
Cours 4 : PL/SQL
Procedural Language/SQL
Blocs, variables, instructions, structures de

contrôle, curseurs, gestion des erreurs,
procédures/fonctions stockées, packages,

triggers

2018-2019

PL/SQL

�Chapitre 3 de la norme SQL3 sous le
nom SQL/PSM (Persistent Stored
Modules)

�Langage procédural plus portable
�Un script SQL Developeur peut contenir

des blocs de sous-programmes en
PL/SQL

�Traitement de transactions
Bases de données 2

2018-2019

PL/SQL (2)

�Construction de procédures ou
fonctions stockées qui améliorent le
mode client-serveur par stockage des
procédures ou fonctions souvent
utilisées au niveau serveur

�Gestion des erreurs (à la ADA)
�Construction de triggers (ou

déclencheurs)
Bases de données 3

2018-2019

Structure d’un bloc

� Un programme ou une procédure
PL/SQL est un ensemble de un ou
plusieurs blocs. Chaque bloc comporte
trois sections :

1. Section déclaration
2. Section corps du bloc
3. Section traitement des erreurs

Bases de données 4

2018-2019

1. Section déclaration

� Contient la description des structures
et des variables utilisées dans le bloc

� Section facultative

� Commence par le mot clé DECLARE

Bases de données 5

2018-2019

2. Section corps du bloc

� Contient les instructions du
programme et éventuellement, à la fin,
la section de traitement des erreurs

� Obligatoire

� Introduite par le mot clé BEGIN

� Se termine par le mot clé END

Bases de données 6

2018-2019

3. Section traitement
des erreurs

� Facultative

� Introduite par le mot clé EXCEPTION

Bases de données 7

2018-2019

Syntaxe

DECLARE
déclaration
BEGIN
corps -du-bloc
EXCEPTION
traitement-des -erreurs
END;
/ ← A ajouter obligatoirement

dans l’exécution d’un script
Bases de données 8

2018-2019

Exemple

SET SERVEROUTPUT ON

DECLARE
x VARCHAR2(10);
BEGIN
x := 'Bonjour';
DBMS_OUTPUT.PUT_LINE(x);
END;
/

Bases de données 9

2018-2019

Exemple (2)

DECLARE
erreurNb EXCEPTION;
nom Voyage .nomVoyage %TYPE;
min Voyage .nbMin %TYPE;
max Voyage .nbMax %TYPE;
BEGIN
...

Bases de données 10

Exemple (2 – suite)
...
BEGIN
SELECT nomVoyage , nbMin , nbMax
INTO nom , min , max
FROM Voyage WHERE numVoyage = 1;
IF max < min
THEN RAISE erreurNb ; END IF;

DBMS_OUTPUT.PUT_LINE (nom || ' OK ');
EXCEPTION
...

2018-2019 Bases de données 11

Exemple (2 – suite et fin)
...
EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE(

'numéro inconnu ');
WHEN erreurNb THEN
DBMS_OUTPUT.PUT_LINE(

nom || ' NBMIN > NBMAX');
END;
/
2018-2019 Bases de données 12

2018-2019

Types de variables

� Variables scalaires

� Types composés
• Record
• Table

Bases de données 13

2018-2019

Variables scalaires

� Types issus de SQL : CHAR, NUMBER,
DATE, VARCHAR2

� Types PL/SQL : BOOLEAN , SMALLINT ,
BINARY_INTEGER , DECIMAL , FLOAT ,
INTEGER, REAL , ROWID

� Les variables hôtes sont préfixées par « : »

Bases de données 14

2018-2019

Déclaration des variables
scalaires

nom -variable nom -du-type ;

nom -variable nom -table .nom -attribut %TYPE;

Bases de données 15

2018-2019

Déclaration pour un
enregistrement (record)

� Soit par référence à une structure de table ou
de curseur en utilisant ROWTYPE

nom -variable nom -table %ROWTYPE;

nom -variable nom -curseur %ROWTYPE;

Bases de données 16

Déclaration pour un
enregistrement (record) (2)

� Soit par énumération des rubriques qui la
composent. Cela se fait en deux étapes :

• Déclaration du type enregistrement
TYPE nom -du-type IS RECORD (
nom -attribut 1 type-attribut 1,
nom -attribut 2 type-attribut 2, ...);

• Déclarationdelavariabledetypeenregistrement
nom -variable nom -du-type ;

2018-2019 Bases de données 17

2018-2019

Exemple

DECLARE
TYPE recVoyage IS RECORD (
libelle Voyage.nomVoyage%TYPE ,
prixPropose NUMBER(8,2));
voyPerso recVoyage ; ...
BEGIN
voyPerso .prixPropose := 3601.43;
...

Bases de données 18

2018-2019

Tables

� Structure composée d’éléments d’un
même type scalaire

� L’accès à un élément de la table
s’effectue grâce à un indice, ou clé
primaire

� Cet index est déclaré de type
BINARY_INTEGER (valeurs entières
signées)

Bases de données 19

2018-2019

Déclaration pour une table

� Deux étapes :

• Déclarationdu type de l’élément de latable :

TYPE nom-du-type IS TABLE OF type-argument INDEX

BY BINARY_INTEGER;

• Déclaration de la variable de type table :
nom -variable nom -du-type ;

Bases de données 20

2018-2019

Exemple

DECLARE
TYPE tabNom IS TABLE OF VARCHAR2(20)
INDEX BY BINARY_INTEGER;
tableNom tabNom ; ...
BEGIN
tableNom (3) := 'Dupont';
...

