Feuille 6 - Calcul matriciel

1 Opérations sur les matrices

1. Exercice corrigé en amphi

Calculer, quand cela est possible, les produits AB et BA:

(a)
$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 2 \\ -2 & 1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

(b)
$$A = \begin{pmatrix} a_1 & \cdots & a_n \end{pmatrix}$$
 et $B = \begin{pmatrix} b_1 \\ \vdots \\ b_p \end{pmatrix}$

2. Exercice corrigé en amphi

Soit $A = (a_{ij})_{ij} \in \mathcal{M}_3$

$$L_1 = \begin{pmatrix} a_{11} & a_{12} & a_{13} \end{pmatrix}, L_2 = \begin{pmatrix} a_{21} & a_{22} & a_{23} \end{pmatrix}, L_3 = \begin{pmatrix} a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 les trois lignes de A

$$C_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix}, C_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix}, C_3 = \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix}$$
 les trois colonnes de A

(a)
$$P = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma \end{pmatrix}$$

- i. Calculer PA et vérifier que ses lignes sont αL_1 , βL_2 et γL_3 .
- ii. Calculer AP et vérifier que ses colonnes sont αC_1 , βC_2 et γC_3 .

(b)
$$P = \begin{pmatrix} 1 & \lambda & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- i. Calculer PA et vérifier que ses lignes sont $L_1 + \lambda L_2$, L_2 et L_3 .
- ii. Calculer AP et vérifier que ses colonnes sont C_1 , $C_2 + \lambda C_1$ et C_3 .

(c)
$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

- i. Calculer PA et vérifier que ses lignes sont L_1 , L_3 et L_2 .
- ii. Calculer AP et vérifier que ses colonnes sont C_1 , C_3 et C_2 .

3. (a) Soit $A=(a_{ij})_{ij}\in\mathcal{M}_{3,2}$ vérifiant

$$\forall (i,j) \in \{1,2,3\} \times \{1,2\}, \ a_{ij} = i+j-2$$

Calculer A puis tA .

(b) Soit $B = (b_{ij})_{ij} \in \mathcal{M}_{2,4}$ vérifiant

$$\forall (i,j) \in \{1,2\} \times \{1,2,3,4\}, \ b_{ij} = i-j$$

Calculer B puis tB .

- (c) i. Calculer AB puis $^t(AB)$.
 - ii. Calculer tB tA et vérifier que ${}^t(AB) = {}^tB$ tA .
- (d) Le produit BA est-il défini?
- 4. Soient

$$A = \begin{pmatrix} -5 & 2 & 3 \\ 2 & -3 & 4 \end{pmatrix}, B = \begin{pmatrix} 2 & -1 & 1 & 0 \\ 0 & 2 & 2 & 2 \\ 3 & 0 & -1 & 3 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & -1 & 0 \end{pmatrix}, D = \begin{pmatrix} 2 & -1 \\ 1 & 2 \\ 3 & -2 \end{pmatrix}.$$

- (a) Calculer les produits AB, AD, BC, CB et CD.
- (b) Existe-t-il d'autres produits possibles entre ces matrices ? Si oui, les calculer.

5. Soit
$$A = \begin{pmatrix} 0 & 4 & 2 \\ 0 & 2 & 0 \\ 2 & -8 & -4 \end{pmatrix}$$
. Vérifier que $A^3 + 2A^2 - 12A = -8I_3$.

6. Soient
$$A = \begin{pmatrix} 3 & 1 & 2 \\ 2 & 0 & 2 \\ 1 & 2 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 \\ 0 & 3 \\ 1 & 0 \end{pmatrix}$ et $C = \begin{pmatrix} 3 & 1 \\ -2 & 4 \\ -1 & 1 \end{pmatrix}$.

- (a) Calculer AB et AC.
- (b) Justifier que la règle de simplification

$$\forall (n, p, m) \in (\mathbb{N}^*)^3, \ \forall A \in \mathcal{M}_{n,p}, \ \forall (B, C) \in (\mathcal{M}_{p,m})^2, \quad AB = AC \Rightarrow B = C$$
 n'est pas valide.

7. Soit $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Déterminer $\{M \in M_2; AM = MA\}$.

- 8. (a) A et B sont deux matrices carrées quelconques de taille n.
 - i. Développer $(A + B)^2$.
 - ii. Développer $(A + B)^3$.

