps du bloc

Contient les Iinstructions du
programme et eventuellement, a la fin,
la section de traitement des erreurs

Obligatoire
Introduite par le mot cle BEGIN

Se termine par le mot clé END
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3. Section traitement
des erreurs

Facultative

Introduite par le mot clé EXCEPTION
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Syntaxe

DECLARE

déclaration

BEGIN

corps -du-bloc

EXCEPTION

traitement-des -erreurs

END;

| <« A ajouter obligatoirement
dans I'exécution d’un script
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Exemple

SET SERVEROUTPUT ON

DECLARE

X VARCHAR2(10);

BEGIN

X = 'Bonjour’;

DBMS_ OUTPUT.PUT _LINE (x);
END;
/
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Exemple (2)

DECLARE

erreurNb EXCEPTION;

nom Voyage.nomVoyage %TYPE;
min Voyage .nbMin %TYPE;

max Voyage .nbMax %TYPE;
BEGIN
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Exemple (2 — suite)

BEGIN
SELECT nomVoyage , nbMin , nbMax
INTO nom, min, max
FROM Voyage WHERE numVoyage = 1,;
IF max < min

THEN RAISE erreurNb ; END IF;
DBMS_ OUTPUT.PUT_LINE (nom ||' OK");
EXCEPTION
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Exemple (2 — suite et fin)

EXCEPTION

WHEN NO DATA FOUND THEN

DBMS OUTPUT.PUT_LINE(
'numero inconnu );

WHEN erreurNb THEN

DBMS OUTPUT.PUT_LINE(
nom || ' NBMIN > NBMAX");

END;

/
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Types de variables

Variables scalaires
Types composes

Record
Table

2018-2019 Bases de données
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Variables scalaires

Types issus de SQL : CHAR, NUMBER,
DATE, VARCHAR?2

Types PL/SQL : BOOLEAN, SMALLIN
BINARY INTEGER, DECIMAL, FLOAT
INTEGER, REAL, ROWID

Les variables hotes sont préfixées par « @ »

2018-2019 Bases de données 14



Déclaration des variables
scalaires

nom -variable nom-du-type;

nom -variable nom -table .nom -attribut % TYPE:
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Déclaration pour un
enregistrement (record)

Soit par référence a une structure de table ou
de curseur en utillisant ROWTYPE

nom -variable nom -table “oROWTYPE:

nom -variable nom -curseur %ROWTYPE;
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Déclaration pour un
enregistrement (record) (2)

Soit par énumeration des rubrigues qui la
composent. Cela se fait en deux etapes :

Déclaration du type enregistrement

TYPE nom-du-type IS RECORD (
nom -attribut , type-attribut ,,
nom -attribut , type-attribut ,, ...);

Déclarationdelavariabledetypeenregistrement
nom -variable nom -du-type;
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Exemple

DECLARE

TYPE recVoyage IS RECORD (
Ibelle Voyage.nomVoyage%TYPE |,
orixPropose  NUMBER(8,2));
voyPerso recVoyage ;

BEGIN

voyPerso .prixPropose := 3601.43;
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Tables

Structure composee d’élements d’'un
Mméeme type scalaire

L’acces a un élément de la table
s’effectue grace a un indice, ou clé
primaire

Cet index est declaré de type
BINARY INTEGER (valeurs entieres
signées)
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Déclaration pour une table

Deux étapes :

Déclarationdu type de I'élément de latable :

TYPE nom-du-type IS TABLE OF type-argument INDEX
BY BINARY_INTEGER;

Déclaration de la variable de type table :
nom -variable nom-du-type;
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Exemple

DECLARE
TYPE tabNom IS TABLE OF VARCHAR?2(20)

INDEX BY BINARY INTEGER;
tableNom tabNom: ...

BEGIN
tableNom (3) := 'Dupont’;
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Variables (scalaires ou
composees)
Valeur initiale :
nom -variable nom-du-type := valeur;
Constante :
nom -variable nom-du-type DEFAULT valeur;

ou

nom -variable CONSTANTnom -du-
type :=valeur,
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Variables (scalaires ou
composees) (2)

Visibilité : une variable est utilisable
dans le bloc ou elle a été deéfinie ainsi
gue dans les blocs imbriqués dans le
bloc de définition, sauf si elle est
redéfinie dans un bloc interne

2018-2019 Bases de données 23



Conversion de type

Explicite avec

TO _CHAR, TO_DATE, TO_NUMBER,
RAWTOHEX, HEXTORAW

Implicites, par conversion automatique
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Instructions

