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1  | Introduc t ion

In the past years, fields such as computer vision and natural lan-
guage processing have shown impressive results thanks to the rise 
of deep learning methods. What makes these methods powerful is 
not fully understood yet, but one key element is their ability to han-
dle and exploit high dimensional structured data. Therefore, deep 
learning seems particularly suited to extract relevant information 
from genomic data. It has indeed been used for many tasks outside 

population genetics, such as detection of alternative splicing sites, 
prediction of protein binding sites or other phenotype markers 
(Alipanahi et al., 2015; Jaganathan et al., 2019; Ma et al., 2018).

As genomic data become more and more available, it is now pos-
sible to leverage genetic variation within species or populations to 
investigate complex demographic histories including multiple admix-
ture events, population structure or size fluctuation through time. In 
fact, initiatives like the 1,000 Genomes Project for human popula-
tions (Consortium et al., 2010) have been extended for better world 
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Abstract
For the past decades, simulation-based likelihood-free inference methods have ena-
bled researchers to address numerous population genetics problems. As the richness 
and amount of simulated and real genetic data keep increasing, the field has a strong 
opportunity to tackle tasks that current methods hardly solve. However, high data 
dimensionality forces most methods to summarize large genomic data sets into a rel-
atively small number of handcrafted features (summary statistics). Here, we propose 
an alternative to summary statistics, based on the automatic extraction of relevant 
information using deep learning techniques. Specifically, we design artificial neural 
networks (ANNs) that take as input single nucleotide polymorphic sites (SNPs) found 
in individuals sampled from a single population and infer the past effective popula-
tion size history. First, we provide guidelines to construct artificial neural networks 
that comply with the intrinsic properties of SNP data such as invariance to permu-
tation of haplotypes, long scale interactions between SNPs and variable genomic 
length. Thanks to a Bayesian hyperparameter optimization procedure, we evaluate 
the performance of multiple networks and compare them to well-established meth-
ods like Approximate Bayesian Computation (ABC). Even without the expert knowl-
edge of summary statistics, our approach compares fairly well to an ABC approach 
based on handcrafted features. Furthermore, we show that combining deep learn-
ing and ABC can improve performance while taking advantage of both frameworks. 
Finally, we apply our approach to reconstruct the effective population size history of 
cattle breed populations.
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coverage and data quality (Bergström et al., 2019; Consortium et al., 
2015; Leitsalu et al., 2014; Mallick et al., 2016; Pagani et al., 2016) 
and opened up to many other species such as Bos taurus with the 
1,000 Bull Genomes Project (Daetwyler et al., 2014) or chimpanzees 
and gorillas with the Great Apes Genome Project (Prado-Martinez 
et al., 2013). Even for smaller scale studies, researchers often have 
access to the whole genomes or high-density SNP data of numerous 
samples. These data collections can only be analysed with inference 
methods able to scale to dozens or hundreds of individuals and large 
numbers of genetic markers.

In this study, we propose several deep learning approaches for 
reconstructing the detailed histories of past effective population 
sizes from genetic polymorphism within a single population, a task 
considered difficult for various reasons. First, a present-day popu-
lation, and even more so a sample of it, is one among many possible 
outcomes of a stochastic process depending on population sizes, 
mutations and recombinations. Second, many other factors such as 
selective pressure, admixture events or population structure also 
shape the contemporary genetic diversity, which can blur the link 
between population size history and genetic data. As a result, the 
accuracy of the reconstruction and its level of resolution depend 
on the number of individuals available, the quality of the data and 
the methodology used. Nonetheless, in practice previous methods 
such as Bayesian skyline plots and their derivatives (Ho and Shapiro, 
2011), sequential Markov coalescent (SMC) (PSMC, diCal and their 
derivatives (Li and Durbin, 2011; Sheehan et al., 2013)), Approximate 
Bayesian Computation (Boitard, Rodriguez et al., 2016; Navascués, 
Leblois, & Burgarella, 2017) and SFS-based approaches (Bhaskar 
et al., 2015; Liu and Fu, 2015) have shown great results, supporting 
archaeological evidence and helping to understand species decline 
or expansion.