Bases de données 21

2018-2019

Variables (scalaires ou
composées)

� Valeur initiale :
nom -variable nom -du-type := valeur ;

� Constante :
nom -variable nom -du-type DEFAULT valeur ;

ou
nom -variable CONSTANTnom -du-
type :=valeur ;

Bases de données 22

2018-2019

Variables (scalaires ou
composées) (2)

� Visibilité : une variable est utilisable
dans le bloc où elle a été définie ainsi
que dans les blocs imbriqués dans le
bloc de définition, sauf si elle est
redéfinie dans un bloc interne

Bases de données 23

2018-2019

Conversion de type

� Explicite avec
TO_CHAR, TO_DATE, TO_NUMBER,
RAWTOHEX, HEXTORAW

� Implicites, par conversion automatique

Bases de données 24

2018-2019

Instructions

� Affectations

� Instructions du langage SQL : CLOSE,
COMMIT, DELETE, FETCH, INSERT,
LOCK, OPEN, ROLLBACK,
SAVEPOINT, SELECT, SET
TRANSACTION, UPDATE

Bases de données 25

2018-2019

Instructions (2)

� Instructions de contrôle itératif ou
répétitif

� Instructions de gestion de curseurs

� Instructions de gestion des erreurs

Bases de données 26

2018-2019

Affectation

� Opérateur d’affectation :=

� Option INTO dans un ordre SELECT

� Instruction FETCH avec un curseur

Bases de données 27

Exemple
DECLARE

TYPE tabNom IS TABLE OF VARCHAR2(20)

INDEX BY BINARY_INTEGER;

tableNom tabNom;

i BINARY_INTEGER;

TYPE recVoyage IS RECORD (

libelle Voyage.nomVoyage%TYPE,

prixPropose NUMBER(8,2));

voyPerso recVoyage;

convers NUMBER(8,6);

BEGIN

... Bases de données 28

2018-2019

Exemple (suite)
...

BEGIN

convers := 6.55957;

tableNom(5) := 'Dupont';

i := 10;

tableNom(i) := 'Dupond';

voyPerso.libelle := 'Découverte du Japon';

voyPerso.prixPropose := 1989.08;

END;

Bases de données 29

Exemple (2)
DECLARE

v_nom Voyage.nomVoyage%TYPE;

v_min Voyage.nbMin%TYPE;

TYPE recVoyage IS RECORD (

r_nom Voyage.nomVoyage%TYPE,

r_min Voyage.nbMin%TYPE);

r_voyage recVoyage;

rr_Voyage Voyage%ROWTYPE;

BEGIN

...
Bases de données 30

2018-2019

Exemple (2 – suite et fin)
...

BEGIN

SELECT nomVoyage, nbMin

INTO v_nom, v_min

FROM Voyage WHERE numVoyage = 517;

SELECT nomVoyage, nbMin INTO r_Voyage

FROM Voyage WHERE numVoyage = 364;

SELECT * INTO rr_Voyage

FROM Voyage WHERE numVoyage = 618;

END;
Bases de données 31

2018-2019

Structures de contrôle

� Structure alternative

� Structure répétitives

Bases de données 32

2018-2019

Structures alternatives

IF condition THEN instructions ;
END IF;

IF condition THEN instructions ;
ELSE instructions ; END IF;

IF condition THEN instructions ;
ELSIF condition THEN instructions ;
ELSE instructions ; END IF;

Bases de données 33

2018-2019

Structures répétitives

LOOP instructions; END LOOP;

LOOP instructions; ...

EXIT WHEN condition; ...

END LOOP;

LOOP ...

IF condition THEN EXIT; END IF;

... END LOOP;

Bases de données 34

2018-2019

Structures répétitives (2)

FOR variable-indice IN [REVERSE]

val-début .. val-fin

LOOP instructions; END LOOP;

� variable-indice est une variable locale (locale à la
boucle) non déclarée

� val-début et val-fin sont des variables locales
déclarées et initialisées ou alors des constantes

� le pas est -1 si REVERSE est présent, sinon il est
égal à +1

Bases de données 35

2018-2019

Structures répétitives (3)

WHILE condition
LOOP
instructions ;
END LOOP;

Bases de données 36

2018-2019

Les curseurs

� Il y a création d’un curseur dès qu’on
exécute une instruction SQL. C’est une zone
de travail de l’environnement utilisateur qui
contient les informations relatives à
l’instruction SQL :
• Le texte source de l’ordre SQL
• Le texte «compilé» de l’ordre SQL
• Un tampon pour une ligne du résultat
• Le statut (cursor status)
• Des informations de travail et de contrôle

Bases de données 37

2018-2019

Curseurs implicites

� Gérés automatiquement par le noyau
dans les cas suivants :
• Une instruction SELECT exécutée sous