Affectations

Instructions du langage SQL : CLOSE
COMMIT, DELETE, FETCH, INSERT,
LOCK, OPEN, ROLLBACK,

SAVEPOINT, SELECT, SET
TRANSACTION, UPDATE
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Instructions (2)

Instructions de controle itératif ou
repétitif

Instructions de gestion de curseurs

Instructions de gestion des erreurs
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Affectation

Opérateur d’'affectation :=

Option INTO dans un ordre SELEC

Instruction FETCH avec un curseur
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Exemple

DECLARE

TYPE tabNom IS TABLE OF VARCHAR2(20)
INDEX BY BINARY_INTEGER;
tableNom tabNom:;

| BINARY_INTEGER;

TYPE recVoyage IS RECORD (
libelle Voyage.nomVoyage%TYPE,
prixPropose NUMBER(8,2));
voyPerso recVoyage;

convers NUMBER(8,6);

BEGIN

Bases de données
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Exemple (suite)

BEGIN

convers :=6.55957;

tableNom(5) :='Dupont’;

1:=10;

tableNom(i) :='Dupond’;

voyPerso.libelle :='Découverte du Japon’;
voyPerso.prixPropose :=1989.08;

END;
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Exemple (2)

DECLARE

v_nom Voyage.nomVoyage%TYPE;

v_min Voyage.nbMin%TYPE;

TYPE recVoyage IS RECORD (
r_nom Voyage.nomVoyage%TYPE,
r_min Voyage.nbMin%TYPE);

r_voyage recVoyage;

rr_Voyage Voyage%ROWTYPE;

BEGIN

Bases de données
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Exemple (2 — suite et fin)
BEGIN
SELECT nomVoyage, nbMin
INTO v_nom, v_min
FROM Voyage WHERE numVoyage = 517,;
SELECT nomVoyage, nbMin INTO r_Voyage
FROM Voyage WHERE numVoyage = 364;
SELECT * INTO rr_Voyage

FROM Voyage WHERE numVoyage = 618,;
END;
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Structures de controle

Structure alternative

Structure répétitives
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Structures alternatives

|F condition THEN instructions :

END IF;

|F condition THEN instructions :
ELSE instructions ; END IF;

|F condition THEN instructions :

ELSIF condition THEN instructions :

ELSE instructions : END IF;

2018-2019

Bases de données
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Structures répetitives

LOOP instructions; END LOOP;

LOOP instructions; ...
EXIT WHEN condition; ...
END LOOP;

LOOP ...
IF condition THEN EXIT; END IF;
... END LOOP;
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Structures répetitives (2)

FOR variable-indice IN [REVERSE]
val-début .. val-fin
LOOP instructions; END LOOP;

variable-indice est une variable locale (locale a la
boucle) non déclarée

val-début et _vq[-f(n sont des variables locales
déclarées et initialisées ou alors des constantes

le pas est -1 si REVERSE est présent, sinon il est
egal a +1
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Structures repétitives (3)

WHILE condition
LOOP

Instructions
END LOOP:;
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. es curseurs

Il y a création d’'un curseur des qu’on
exécute une instruction SQL. C’est une zone
de travail de I'environnement utilisateur qui
contient les informations relatives a
I'Instruction SQL :

Le texte source de l'ordre SQL

Le texte «compilé» de I'ordre SQL

Un tampon pour une ligne du résultat

Le statut (cursor status)

Des informations de travail et de contrble
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Curseurs implicites

Geérés automatiquement par le noyau

dans les cas suivants :
Une instruction SELECT exécutée sous
SQL Developer
Une instruction SELECT donnant une
seule ligne de résultat sous PL/SQL
Les instructions UPDATE, INSERT et
DELETE
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Curseurs explicites

Obligatoires pour un SELECT
susceptible de produire plusieurs
lignes résultat

Quatre étapes :
Déclaration du curseur
Ouverture du curseur
Traitement des lignes du résultat
Fermeture du curseur

2018-2019 Bases de données
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1) Déclaration du curseur

Association d’'un nom de curseur a une
requéte SELECT

Se fait dans la section DECLARE d’un
bloc PL/SQL

CURSOR nom-curseur IS requéte ;

Un curseur peut étre parametre :

CURSOR nom -curseur (nom-p, type-p,
[:= val-défaut |, ...) IS requéte ;
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Exemple

DECLARE
CURSOR C1 IS SELECT numVoyage
FROM Tarif WHERE prix > 1000;

CURSOR C2 (p NUMBER(8),q NUMBER(8)) IS
SELECT nomVoyage FROM Voyage

WHERE nbMin >=p

AND nbMax <= q;

BEGIN

2018-2019 Bases de données
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2) Ouverture d’'un curseur