- (b) A et B sont deux matrices carrées de taille n vérifiantAB = BA.
 - i. Développer $(A + B)^2$.
 - ii. Développer $(A + B)^3$.
- 9. Les formules suivantes sont-elles valides pour A, B et C trois matrices carrées quelconques de taille n?

(a)
$$A^3 + A^2B + A = A(A^2 + AB + I_n)$$

(b)
$$A^2B - 2B^2A + AB = (A^2 - 2BA + A)B$$

(c)
$$AB^2 + A^3B^2 + AB = AB(B + A^2B + I_n)$$

(d)
$$A^3B - 2AB^2 + AB = A(A^2 - 2B + I_n)B$$

10. Soit
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- (a) Montrer par récurrence que pour tout entier $n \ge 1$, $A^n = \begin{pmatrix} 1 & 0 & n \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- (b) Calculer $S_n = \sum_{k=1}^n A^k$ en fonction de n.
- 11. Soit $A=\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ et f_A l'application associée à A définie par :

$$f_A: \begin{cases} \mathbb{R}^3 & \longrightarrow \mathbb{R}^2 \\ X & \longrightarrow f_A(X) = AX \end{cases}$$

(a) Calculer
$$f_A(X)$$
 pour $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

(b) Soit
$$Y=\begin{pmatrix} y_1\\y_2\end{pmatrix}\in\mathbb{R}^2$$
, déterminer $f_A^{-1}(\{Y\})=\{X\in\mathbb{R}^3;\ f_A(X)=Y\}$.

- (c) f_A est-elle injective? surjective? bijective?
- 12. Exercice corrigé en amphi : Application du calcul matriciel aux relations binaires

Rappel : Soit $\mathcal{R} = (E, F, G_{\mathcal{R}})$ une relation binaire de l'ensemble $E = \{x_1, \dots, x_n\}$ dans l'ensemble $F = \{y_1, \dots, y_p\}$.

On définit R, la matrice d'adjacence de $\mathcal R$:

$$\forall i \in \{1, \dots, n\}; \ \forall j \in \{1, \dots, p\} \ r_{ij} = \begin{cases} 1 & \text{si } x_i \mathcal{R} y_j \\ 0 & \text{sinon} \end{cases}$$

- (a) Soit \mathcal{R} une relation binaire sur E.
 - i. Quelle est la propriété de R qui caractérise le fait que la relation \mathcal{R} est
 - réflexive?
 - symétrique?
 - antisymétrique?
 - ii. Démontrer que R est transitive si et seulement si

$$\forall (i,j) \in \{1,\ldots,n\}^2, (R^2)_{ij} = 1 \implies r_{ij} = 1$$

- iii. Exprimer la matrice d'adjacence de \mathcal{R}^{-1} en fonction de R.
- (b) Soit $\mathcal{R} = (E, F, G_{\mathcal{R}})$ et R sa matrice d'adjacence, $\mathcal{S} = (F, H, G_{\mathcal{S}})$ et S sa matrice d'adjacence.

Calculer la matrice d'adjacence de $S \circ R$ en fonction de R et de S.

13. Exercice supplémentaire

Soit
$$A = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 2 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$

- (a) Calculer AB puis $^t(AB)$.
- (b) Calculer tB tA et vérifier que ${}^t(AB) = {}^tB$ tA .

14. Exercice supplémentaire

Soient
$$A = \begin{pmatrix} -2 & 4 \\ 3 & -6 \end{pmatrix}$$
 et $B = \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}$.

- (a) Vérifiez que AB = 0 bien que $A \neq 0$ et $B \neq 0$.
- (b) Calculer BA et vérifier que $AB \neq BA$.

15. Exercice supplémentaire

Soit
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 et f_A l'application associée à A définie par :

$$f_A: \begin{cases} \mathbb{R}^2 & \longrightarrow \mathbb{R}^3 \\ X & \longrightarrow f_A(X) = AX \end{cases}$$

- (a) Calculer $f_A(X)$ pour $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$
- (b) Soit $Y=\begin{pmatrix}1\\1\\1\end{pmatrix}$, déterminer $f_A^{-1}(\{Y\})=\{X\in\mathbb{R}^2;\ f_A(X)=Y\}$.
- (c) Justifier que f_A n'est pas bijective.