SQL Developer
• Une instruction SELECT donnant une

seule ligne de résultat sous PL/SQL
• Les instructions UPDATE, INSERT et

DELETE
• …

Bases de données 38

2018-2019

Curseurs explicites

� Obligatoires pour un SELECT
susceptible de produire plusieurs
lignes résultat

� Quatre étapes :
1) Déclaration du curseur
2) Ouverture du curseur
3) Traitement des lignes du résultat
4) Fermeture du curseur

Bases de données 39

2018-2019

1) Déclaration du curseur

� Association d’un nom de curseur à une
requête SELECT

� Se fait dans la section DECLARE d’un
bloc PL/SQL

CURSOR nom -curseur IS requête ;

� Un curseur peut être paramétré :

CURSOR nom -curseur (nom -p1 type -p1
[:= val-défaut], ...) IS requête ;

Bases de données 40

2018-2019

Exemple
DECLARE

CURSOR C1 IS SELECT numVoyage

FROM Tarif WHERE prix > 1000;

CURSOR C2 (p NUMBER(8),q NUMBER(8)) IS

SELECT nomVoyage FROM Voyage

WHERE nbMin >= p

AND nbMax <= q;

BEGIN

...
Bases de données 41

2018-2019

2) Ouverture d’un curseur

� Alloue un espace mémoire au curseur
et positionne les éventuels verrous

OPEN nom -curseur ;
ou

OPEN nom -curseur (liste -par-effectifs);
� Pour les paramètres, association par

position ou par nom sous la forme
paramètre -formel => paramètre -réel

Bases de données 42

2018-2019

Exemple

� OPEN C1;

� OPEN C2 (6, 20);

� OPEN C2 (q => 20, p => 6);

Bases de données 43

2018-2019

3) Traitement des lignes

� Autant d’instructions FETCH que de
lignes résultats :

FETCH nom -curseur
INTO liste -variables ;

ou
FETCH nom -curseur

INTO nom -enregistrement ;
� Au moins quatre formes possibles

Bases de données 44

Première forme : exemple
DECLARE
CURSOR C3 IS SELECT numVoyage,
nomVoyage FROM Voyage;
v_num Voyage.numVoyage%TYPE;
v_nom Voyage.nomVoyage%TYPE;
BEGIN
OPEN C3; LOOP
FETCH C3 INTO v_num, v_nom;
EXIT WHEN C3%NOTFOUND;
Traitement ;
END LOOP; CLOSE C3;
END;

45Bases de données

Première forme : exemple (bis)
DECLARE
CURSOR C3 IS SELECT numVoyage,
nomVoyage FROM Voyage;
v_num Voyage.numVoyage%TYPE;
v_nom Voyage.nomVoyage%TYPE;
BEGIN
OPEN C3; LOOP
FETCH C3 INTO v_num, v_nom;
EXIT WHEN C3%NOTFOUND;
dbms_output.put_line(v_num|| ' ' ||v_nom) ;
END LOOP; CLOSE C3;
END;

462018-2019 Bases de données

Deuxième forme : exemple
DECLARE
CURSOR C3 IS SELECT numVoyage,
nomVoyage FROM Voyage;
TYPE recVOY IS RECORD(
v_num Voyage.numVoyage%TYPE,
v_nom Voyage.nomVoyage%TYPE);
r_voy recVOY;
BEGIN
OPEN C3; LOOP FETCH C3 INTO r_voy;
EXIT WHEN C3%NOTFOUND;
Traitement ; END LOOP; CLOSE C3;
END;

472018-2019 Bases de données

Deuxième forme : exemple (bis)
DECLARE
CURSOR C3 IS SELECT numVoyage,
nomVoyage FROM Voyage;
TYPE recVOY IS RECORD(
v_num Voyage.numVoyage%TYPE,
v_nom Voyage.nomVoyage%TYPE);
r_voy recVOY;
BEGIN
OPEN C3; LOOP FETCH C3 INTO r_voy;
EXIT WHEN C3%NOTFOUND;
dbms_output.put_line(r_voy.v_num|| ' '

||r_voy.v_nom); END LOOP; CLOSE C3;
END; 48Bases de données

Troisième forme : exemple
DECLARE
CURSOR C3 IS SELECT numVoyage,
nomVoyage FROM Voyage;
r_voy C3%ROWTYPE;
BEGIN
OPEN C3; LOOP
FETCH C3 INTO r_voy;
EXIT WHEN C3%NOTFOUND;
Traitement ;
END LOOP; CLOSE C3;
END;

492018-2019 Bases de données

Troisième forme : exemple (bis)
DECLARE
CURSOR C3 IS SELECT numVoyage,
nomVoyage FROM Voyage;
r_voy C3%ROWTYPE;
BEGIN
OPEN C3; LOOP
FETCH C3 INTO r_voy;
EXIT WHEN C3%NOTFOUND;
dbms_output.put_line(r_voy.numvoyage|| ' '

||r_voy.nomvoyage) ;
END LOOP; CLOSE C3;
END;