Alloue un espace mémoire au curseur
et positionne les eventuels verrous
OPEN nom -curseur ;
ou
OPEN nom -curseur (liste -par-effectifs );

Pour les parametres, association par
position ou par nom sous la forme
parametre -formel => parametre -réel
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Exemple

OPEN C1:
OPEN C2 (6, 20);

OPEN C2 (g => 20, p => 6);

2018-2019 Bases de données
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3) Traitement des lignes

Autant d’instructions FETCH que de
lignes résultats :
FETCH nom -curseur

IN

O liste -variables
ou

FETCH nom -curseur
INTO nom -enregistrement ;
Au moins quatre formes possibles

2018-2019

Bases de données
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Premiére forme : exemple

DECLARE
CURSOR C3 IS SELECT numVoyage,
nomVoyage FROM Voyage;

v_num Voyage.numVoyage%TYPE;
v_nom Voyage.nomVoyage%TYPE;
BEGIN

OPEN C3; LOOP

FETCH C3INTO v _num,v_nom;
EXIT WHEN C3%NOTFOUND;
Traitement ;

END LOOP; CLOSE C3;

END;
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Premiere forme : exemple (bis)

DECLARE

CURSOR C3 IS SELECT numVoyage,
nomVoyage FROM Voyage;

v_num Voyage.numVoyage%TYPE;

v_nom Voyage.nomVoyage%TYPE;
BEGIN

OPEN C3; LOOP

FETCH C3INTO v _num,v_nom;

EXIT WHEN C3%NOTFOUND;
dbms_output.put_line(v_num|| ' '||v_nom) ;
END LOOP; CLOSE C3;
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Deuxieme forme : exemple

DECLARE
CURSOR C3 IS SELECT numVoyage,
nomVoyage FROM Voyage;
TYPE recVOY IS RECORD(
v_num Voyage.numVoyage%TYPE,
v_nom Voyage.nomVoyage%TYPE);
r_voy recVOY;
BEGIN
OPEN C3; LOOP FETCH C3 INTO r_voy;
EXIT WHEN C3%NOTFOUND;
Traitement ; END LOOP; CLOSE C3;

END;
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Deuxieme forme : exemple (bis)

DECLARE
CURSOR C3 IS SELECT numVoyage,
nomVoyage FROM Voyage;
TYPE recVOY IS RECORD(
v_num Voyage.numVoyage%TYPE,
v_nom Voyage.nomVoyage%TYPE);
r_voy recVOY;
BEGIN
OPEN C3; LOOP FETCH C3 INTO r_voy;
EXIT WHEN C3%NOTFOUND;

dbms_output.put_line(r_voy.v_num|| "’
||r voy.v_nom); END LOOP; CLOSE C3;
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Troisieme forme : exemple

DECLARE

CURSOR C3 IS SELECT numVoyage,
nomVoyage FROM Voyage;
r_voy C3%ROWTYPE;

BEGIN

OPEN C3; LOOP

FETCH C3 INTO r_voy;

EXIT WHEN C3%NOTFOUND;
Traitement ;

END LOOP; CLOSE C3;

END;
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Troisieme forme : exemple (bis)

DECLARE

CURSOR C3 IS SELECT numVoyage,

nomVoyage FROM Voyage;

r_voy C3%ROWTYPE;

BEGIN

OPEN C3; LOOP

FETCH C3 INTO r_voy;

EXIT WHEN C3%NOTFOUND;

dbms_output.put_line(r_voy.numvoyage|| "’
Ir_voy.nomvoyage) ;

ENB LOOP; CLOSE C3;
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Quatrieme forme : exemple

DECLARE

CURSOR C3 IS SELECT numVoyage,
nomVoyage FROM Voyage;

BEGIN

FOR rec IN C3 LOOP

Traitement ;

END LOOP;

END;
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Quatrieme forme : exemple (bis)

DECLARE

CURSOR C3 IS SELECT numVoyage,

nomVoyage FROM Voyage;

BEGIN

FOR rec IN C3 LOOP

dbms_output.put_line(rec.numvoyage|| "'
||[rec.nomvoyage) ;

END LOOP;

END;
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Statut d’'un curseur

Attribut

%FOUND Vrai si execution correcte de 'ordre SQL
%NOTFOUND Vrai si exécution incorrecte de l'ordre SQL
%ISOPEN Vrai Si curseur ouvert

%ROWCOUNT Nombre de lignes traitées par I'ordre SQL,

évolue a chaque ligne traitée par un
FETCH (zéro au départ)
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Statut d’un curseur (2)