2 Matrices inversibles

1. Exercice corrigé en amphi

Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2$$

Démontrer que si $ad - bc \neq 0$, alors A est inversible et $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

2. Exercice corrigé en amphi

Soit $A \in \mathcal{M}_{nn}$. Montrer par un raisonnement par l'absurde que s'il existe $X \in \mathcal{M}_{n,1}$ avec $X \neq 0$ tel que AX = 0, alors A n'est pas inversible.

3. (a) Soit $A_1 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.

Montrer que A_1 est inversible et déterminer A_1^{-1} .

(b) Soit $A_2 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Trouver $X\in\mathcal{M}_{3,1}$ avec $X\neq 0$ tel que AX=0. En déduire que A_2 n'est pas inversible.

4. Exercice corrigé en amphi

Soit
$$A = \begin{pmatrix} 0 & 4 & 2 \\ 0 & 2 & 0 \\ 2 & -8 & -4 \end{pmatrix}$$
.

- (a) On a montré que $A^3 + 2A^2 12A = -8I_3$. En déduire que A est inversible et calculer A^{-1} .
- (b) Soit f_A l'application associée à A définie par :

$$f_A: \begin{cases} \mathbb{R}^3 & \longrightarrow \mathbb{R}^3 \\ X & \longrightarrow f_A(X) = AX \end{cases}$$

Justifier que f_A est bijective et déterminer son application réciproque f_A^{-1} .

5. Soit $A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$.

Soit f_A l'application associée à A définie par :

$$f_A: \begin{cases} \mathbb{R}^3 & \longrightarrow \mathbb{R}^3 \\ X & \longrightarrow f_A(X) = AX \end{cases}$$

- (a) Calculer $f_A(X)$ pour $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$
- (b) Soit $Y \in \mathbb{R}^3$, déterminer $f_A^{-1}(\{Y\}) = \{X \in \mathbb{R}^3; f_A(X) = Y\}$.
- (c) Démontrer que f_A est bijective et déterminer son application réciproque f_A^{-1} .
- (d) En déduire que A est inversible et calculer A^{-1}
- 6. Soit $A = \begin{pmatrix} 2 & 2 & -2 \\ 3 & 1 & 3 \\ -1 & 1 & 3 \end{pmatrix}$.
 - (a) Calculer $A^2 2A$.
 - (b) En déduire que A est inversible et calculer son inverse.
 - (c) Soit f l'application définie par :

$$f: \begin{cases} \mathcal{M}_3 & \longrightarrow \mathcal{M}_3 \\ M & \longrightarrow f(M) = MA \end{cases}$$

- i. Soit $P \in \mathcal{M}_3$. Déterminer $f^{-1}(\{P\}) = \{M \in \mathcal{M}_3; \ f_A(M) = P\}$.
- ii. En déduire que f est bijective et déterminer son application réciproque f^{-1} .
- 7. Soit $P \in \mathcal{M}_p$ inversible et $A \in \mathcal{M}_p$.

 Montrer par récurrence que pour tout entier $n \in \mathbb{N}^*$, on a $(P \times A \times P^{-1})^n = P \times A^n \times P^{-1}$.
- 8. Etude d'une suite récurrente double :

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles vérifiant

$$\forall n \in \mathbb{N}, \ u_{n+1} = 4u_n + 2v_n; \ v_{n+1} = -3u_n - v_n$$

et $u_0 = 0$; $v_0 = 1$.

On définit la suite $(X_n)_{n\in\mathbb{N}}$ par $X_n=\begin{pmatrix} u_n\\v_n\end{pmatrix}$.

- (a) Calculer X_0 .
- (b) Déterminer $A \in \mathcal{M}_2$ telle que $X_{n+1} = AX_n$
- (c) Montrer par récurrence que $\forall n \in \mathbb{N}^*, \ X_n = A^n X_0.$
- (d) Soit $P = \begin{pmatrix} -2 & 1 \\ 3 & -1 \end{pmatrix}$. Calculer P^{-1} .
- (e) Soit $D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. Calculer D^n pour $n \in \mathbb{N}^*$.
- (f) Vérifier que $PDP^{-1} = A$.

- (g) Calculer A^n pour $n \in \mathbb{N}^*$.
- (h) En déduire u_n et v_n en fonction de n.

9. Exercice corrigé en amphi

A est une matrice carrée inversible de taille n.