50Bases de données

2018-2019

Quatrième forme : exemple
DECLARE
CURSOR C3 IS SELECT numVoyage,
nomVoyage FROM Voyage;
BEGIN
FOR rec IN C3 LOOP
Traitement ;
END LOOP;
END;

Bases de données 51

2018-2019

Quatrième forme : exemple (bis)
DECLARE
CURSOR C3 IS SELECT numVoyage,
nomVoyage FROM Voyage;
BEGIN
FOR rec IN C3 LOOP
dbms_output.put_line(rec.numvoyage|| ' '

||rec.nomvoyage) ;
END LOOP;
END;

Bases de données 52

2018-2019

Statut d’un curseur

Attribut Valeur
%FOUND Vrai si exécution correcte de l’ordre SQL
%NOTFOUND Vrai si exécution incorrecte de l’ordre SQL
%ISOPEN Vrai si curseur ouvert
%ROWCOUNT Nombre de lignes traitées par l’ordre SQL,

évolue à chaque ligne traitée par un
FETCH (zéro au départ)

Bases de données 53

2018-2019

Statut d’un curseur (2)

Curseur implicite Curseur explicite
SQL%FOUND nom-curseur%FOUND

SQL%NOTFOUND nom-curseur%NOTFOUND

SQL%ISOPEN nom-curseur%ISOPEN

SQL%ROWCOUNT nom-curseur%ROWCOUNT

Bases de données 54

Modification des données

� Se fait habituellement avec INSERT, UPDATE
ou DELETE

� Possibilité d’utiliser la clause FOR UPDATE dans
la déclaration du curseur. Cela permet d’utiliser
la clause

CURRENT OF nom -curseur
dans la clause WHERE des instructions
UPDATE et DELETE. Cela permet de modifier la
ligne du curseur traitée par le dernier FETCH, et
donc d’accélérer l’accès à cette ligne

552018-2019 Bases de données

Exemple
DECLARE

CURSOR C IS SELECT *

FROM Tarif FOR UPDATE OF prix;

aug Tarif.prix%TYPE;

BEGIN

FOR rec IN C LOOP

IF rec.prix < 1000 THEN aug := rec.prix*0.2;

ELSIF rec.prix < 2000 THEN aug := rec.prix*0.1;

ELSE aug := 0; DBMS_OUTPUT.PUT_LINE('OK ' || rec.numvoyage

|| ' ' || rec.datedeb); END IF;

UPDATE Tarif

SET prix = prix+aug WHERE CURRENT OF C;

END LOOP;

END; Bases de données 56

2018-2019

Modification des données (2)
�Dans le cas d’une clause FOR

UPDATE, la table est verrouillée en
mode row share (RS). Les lignes
concernées par le verrou sont les lignes
du SELECT de la définition du curseur

�En général, un COMMIT à
l’emplacement de la flèche ferme le
curseur. Mais ça n’est pas vrai sous
Oracle en PL/SQL

Bases de données 57

2018-2019

Gestion des erreurs
(erreurs standard)

Code d’erreur SQLCODE Erreur

100 NO_DATA_FOUND

-1 DUP_VAL_ON_INDEX

-6502 VALUE_ERROR

-1001 INVALID CURSOR

-1722 INVALID NUMBER

-6501 PROGRAM ERROR

-1017 LOGIN DENIED

-1422 TOO_MANY_ROWS

-1476 ZERO_DIVIDE

Bases de données 58

2018-2019

Gestion des erreurs
(erreurs standard) (2)

� La nature d’une erreur peut être connue
par appel au fonctions SQLCODE et
SQLERRM

� SQLCODE renvoie le statut d’erreur de
la dernière instruction SQL exécutée (0 si
n’y a pas d’erreur)

� SQLERRM renvoie le message d’erreur
correspondant à SQLCODE

Bases de données 59

Erreurs utilisateur
DECLARE

nom-anomalie EXCEPTION;

BEGIN

...

IF ... THEN RAISE nom-anomalie;

...

EXCEPTION

WHEN nom-anomalie THEN traitement;

END; Bases de données 60

2018-2019

Erreurs anonymes

� Pour les codes d’erreur n’ayant pas de
nom associé, il est possible de définir un
nom d’erreur (code entre -20000 et
-20999)

Bases de données 61

Exemple
DECLARE

e EXCEPTION;

PRAGMA EXCEPTION_INIT(e, -20091);

...

BEGIN

...

IF ... THEN RAISE e;

EXCEPTION

WHEN e THEN ...

END; Bases de données 62

Exemple (2)
DECLARE

e exception;

BEGIN

...

IF ... THEN RAISE e; END IF;

...

EXCEPTION

WHEN e THEN RAISE_APPLICATION_ERROR(

-20099, 'nom inéxistant');

END;

2018-2019 Bases de données 63

Exemple (2 bis)
DECLARE

...

BEGIN

...

IF ... THEN RAISE_APPLICATION_ERROR(

-20099, 'nom inéxistant');

END IF;

END;

2018-2019 Bases de données 64

2018-2019

Description du traitement
de l’erreur (syntaxe)

BEGIN

...

EXCEPTION

WHEN nom-erreur1 THEN traitement-erreur1;

...