Curseur implicite Curseur explicite

SQL%FOUND nom-curseur’%FOUND
SQL%NOTFOUND nom-curseur’sNOTFOUND
SQL%ISOPEN nom-curseur®ISOPEN

SQL%ROWCOUNT nom-curseur’oROWCOUNT
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Modification des données

Se fait habituellement avec INSERT, UPDATE
ou DELETE

Possibilité d'utiliser la clause FOR UPDATE dans
a deéeclaration du curseur. Cela permet d’utiliser
a clause

CURRENT OF nom -curseur

dans la clause WHERE des instructions
UPDATE et DELETE. Cela permet de modifier la
ligne du curseur traitée par le dernier FETCH, et
donc d’acceélérer I'acces a cette ligne
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Exemple

DECLARE

CURSOR C IS SELECT *

FROM Tarif FOR UPDATE OF prix;

aug Tarif.prix%TYPE;

BEGIN

FOR rec IN C LOOP

IF rec.prix <1000 THEN aug := rec.prix*0.2;

ELSIF rec.prix <2000 THEN aug := rec.prix*0.1;

ELSE aug :=0; DBMS_OUTPUT.PUT_LINE('OK ' || rec.numvoyage
||'" || rec.datedeb); END IF;

UPDATE Tarif

SET prix = prix+taug WHERE CURRENT OF C;

END LOOP;
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Modification des données (2)

Dans le cas d’une clause FOR
UPDATE, la table est verrouillée en
mode row share (RS). Les lignhes
concernées par le verrou sont les lignes
du SELECT de la définition du curseur

En général, un COMMIT a
I'emplacement de la fleche ferme le
curseur. Mais ¢a n’est pas vral Sous
Oracle en PL/SQL
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Gestion des erreurs

(erreurs standard)

100 NO_DATA_FOUND
-1 DUP_VAL_ON_INDEX

-6502 VALUE_ERROR
-1001 INVALID CURSOR
-1722 INVALID NUMBER
-6501 PROGRAM ERROR
-1017 LOGIN DENIED
-1422 TOO_MANY_ROWS
-1476 ZERO_DIVIDE

2018-2019 Bases de données
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Gestion des erreurs

(erreurs standard) (2)
La nature d’'une erreur peut étre connue
par appel au fonctions SQLCODE et
SQLERRM

SQLCODE renvoie le statut d’erreur de
la derniere instruction SQL exécutee (0 si
N’y a pas d’erreur)

SQLERRM renvoie le message d’erreur
correspondant a SQLCODE
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Erreurs utilisateur

DECLARE
nom-anomalie EXCEPTION;
BEGIN

IF ... THEN RAISE nom-anomalie;
EXCEPTION

WHEN nom-anomalie THEN traitement;
EN D; Bases de données
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Erreurs anonymes

Pour les codes d’erreur n’ayant pas de
nom associé, il est possible de définir un
nom d’erreur (code entre -20000 et

-20999)
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Exemple

DECLARE
e EXCEPTION;
PRAGMA EXCEPTION_INIT(e, -20091);

BEGIN
IF ... THEN RAISE e;
EXCEPTION

WHEN e THEN ...
END;

Bases de données
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Exemple (2)
DECLARE
e exception;
BEGIN

IF ... THEN RAISE e; END IF;

EXCEPTION
WHEN e THEN RAISE_APPLICATION_ERROR(

-20099, 'nom inéxistant’);
END;

2018-2019 Bases de données
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Exemple (2 bis)
DECLARE
BEGIN
IF ... THEN RAISE_APPLICATION_ERROR(
-20099, 'nom inéxistant’);

END IF;
END;

2018-2019 Bases de données
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Description du traitement

de l'erreur (syntaxe)
BEGIN

EXCEPTION
WHEN nom-erreur, THEN traitement-erreur,;

WHEN nom-erreur, THEN traitement-erreur,;
WHEN OTHERS THEN traitement-autres-erreurs;

END;
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Description du traitement
de l'erreur (syntaxe) (2)

Possibilité d'écrire :

WHEN nom -erreur ; OR nom -erreur ,
THEN ... ;

2018-2019 Bases de données
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Exemple

EXCEPTION
WHEN NO_DATA_FOUND THEN ...:
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE(
'SQLCODE ='||TO_CHAR(SQLCODE)):
DBMS_OUTPUT.PUT_LINE(
'SQLERRM : '[[TO_CHAR(SQLERRM)):

END;

Bases de données
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Procédures stockees