- (a) Montrer que tA est aussi inversible et $({}^tA)^{-1} = {}^t(A^{-1})$.
- (b) Montrer que si A est symétrique, A^{-1} l'est aussi.
- (c) Montrer que si A est antisymétrique, A^{-1} l'est aussi.

10. Exercice corrigé en amphi

A est une matrice orthogonale de taille n. Montrer que A est inversible et calculer A^{-1} .

11. La proposition suivante est-elle vraie ou fausse?

$$\forall n \in \mathbb{N}^*, \ \forall (A, B) \in (\mathcal{M}_n)^2, \quad A \text{ et } B \text{ inversibles} \Rightarrow A + B \text{ inversible}$$

12. Exercice supplémentaire

(a) Soit
$$A_1 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
.

Montrer que A_1 est inversible et déterminer A_1^{-1} .

(b) Soit
$$A_2 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
.

Trouver $X \in \mathcal{M}_{3,1}$ avec $X \neq 0$ tel que AX = 0. En déduire que A_2 n'est pas inversible.

13. Exercice supplémentaire

Soit
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & 0 \\ 3 & 0 & 3 \end{pmatrix}$$
.

Soit f_A l'application associée à A définie par :

$$f_A: \begin{cases} \mathbb{R}^3 & \longrightarrow \mathbb{R}^3 \\ X & \longrightarrow f_A(X) = AX \end{cases}$$

- (a) Calculer $f_A(X)$ pour $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$
- (b) Déterminer $f_A^{-1}(\{0\})$.
- (c) Justifier que f_A n'est pas bijective puis en déduire que A n'est pas inversible.

3 Calculs de déterminants

1. Exercice corrigé en amphi

Calculer les déterminants des matrices suivantes :

$$\begin{pmatrix} 1 & 3 \\ -2 & 5 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 3 & -1 \\ -2 & 5 & 0 \\ 8 & 9 & -4 \end{pmatrix},$$

2. Exercice corrigé en amphi

Soit $A \in \mathcal{M}_3$.

- (a) A_1 est la matrice obtenue à partir de A en multipliant une ligne de A par un réel λ . Montrer que $\det(A_1) = \lambda \det(A)$.
- (b) A_2 est la matrice obtenue à partir de A en échangeant les lignes i et j de A ($i \neq j$). Montrer que $\det(A_2) = -\det(A)$.
- (c) A_3 est la matrice obtenue à partir de A en ajoutant à la ligne i de A λ fois la ligne j de A $(i \neq j)$. Montrer que $\det(A_3) = \det(A)$.
- (d) En déduire que si deux lignes de A sont égales, alors det(A) = 0.

3. Exercice corrigé en amphi

Soit
$$A = \begin{pmatrix} 0 & 4 & 2 \\ 0 & 2 & 0 \\ 2 & -8 & -4 \end{pmatrix}$$
.

- (a) Caluler le déterminant de A.
- (b) Justifier que A est inversible.
- (c) Calculer A^{-1} par la méthode des cofacteurs.

4. A et B sont deux matrices carrées de taille 2 et λ est un réel.

Démontrer les propriétés suivantes :

(a)
$$\det({}^tA) = \det(A)$$

(b)
$$\det(\lambda A) = \lambda^2 \times \det(A)$$

(c)
$$det(AB) = det(A) \times det(B) = det(BA)$$

5. Calculer les déterminants des matrices suivantes :

$$\begin{pmatrix} 1 & 4 \\ -1 & 5 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ 4 & 5 & 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 3 & 1 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 4 & 0 & 2 \\ 3 & 2 & 10 & -1 \\ 2 & 5 & 1 & 0 \end{pmatrix}$$

6. Soit A une matrice orthogonale de taille n. Calculer le déterminant de A.

7. Soit
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 3 & 1 & 3 \\ -1 & 1 & 3 \end{pmatrix}$$
.

- (a) Caluler le déterminant de A.
- (b) Justifier que A est inversible.
- (c) Calculer A^{-1} par la méthode des cofacteurs.

8.
$$A_t = \begin{pmatrix} 0 & 2 & -1 \\ 3 & 1 & 1 \\ -1 & 1 & t \end{pmatrix}$$
.

- (a) Caluler le déterminant de A en fonction de t.
- (b) Donner une condition nécessaire et suffisante sur t pour que A_t soit inversible.