WHEN nom-erreurn THEN traitement-erreurn;

WHEN OTHERS THEN traitement-autres-erreurs;

END;
Bases de données 65

2018-2019

Description du traitement
de l’erreur (syntaxe) (2)

�Possibilité d’écrire :

WHEN nom -erreur 1 OR nom -erreur 2
THEN ... ;

Bases de données 66

Exemple
...

EXCEPTION

WHEN NO_DATA_FOUND THEN ...;

WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE(

'SQLCODE = '||TO_CHAR(SQLCODE));

DBMS_OUTPUT.PUT_LINE(

'SQLERRM : '||TO_CHAR(SQLERRM));

END;
Bases de données 67

Procédures stockées
CREATE [OR REPLACE] PROCEDURE nom-procédure

[(argument [mode] type, ...)]

[IS | AS]

bloc-procédure;

� argument : nom d’un paramètre formel
� mode : définit si le paramètre formel est en

entrée (IN), en sortie (OUT) ou en entrée-
sortie (IN OUT). Par défaut : IN

� type : le type du paramètre formel
� bloc-procédure : le corps PL/SQL de la

procédure Bases de données 68

2018-2019

Exemple
CREATE OR REPLACE PROCEDURE

modifierPrix (num IN Voyage.numVoyage%TYPE) IS

BEGIN

BEGIN

UPDATE Tarif SET prix = prix * .50

WHERE numVoyage = num AND dateDeb < '31-12-19';

END;

BEGIN

UPDATE Tarif SET prix = prix * .60

WHERE numVoyage = num AND dateDeb > '31-12-20';

END;

END modifierPrix;

Bases de données 69

2018-2019

Fonctions stockées
CREATE [OR REPLACE] FUNCTION nom-fonction

[(argument [IN] type, ...)]

RETURN type-retour

[IS | AS]

bloc-fonction;

� Les paramètres sont forcément en entrée
(IN)

� Dans le bloc-fonction :
RETURN nom -variable ;

Bases de données 70

Exemple
CREATE OR REPLACE FUNCTION

moyennePrix (dd IN DATE) RETURN NUMBER IS

moy Tarif.prix%TYPE := 0;

e EXCEPTION;

BEGIN

SELECT AVG(prix) INTO moy FROM Tarif

WHERE dateDeb = dd;

IF moy IS NULL THEN RAISE e; END IF;

RETURN moy;

EXCEPTION

WHEN e THEN RETURN 0;

END moyennePrix; Bases de données 71

Informations à propos des
procédures/fonctions

� Erreurs
• USER_ERRORS
• ALL_ERRORS
• DBA_ERRORS

� Infos sur les procédures/fonctions :
• USER_OBJECTS
• ALL_OBJECTS
• DBA_OBJECTS

� Infos sur les textes source :
• USER_SOURCE
• ALL_SOURCE
• DBA_SOURCE

Bases de données 72

2018-2019

Supression d’une
procédure/fonction stockée

DROP PROCEDURE nom-procedure;

DROP FUNCTION nom-fonction;

Bases de données 73

2018-2019

Appel d’une
procédure/fonction stockée

dans un bloc PL/SQL

nom-procédure (liste-paramètres-effectifs);

nom-variable := nom-fonction(liste-paramètres-
effectifs);

Bases de données 74

2018-2019

Appel d’une
procédure/fonction stockée

dans un script SQL Developer
EXECUTE nom-procédure (liste-paramètres-

effectifs);

EXECUTE :nom-variable := nom-fonction (liste-
paramètres-effectifs);

EXECUTE DBMS_OUTPUT.PUT_LINE(nom-
fonction (liste-paramètres-effectifs));

Bases de données 75

2018-2019

Exemple
1. Création procédure

CREATE OR REPLACE PROCEDURE

nvVoy(num Voyage.numVoyage%TYPE,

nom Voyage.nomVoyage%TYPE)

IS

BEGIN

INSERT INTO Voyage (numVoyage,

nomVoyage) VALUES (num, nom);

END;

Bases de données 76

2018-2019

Exemple
2. Exécution procédure

EXECUTE

nvVoy (400, 'Voyage en Irlande');

Bases de données 77

2018-2019

Exemple
2bis. Exécution procédure

EXECUTE nvVoy (&num , &nom);

Enter Substitution Variable
NUM: 400

Enter Substitution Variable
NOM: 'Voyage en Irlande'

Bases de données 78

2018-2019

Exemple
2ter. Exécution procédure

PROMPT Entrez les infos sur un
nouvel voyage

ACCEPT num PROMPT Numéro
ACCEPT nom PROMPT Nom

Numéro : 400
Nom : 'Voyage en Irlande'

EXECUTE nvVoy (&num , &nom);

Bases de données 79

Exemple
1. Création fonction

CREATE OR REPLACE FUNCTION

moyenne(nom Voyage.nomVoyage%TYPE)

RETURN NUMBER IS moy Tarif.prix%TYPE;

BEGIN

SELECT AVG(prix) INTO moy FROM Tarif

WHERE numVoyage IN (SELECT numVoyage

FROM Voyage WHERE nomVoyage = nom);

RETURN moy;