CREATE [OR REPLACE] PROCEDURE nom-procédure
[(argument [mode] type, ...)]
[IS | AS]
bloc-procédure;
argument : nom d’un parametre formel

mode : définit si le parametre formel est en
entréee (IN), en sortie (OUT) ou en entree-
sortie (IN OUT). Par déefaut : IN

type : le type du parametre formel

bloc-procedure :le corps PL/SQL de la
procéd ure Bases de données 68



Exemple

CREATE OR REPLACE PROCEDURE

modifierPrix (num IN Voyage.numVoyage%TYPE) IS
BEGIN

BEGIN

UPDATE Tarif SET prix = prix * .50

WHERE numVoyage = num AND dateDeb <'31-12-19';
END;

BEGIN

UPDATE Tarif SET prix = prix * .60

WHERE numVoyage = num AND dateDeb > '31-12-20';
END;

END modifierPrix;

2018-2019 Bases de données
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Fonctions stockées

CREATE [OR REPLACE] FUNCTION nom-fonction
[(argument [IN] type, ...)]
RETURN type-retour
[IS | AS]
bloc-fonction;
Les parametres sont forcément en entrée
(IN)
Dans le bloc-fonction
RETURN nom -variable ;
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Exemple

CREATE OR REPLACE FUNCTION
moyennePrix (dd IN DATE ) RETURN NUMBER IS
moy Tarif.prix%TYPE := 0;

e EXCEPTION;

BEGIN

SELECT AVG(prix) INTO moy FROM Tarif
WHERE dateDeb = dd;

IF moy IS NULL THEN RAISE e; END IF;
RETURN moy;

EXCEPTION

WHEN e THEN RETURN 0;

END moyennePrix; Bases de données
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Informations a propos des
procédures/fonctions

Erreurs
USER_ERRORS
ALL ERRORS
DBA ERRORS

Infos sur les procédures/fonctions :
USER_OBJECTS
ALL_OBJECTS
DBA OBJECTS

Infos sur les textes source :
USER_SOURCE
ALL SOURCE
DBA SOURCE

Bases de données
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Supression d'une
procédure/fonction stockee

DROP PROCEDURE nom-procedure;

DROP FUNCTION nom-fonction;
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Appel d’une
procédure/fonction stockee
dans un bloc PL/SQL

nom-procédure (liste-parametres-effectifs);

nom-variable := nom-fonction(liste-parametres-
effectifs);
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Appel d’une
procédure/fonction stockee
dans un script SQL Developer

EXECUTE nom-procédure (liste-parametres-
effectifs);

EXECUTE :nom-variable := nom-fonction (liste-
parametres-effectifs);

EXECUTE DBMS_OUTPUT.PUT_LINE(nom-
fonction (liste-parametres-effectifs));
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Exemple

1. Création procedure
CREATE OR REPLACE PROCEDURE

nvVoy(num Voyage.numVoyage%TYPE,
nom Voyage.nomVoyage%TYPE)
1S
BEGIN
INSERT INTO Voyage (numVoyage,
nomVoyage) VALUES (num, nom);
END;

2018-2019 Bases de données
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Exemple
2. Execution procédure

EXECUTE
nvVoy (400, 'Voyage en Irlande’);
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Exemple
2bis, Exécution procédure

EXECUTE nvWoy (&nhum , &nom);

Enter Substitution Variable
NUM: 400

Enter Substitution Variable
NOM: 'Voyage en Irlande’

2018-2019 Bases de données
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ACCEPT

Exemple

2®", Exécution procédure

PROMPT Entrez les infos sur un
nouvel voyage

" num PROMP

ACCEPT

Numero

" Numeéro

" nom PROMP]
- 400

" Nom

Nom : 'Voyage en Irlande’
EXECUTE nvVoy (&num, &nom);

2018-2019

Bases de données
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Exemple

1. Création fonction
CREATE OR REPLACE FUNCTION

moyenne(nom Voyage.nomVoyage%TYPE)
RETURN NUMBER IS moy Tarif.prix%TYPE;
BEGIN

SELECT AVG(prix) INTO moy FROM Tarif
WHERE numVoyage IN (SELECT numVoyage
FROM Voyage WHERE nomVoyage = nom);
RETURN moy;
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Exemple
2. Exécution fonction

EXECUTE DBMS_OUTPUT.PUT_LINE (
moyenne('Circuit Heleni'));

2018-2019 Bases de données
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Exemple
20is  Exécution fonction

EXECUTE DBMS_OUTPUT.PUT_LINE (
moyenne(&nom));

Enter Substitution Variable
NOM: 'Circuit Heleni'

2018-2019 Bases de données
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Exemple
2©"  Exécution fonction

ACCEPT nom PROMPT Nom

Nom : ‘Circuit Heleni'

EXECUTE DBMS_OUTPUT.PUT_LINE (
moyenne(&nom));

2018-2019 Bases de données
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Exemple
Z2auater  Exacution fonction

VARIABLE moy NUMBER

EXECUTE :moy := moyenne('Circuit Heleni');
PRINT moy

2018-2019 Bases de données
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Gestion des erreurs

Erreur détectee par le SGBD
Erreur générée par l'utilisateur

Chaque catégorie peut étre prise en
compte dans la section EXCEPTION
ou par I'environnement appelant

2018-2019 Bases de données
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Gestion par une
section EXCEPTION

Dans ce cas, I'execution de la procédure ou
de la fonction est toujours considéree
comme reussie par I'environnement
appelant. En genéral, on stocke les
messages d’erreurs dans une table
spécifigue accessible a I'environnement

Exemple : en cas de suppression d’'un
voyage, verifier qu’il n'a pas de dates de
départ prévues

2018-2019 Bases de données

86



Exemple

CREATE PROCEDURE delVoyage(

num IN Voyage.numVoyage%TYPE) IS

filler CHAR(1); erreur EXCEPTION;

BEGIN

SELECT 'x' INTO filler FROM Tarif

WHERE numVoyage = num; RAISE erreur;

EXCEPTION

WHEN NO_DATA_FOUND THEN DELETE FROM Voyage
WHERE numVoyage = num; COMMIT;

WHEN erreur OR TOO_MANY_ROWS THEN

DBMS_OUTPUT.PUT_LINE ('Le voyage numéro : ‘||num||' a

déja des dates de depart prevues'); COMMIT;
END delVoyage;

Bases de données
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Gestion des erreurs

par I'environnement

Erreur émise par le SGBD : |le code d’erreur,
sous la forme ORA xxxxx , et le message
associé sont transmis au bloc appelant

Erreur générée par l'utilisateur : utilisation de
la procedure standard

RAISE_APPLICATION_ERROR( numero,
texte);
Le numéro doit étre compris entre -20000 et -
20999

L’execution de RAISE APPLICATION ERROR
annule la transaction en cours -



Exemple (on ne tient pas
compte des CIR)

CREATE PROCEDURE delVoy (

num IN Voyage.numVoyage%TYPE) IS

v_nom Voyage.nomVoyage%TYPE;

BEGIN

SELECT nomVoyage INTO v_nom FROM Voyage

WHERE numVoyage = num;

DELETE FROM Voyage WHERE numVoyage = num;
DBMS_OUTPUT.PUT_LINE('Voyage '||v_nom||' supprimé’);
EXCEPTION

WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR (-20002,'Le voyage '||num||’
n"existe pas’);

END delVoy;
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Packages

Un package contient deux types de
procédures ou fonctions :

Publigues
Privées

2018-2019 Bases de données
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Packages (2)

Deux parties distinctes dans un
package (chague partie doit étre creee
et compilée séparément) .
La partie déclaration ou specification qui
contient la déclaration des procedures,
fonctions, variables et traitement

d’exceptions de type public (accessibles de
I'extérieur du package)

La partie corps, ou body, qui contient la
définition des procédures ou fonctions de
type public déclarées dans la partie
spécification ainsi que les déclarations de
procédures ou fonctions de type privée
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Partie déclaration

CREATE [OR REPLACE] PACKAGE
nom-package [IS | AS]
[declaration-de-variable;]
[declaration-de-curseur;]
[declaration-de-procedure;]
[declaration-de-fonction;]
[declaration-d’exception;]

END nom-package;
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Exemple

numVoyage »numVoyage
numVille ¢ numVille /r;omVoyage
nomVille numOrdre nbMin
num\Pays duree nbMax
\ / typePension
“numPays 7
numVoyage
nomPays
_ dateDeb
formalite _
_ prix
vaccin
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Déclaration : exemple

CREATE OR REPLACE PACKAGE gestionVoy
1S
dateMax CONSTANT DATE := SYSDATE + 30;

FUNCTION lePays (maVille
Ville.nomVille%TYPE) RETURN
Pays.nomPays%TYPE;

PROCEDURE etablirAgenda(monVoyage
Voyage.numVoyage%TYPE);

END gestionVoy;
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Partie corps

CREATE [OR REPLACE] PACKAGE BODY
nom-package [IS | AS]
[définition-de-variable;]
[définition-de-curseur;]
[définition-de-procédure;]
[définition-de-fonction;]
[définition-d’exception;]
END nom-package;
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Corps : exemple
CREATE OR REPLACE PACKAGE BODY gestionVoy IS