END; Bases de données 80

2018-2019

Exemple
2. Exécution fonction

EXECUTE DBMS_OUTPUT.PUT_LINE (

moyenne('Circuit Heleni'));

Bases de données 81

2018-2019

Exemple
2bis. Exécution fonction

EXECUTE DBMS_OUTPUT.PUT_LINE (

moyenne(&nom));

Enter Substitution Variable

NOM: 'Circuit Heleni'

Bases de données 82

2018-2019

Exemple
2ter. Exécution fonction

ACCEPT nom PROMPT Nom

Nom : 'Circuit Heleni'

EXECUTE DBMS_OUTPUT.PUT_LINE (

moyenne(&nom));

Bases de données 83

2018-2019

Exemple
2quater. Exécution fonction

VARIABLE moy NUMBER

EXECUTE :moy := moyenne('Circuit Heleni');

PRINT moy

Bases de données 84

2018-2019

Gestion des erreurs
� Erreur détectée par le SGBD
� Erreur générée par l’utilisateur

Chaque catégorie peut être prise en
compte dans la section EXCEPTION
ou par l’environnement appelant

Bases de données 85

2018-2019

Gestion par une
section EXCEPTION

� Dans ce cas, l’exécution de la procédure ou
de la fonction est toujours considérée
comme réussie par l’environnement
appelant. En général, on stocke les
messages d’erreurs dans une table
spécifique accessible à l’environnement

� Exemple : en cas de suppression d’un
voyage, vérifier qu’il n’a pas de dates de
départ prévues

Bases de données 86

Exemple
CREATE PROCEDURE delVoyage(

num IN Voyage.numVoyage%TYPE) IS

filler CHAR(1); erreur EXCEPTION;

BEGIN

SELECT 'x' INTO filler FROM Tarif

WHERE numVoyage = num; RAISE erreur;

EXCEPTION

WHEN NO_DATA_FOUND THEN DELETE FROM Voyage

WHERE numVoyage = num; COMMIT;

WHEN erreur OR TOO_MANY_ROWS THEN
DBMS_OUTPUT.PUT_LINE ('Le voyage numéro : '||num||' a
déjà des dates de départ prevues');COMMIT;

END delVoyage;

Bases de données 87

Gestion des erreurs
par l’environnement

�Erreur émise par le SGBD : le code d’erreur,
sous la forme ORA_xxxxx , et le message
associé sont transmis au bloc appelant

�Erreur générée par l’utilisateur : utilisation de
la procédure standard

RAISE_APPLICATION_ERROR(numéro ,
texte);
• Le numéro doit être compris entre -20000 et -

20999
• L’exécution de RAISE_APPLICATION_ERROR

annule la transaction en cours 88

Exemple (on ne tient pas
compte des CIR)

CREATE PROCEDURE delVoy (

num IN Voyage.numVoyage%TYPE) IS

v_nom Voyage.nomVoyage%TYPE;

BEGIN

SELECT nomVoyage INTO v_nom FROM Voyage

WHERE numVoyage = num;

DELETE FROM Voyage WHERE numVoyage = num;

DBMS_OUTPUT.PUT_LINE('Voyage '||v_nom||' supprimé');

EXCEPTION

WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR (-20002,'Le voyage '||num||'
n''existe pas');

END delVoy; 89

2018-2019

Packages

�Un package contient deux types de
procédures ou fonctions :
• Publiques
• Privées

Bases de données 90

Packages (2)
�Deux parties distinctes dans un

package (chaque partie doit être créée
et compilée séparément) :
• La partie déclaration ou spécification qui

contient la déclaration des procédures,
fonctions, variables et traitement
d’exceptions de type public (accessibles de
l’extérieur du package)

• La partie corps, ou body, qui contient la
définition des procédures ou fonctions de
type public déclarées dans la partie
spécification ainsi que les déclarations de
procédures ou fonctions de type privé

91

2018-2019

Partie déclaration
CREATE [OR REPLACE] PACKAGE

nom-package [IS | AS]

[déclaration-de-variable;]

[déclaration-de-curseur;]

[déclaration-de-procédure;]

[déclaration-de-fonction;]

[déclaration-d’exception;]

END nom-package;

Bases de données 92

2018-2019

Exemple
Etape

numVoyage

numVille

numOrdre

duree

Voyage
numVoyage

nomVoyage

nbMin

nbMax

typePension

Ville
numVille

nomVille

numPays

Pays
numPays

nomPays

formalite

vaccin

Tarif
numVoyage

dateDeb

prix

Bases de données 93

Déclaration : exemple

CREATE OR REPLACE PACKAGE gestionVoy

IS

dateMax CONSTANT DATE := SYSDATE + 30;

FUNCTION lePays (maVille
Ville.nomVille%TYPE) RETURN
Pays.nomPays%TYPE;

PROCEDURE etablirAgenda(monVoyage
Voyage.numVoyage%TYPE);

END gestionVoy;
2018-2019 Bases de données 94

2018-2019

Partie corps

CREATE [OR REPLACE] PACKAGE BODY

nom-package [IS | AS]

[définition-de-variable;]

[définition-de-curseur;]

[définition-de-procédure;]

[définition-de-fonction;]

[définition-d’exception;]

END nom-package;
Bases de données 95

Corps : exemple
CREATE OR REPLACE PACKAGE BODY gestionVoy IS

FUNCTION lePays (maVille Ville.nomVille%TYPE)
RETURN Pays.nomPays%TYPE IS P Pays.nomPays%TYPE;
BEGIN SELECT nomPays INTO P FROM Pays WHERE
numPays = (SELECT numPays FROM Ville WHERE
nomVille = maVille); RETURN P; END lePays;

PROCEDURE etablirAgenda(monVoyage
Voyage.numVoyage%TYPE) IS
CURSOR voyageCUR IS SELECT * FROM Tarif WHERE
numVoyage = monVoyage; BEGIN FOR r IN voyageCUR
LOOP IF r.dateDeb <= dateMax
THEN DBMS_OUTPUT.PUT_LINE (r.dateDeb||r.prix);
END IF; END LOOP; END etablirAgenda;
END gestionVoy;

Bases de données 96

2018-2019

Référence à un élément
d’un package

�En PL/SQL :
nom -package .nom -élément ;

�En mode interactif :
EXECUTE nom-package.nom-variable := ...

EXECUTE nom-package.nom-procedure
(paramètres-effectifs)

EXECUTE :nom-variable := nom-package.nom-
function (paramètres-effectifs);

Bases de données 97

2018-2019

Suppression d’un package

�Pour la totalité du package :
DROP PACKAGE nom -package ;

�Pour seulement le corps :
DROP PACKAGE BODY nom -package ;

Bases de données 98

2018-2019

Surcharge d’une procédure ou
d’une fonction

�A l’intérieur d’un package, il est possible
de surcharger une procédure ou une
fonction, c’est-à-dire de définir plusieurs
procédures ou fonctions avec le même
nom mais avec une liste de paramètres
différente

Bases de données 99

2018-2019

Exemple

�On peut prévoir deux fonctions de
même nom qui calculent, pour un
réalisateur passé en paramètre, le
nombre de films mis en scène par cette
personne. Une fonction aura le nom
comme paramètre, c’est-à-dire une
chaîne de caractères, l’autre le numéro
d’individu, c’est-à-dire un NUMBER

Bases de données 100

2018-2019

Packages (3)
� Lorsqu’un package est utilisé par plusieurs

sessions, chaque session utilise sa propre
copie des variables et des curseurs.

� Un utilisateur doit posséder le privilège
CREATE PROCEDURE pour créer un
package qui utilise ses propres objets

� Un utilisateur doit posséder le privilège
CREATE ANY PROCEDURE pour créer un
package qui utilise n’importe quels objets

Bases de données 101

2018-2019

Les déclencheurs (triggers)

�Un traitement déclenché par un
événement

�L’exécution d’un déclencheur est un
succès ou un échec

�En cas d’échec, l’exécution du
traitement est stoppée, mais la
transaction qui l’a appelé peut soit
continuer soit être annulée

Bases de données 102

2018-2019

12 types de déclencheurs
�3 événements

• INSERT
• UPDATE
• DELETE

�2 modes
• Ordre
• Ligne (FOR EACH ROW)

�2 moments
• BEFORE
• AFTER

Bases de données 103

2018-2019

Ordre d’exécution

� Il est possible d’associer un et un seul
déclencheur de chaque type à chaque
table. Lorsque plusieurs déclencheurs
sont associés à la même table, l’ordre
d’exécution est le suivant :

1. Déclencheur par ordre BEFORE
2. Pour chaque ligne (FOR EACH ROW)

• Déclencheur par ligne BEFORE
• Déclencheur par ligne AFTER

3. Déclencheur par ordre AFTER
Bases de données 104

2018-2019

Déclencheur par ordre

CREATE [OR REPLACE] TRIGGER
nom -déclencheur
moment
événement [OR événement]
ON nom -table
bloc -PL/SQL ;

Bases de données 105

2018-2019

Exemple
CREATE OR REPLACE TRIGGER

ajoutVoyage

BEFORE

INSERT ON Voyage

BEGIN

IF USER != 'FFIOREN' THEN

RAISE_APPLICATION_ERROR (-20001,

'Utilisateur interdit'); END IF;

END ajoutVoyage;
Bases de données 106

2018-2019

Déclencheur par ordre (2)

� Pour l’événement UPDATE, on peut
spécifier les attributs concernés en
mettant

UPDATE OF nom -attribut 1, ...