FUNCTION lePays (maVille Ville.nomVille%TYPE)

RETURN Pays.nomPays%TYPE IS P Pays.nomPays%TYPE;
BEGIN SELECT nomPays INTO P FROM Pays WHERE
numPays = (SELECT numPays FROM Ville WHERE
nomVille = maVille); RETURN P; END lePays;

PROCEDURE etablirAgenda(monVoyage
Voyage.numVoyage%TYPE) IS

CURSOR voyageCUR IS SELECT * FROM Tarif WHERE
numVoyage = monVoyage; BEGIN FOR r IN voyageCUR
LOOP IF r.dateDeb <= dateMax

THEN DBMS_OUTPUT.PUT_LINE (r.dateDeb||r.prix);
END IF; END LOOP; END etablirAgenda;

END gestionVoy;

Bases de données
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Réference a un élément
d’un package
En PL/SQL :
nom -package .nom-élement;

En mode interactif :
EXECUTE nom-package.nom-variable := ...

EXECUTE nom-package.nom-procedure
(parametres-effectifs)

EXECUTE :nom-variable := nom-package.nom-
function (parametres-effectifs);
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Suppression d'un package

Pour la totalité du package :
DROP PACKAGE nom -package ;

Pour seulement le corps :
DROP PACKAGE BODY nom -package ;
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Surcharge d’'une procédure ou
d’une fonction

A l'intérieur d’un package, il est possible
de surcharger une procédure ou une
fonction, c’est-a-dire de définir plusieurs
procédures ou fonctions avec le méme
nom mais avec une liste de parametres
différente
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Exemple

On peut prevoir deux fonctions de
méme nom qui calculent, pour un
réalisateur passé en parametre, le
nombre de films mis en scene par cette
personne. Une fonction aura le nom
comme parametre, c’'est-a-dire une
chaine de caracteres, 'autre le numero
d’'individu, c’est-a-dire un NUMBER
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Packages (3)

Lorsqu’un package est utilisé par plusieurs
sessions, chaque session utilise sa propre
copie des variables et des curseurs.

Un utilisateur doit posséder le privilege
CREATE PROCEDURE pour créer un
package qui utilise ses propres objets

Un utilisateur doit posséder le privilege
CREATE ANY PROCEDURE pour créer un
package qui utilise n’importe quels objets
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Les déclencheurs (triggers)

Un traitement déclenché par un
évenement

| 'exeécution d’'un déclencheur est un
succes ou un échec

En cas d’échec, I'exécution du
traitement est stoppée, mais la
transaction qui I'a appelé peut soit
continuer soit étre annulée
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12 types de deéclencheurs

3 évéenements
INSERT
UPDATE
DELETE

2 modes
Ordre
Ligne (FOR EACH ROW)

2 moments
BEFORE
AFTER
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Ordre d’exécution

Il est possible d’associer un et un seul
déclencheur de chague type a chaque
table. Lorsque plusieurs déclencheurs
sont associés a la méme table, I'ordre
d’exécution est le suivant :

Déclencheur par ordre BEFORE

Pour chague lighe (FOR EACH ROW)
 Déclencheur par lignhe BEFORE
 Déclencheur par ligne AFTER

Déclencheur par ordre AFTER
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Déclencheur par ordre

CREATE [OR REPLACE] TRIGGER
nom -déclencheur

moment

évenement [OR événement ]

ON nom -table

bloc -PL/SQL;
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Exemple

CREATE OR REPLACE TRIGGER

ajoutVoyage

BEFORE

INSERT ON Voyage

BEGIN

IF USER !="FFIOREN' THEN

RAISE_APPLICATION_ERROR (-20001,
'Utilisateur interdit'); END IF;

END ajoutVoyage;
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Déclencheur par ordre (2)

Pour I'événement UPDATE, on peut
spécifier les attributs concernés en
mettant

UPDATE OF nom -attribut ,, ...
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Exemple

CREATE OR REPLACE TRIGGER

updateVoyage

BEFORE

UPDATE OF nomVoyage ON Voyage

BEGIN

IF USER !="FFIOREN' THEN

RAISE_APPLICATION_ERROR (-20001,
'Utilisateur interdit'); END IF;

END updateVoyage;
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Déclencheur par ordre
BEFORE

Un déclencheur par ordre avec I'option
BEFORE peut servir a soumettre
I'execution d’'un traitement de mise a
jour d’'une table a certaines conditions,
avec émission d’'un message d’erreur Si
les conditions ne sont pas vérifiees