Bases de données 107

2018-2019

Exemple
CREATE OR REPLACE TRIGGER

updateVoyage

BEFORE

UPDATE OF nomVoyage ON Voyage

BEGIN

IF USER != 'FFIOREN' THEN

RAISE_APPLICATION_ERROR (-20001,

'Utilisateur interdit'); END IF;

END updateVoyage;
Bases de données 108

2018-2019

Déclencheur par ordre
BEFORE

�Un déclencheur par ordre avec l’option
BEFORE peut servir à soumettre
l’exécution d’un traitement de mise à
jour d’une table à certaines conditions,
avec émission d’un message d’erreur si
les conditions ne sont pas vérifiées

Bases de données 109

2018-2019

Déclencheur par ordre AFTER

�Un déclencheur par ordre avec l’option
AFTER peut servir à faire des
validations a posteriori afin de vérifier
que les modifications se sont bien
déroulées. Il peut aussi permettre de
propager des modifications dans
plusieurs tables

Bases de données 110

2018-2019

Déclencheur par ligne

CREATE [OR REPLACE] TRIGGER
nom -déclencheur
moment
événement [OR événement]
ON nom -table
FOR EACH ROW
[WHERE condition]
bloc -PL/SQL ;

Bases de données 111

2018-2019

Déclencheur par ligne (2)

�On peut faire référence, dans la
condition WHERE ou dans le bloc
PL/SQL associé au déclencheur
à la valeur d’un attribut avant
modification en préfixant le nom de
l’attribut par :OLD ,
et/ou à la valeur après modification en
préfixant le nom de l’attribut par :NEW

Bases de données 112

2018-2019

Déclencheur par ligne (3)

�La valeur prise en compte dépend de
l’ordre SQL :

Ordre SQL :OLD :NEW
INSERT NULL Valeur créée

DELETE
Valeur avant
suppression

NULL

UPDATE
Valeur avant
modification

Valeur après
modification

Bases de données 113

Exemple
CREATE OR REPLACE TRIGGER auditVoy

AFTER DELETE OR UPDATE OR INSERT

ON Voyage FOR EACH ROW

BEGIN

IF DELETING OR UPDATING THEN

INSERT INTO reportVoyage

VALUES(SYSDATE, :OLD.numVoyage,
:OLD.nomVoyage, :OLD.nbMin, :OLD.nbMax,
:OLD.typePension);

END IF;

IF INSERTING THEN NULL; END IF;

END;

On suppose ici qu’il
existe une table
reportVoyage qui a
la meme structure
de la table Voyage

Bases de données 114

Déclencheur par ligne (4)

� La clause WHERE ne peut pas contenir
de requête SQL

� Un déclencheur par ligne avec l’option
BEFORE peut servir à effectuer des
traitements d’initialisation avant
l’exécution des modifications sur la table

� Un déclencheur par ligne avec l’option
AFTER permet de propager les
modifications ou de gérer l’historique

2018-2019 Bases de données 115

2018-2019

Tables système

� USER_TRIGGERS

� ALL_TRIGGERS

� DBA_TRIGGERS

Bases de données 116

2018-2019

Suppression

DROP TRIGGER nom -déclencheur ;

Bases de données 117

2018-2019

Activation/Désactivation

� ALTER TRIGGER nom-déclencheur

DISABLE;

� ALTER TABLE nom-table DISABLE ALL

TRIGGERS;

� ALTER TRIGGER nom-déclencheur

ENABLE;

� ALTER TABLE nom-table ENABLE ALL

TRIGGERS;
Bases de données 118

2018-2019

Restrictions

�L’exécution d’un déclencheur dont le bloc
PL/SQL inclut des ordres INSERT, DELETE
ou UPDATE peut entraîner la mise en œuvre
d’un autre déclencheur associé à la table
modifiée par ces actions

�Dans ce cas, lors de l’exécution d’un
déclencheur de type ligne :
• Aucun ordre SQL ne doit consulter ou

modifier une table déjà utilisée en mode
modification par un autre utilisateur

Bases de données 119

2018-2019

Restrictions (suite)

• Un déclencheur ne peut modifier la valeur
d’un attribut déclaré avec l’une des
contraintes PRIMARY KEY, UNIQUE ou
FOREIGN KEY

• Un déclencheur ne peut pas consulter les
données d’une table en mutation : une
table en mutation est une table directement
ou indirectement concernée par
l’événement qui a provoqué la mise en
œuvre du déclencheur

Bases de données 120

Exemple
CREATE OR REPLACE TRIGGER verifPrix
AFTER UPDATE OF prix OR INSERT ON Tarif
FOR EACH ROW
DECLARE
v_min Tarif.prix%TYPE;
v_max Tarif.prix%TYPE;
BEGIN
SELECT MIN(prix), MAX(prix)
INTO v_min, v_max
FROM Tarif;
IF :NEW.prix > v_max OR :NEW.prix < v_min
THEN RAISE_APPLICATION_ERROR (-20002, 'Le prix

'|| TO_CHAR(:NEW.prix)||' est hors limites'); END
IF;

END verifPrix;
Bases de données 121

2018-2019

Exemple (suite)

�Exécution :
INSERT INTO Tarif VALUES (6, SYSDATE, 1000)

Error starting at line 1 in command:
INSERT INTO Tarif VALUES (6, SYSDATE, 1000)
Error report:
SQL Error: ORA-04091: la table VOYAGE.TARIF est

en mutation ; le déclencheur ou la fonction ne peut la
voir

Bases de données 122

2018-2019

Erreurs de compilation
(warnings)

�Sous SQL Developer, pour afficher les
erreurs de compilation :
• Se positionner sur l’objet crée avec des

erreurs
• Avec la touche droite de la souris,

sélectionner « Compile for Debug »

Bases de données 123