2018-2019 Bases de données 109



Déclencheur par ordre AFTER

Un déclencheur par ordre avec I'option
AFTER peut servir a faire des
validations a posteriori afin de verifier
gue les modifications se sont bien
deroulées. Il peut aussi permettre de

propager des modifications dans
plusieurs tables
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Déclencheur par ligne

CREATE [OR REPLACE] TRIGGER
nom -déeclencheur

moment

évenement [OR événement ]

ON nom -table

-OR EACH ROW

WHERE condition ]

nloc -PL/SQL;
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Déclencheur par ligne (2)

On peut faire référence, dans la
condition WHERE ou dans le bloc
PL/SQL associe au déclencheur

a la valeur d’un attribut avant
modification en préfixant le nom de
I'attribut par :OLD,

et/ou a la valeur apres modification en
préfixant le nom de I'attribut par :NEW
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Déclencheur par ligne (3)

La valeur prise en compte dépend de
'ordre SQL :

Ordre SQL

‘OLD

INSERT
DELETE

UPDATE

2018-2019

NULL
Valeur avant

Su

ppression

Valeur avant
modification
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‘NEW
Valeur créée

NULL

Valeur apres
modification
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Exemple

CREATE OR REPLACE TRIGGER auditVoy
AFTER DELETE OR UPDATE OR INSERT

ON Voyage FOR EACH ROW On suppose ici qu'il
BEGIN existe une table

IF DELETING OR UPDATING THEN  reportVoyage qui a
INSERT INTO reportVoyage '5‘ Temgls”ucture
VALUES(SYSDATE, :0LD.numVoyage, ©* = 27 Voyage

:OLD.nomVoyage, :OLD.nbMin, :OLD.nbMax,
:OLD.typePension);

END IF;
IF INSERTING THEN NULL; END IF;
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Déclencheur par ligne (4)

La clause WHERE ne peut pas contenir
de requéte SQL

Un déclencheur par ligne avec I'option
BEFORE peut servir a effectuer des
traitements d’initialisation avant
I'execution des modifications sur la table
Un déclencheur par ligne avec I'option
AFTER permet de propager les
modifications ou de gerer 'historique
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Tables systeme

USER_ TRIGGERS

ALL

RIGGERS

DBA_ TRIGGERS

2018-2019
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Suppression

DROP TRIGGER nom -déclencheur
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Activation/Désactivation

ALTER TRIGGER nom-declencheur
DISABLE;

ALTER TABLE nom-table DISABLE ALL
TRIGGERS;

ALTER TRIGGER nom-declencheur
ENABLE;

ALTER TABLE nom-table ENABLE ALL
TRIGGERS;
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Restrictions

L’execution d’'un déclencheur dont le bloc
PL/SQL inclut des ordres INSERT, DELETE
ou UPDATE peut entrainer la mise en ceuvre
d’'un autre declencheur associe a la table
modifiee par ces actions
Dans ce cas, lors de I'execution d’'un
déclencheur de type ligne :
Aucun ordre SQL ne doit consulter ou
modifier une table déja utilisée en mode
modification par un autre utilisateur
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Restrictions (sulte)

Un déclencheur ne peut modifier la valeur
d’'un attribut declaré avec I'une des
contraintes PRIMARY KEY, UNIQUE ou
FOREIGN KEY

Un déclencheur ne peut pas consulter les
donnees d’'une table en mutation : une
table en mutation est une table directement
ou indirectement concernee par
I’évenement qui a provogue la mise en
ceuvre du déclencheur
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Exemple

CREATE OR REPLACE TRIGGER verifPrix

AFTER UPDATE OF prix OR INSERT ON Tarif

FOR EACH ROW

DECLARE

v_min Tarif.prix%TYPE;

v_max Tarif.prix%TYPE;

BEGIN

SELECT MIN(prix), MAX(prix)

INTO v_min, v_max

FROM Tarif;

IF :NEWAprix >v_max OR :NEW.prix <v_min

THEN RAISE_APPLICATION_ERROR (-20002, ‘Le prix
|Ll TO_CHAR(:NEW.prix)||' est hors limites'); END

END verifPrix;
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Exemple (suite)

Exécution :
INSERT INTO Tarif VALUES (6, SYSDATE, 1000)

Error starting at line 1 in command:
INSERT INTO Tarif VALUES (6, SYSDATE, 1000)
Error report:

SQL Error: ORA-04091: la table VOYAGE.TARIF est
en mutation ; le déclencheur ou la fonction ne peut la
VOIr
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Erreurs de compilation
(warnings)

Sous SQL Developer, pour afficher les
erreurs de compilation :

Se positionner sur I'objet cree avec des
erreurs

Avec la touche droite de la souris,
selectionner « Compile for Debug »
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