The study of genetic variation relies primarily on genotyping 
and sequencing data of very high dimensionality, which is a major 
difficulty for most inference methods. Some approaches, such as 
coalescent-HMMs methods (Spence et al., 2018), enable parameter 
inference using the full data set by making simplifying assumptions 
on the underlying models. A few of them can process unphased data 
(Terhorst et al., 2017), scale to large sample sizes (Terhorst et al., 
2017) or to complex models (Steinrücken et al., 2019). However, no 
method simultaneously addresses all three. Moreover, handling ar-
bitrarily complex models remains untested (e.g. models with more 
than three populations) or intractable (e.g. complex spatial models) 
(Spence et al., 2018). Hence, most frameworks solving complex pop-
ulation genetic tasks do not rely on coalescent-HMMs and reduce 
the data dimension with a preprocessing step during which the data 
set is converted into a smaller set of statistics called summary sta-
tistics. These statistics can then be used in likelihood and composite 
likelihood inference frameworks, when the model or statistics are 
simple enough, or in simulation-based approaches. Among the latter, 
the widely used Approximate Bayesian Computation (ABC) frame-
work and several machine learning algorithms, including Support 
Vector Machines (SVM) and random forests, were able to tackle a 
variety of tasks such as demographic model selection and parameter 

inference (Excoffier et al., 2013; Jay et al., 2019), detection of selec-
tion (Sugden et al., 2018; Tournebize et al., 2019) and introgression 
(Schrider et al., 2018). The current trend when addressing complex 
tasks is to include a large number of summary statistics inspired by 
population genetic theory in order to minimize the information loss. 
Summary statistics commonly used are the site frequency spectrum 
(SFS) and its summaries (e.g. Tajima D), linkage disequilibrium (LD) 
and statistics based on shared segments that are identical-by-state 
(IBS) or identical-by-descent (IBD) (Gladstein and Hammer, 2019; Jay 
et al., 2019; Sheehan and Song, 2016; Smith and Flaxman, 2019). 
However, they are not guaranteed to be sufficient and the inclusion 
of numerous statistics can impact the performance of standard ABC, 
a problem known as curse of dimensionality (Blum, 2010). An ac-
tive research topic in the ABC community is thus the development 
of methods addressing this curse of dimensionality by (a) selecting 
the best subset of summary statistics according to some informa-
tion-based criteria, (b) integrating machine learning steps into ABC 
to handle a larger number of summary statistics (e.g. kernel methods, 
random forests), and (c) constructing summary statistics using linear 
and nonlinear models based on candidate statistics or on the origi-
nal data when feasible (Aeschbacher, Beaumont, & Futschik, 2012; 
Blum et al., 2013; Fearnhead & Prangle, 2012; Nakagome et al., 
2013; Raynal et al., 2018).

In our study, we use deep learning, a method derived from ma-
chine learning. The objective of this method is to design a function, 
represented by an artificial neural network (ANN), which is a dif-
ferentiable computational graph organized as a stack of linear and 
nonlinear layers, with a high number of trainable parameters (usually 
thousands or millions). A network layer takes as input the outputs of 
the previous layer(s): each node of the layer performs a linear com-
bination of the inputs, followed by a nonlinear transformation, and 
this value is passed to the next layer. Networks vary in their shape 
(number of layers and nodes), and in the way, nodes are connected. 
For example a multi-layer perceptron (MLP) connects all nodes of 
a layer to all nodes of the following layer (Rumelhart et al., 1986), 
while a convolutional neural network (CNN) connects only nodes 
of similar location (LeCun et al., 1995). Despite the differences, any 
network defines a parameterized function that allows for a complex 
nonlinear mapping from a space to another, and therefore can solve 
a complex task, when the provided parameters are suitably adjusted. 
To tune the parameters, the network is trained thanks to a training 
set consisting of examples of (input, desired output) pairs, by opti-
mizing a criterion (loss function) that expresses how well the network 
performs on the data set with its current parameters. For example, 
for an object recognition task in images, the input is an image, the 
output is a probability distribution over possible names of objects, 
and the loss is the distance between the prediction of the ANN and 
the expected output (a Dirac peak on the name of the object shown 
by the image). The parameters of the function are tuned to mini-
mize this loss thanks to an optimization algorithm based on gradient 
descent and backpropagation. This process usually requires a large 
training data set, in order for the network to be able to learn and 
generalize well, that is, to perform well on data never seen so far.
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Deep learning has only recently been used to tackle population 
genetics questions. First, multi-layer perceptrons (MLPs) were used 
to process small SNP windows for population assignment (Bridges 
et al., 2011). Then, the same type of architecture has been used to 
process large sets of summary statistics for predicting jointly se-
lective sweeps and simple demographic changes (Sheehan & Song, 
2016). Villanea and Schraiber (2019) also applied MLP on summary 
statistics to discriminate between multiple scenarios of archaic in-
trogression and two other studies added an ABC step to address 
a similar task (Lorente-Galdos et al., 2019; Mondal et al., 2019). A 
second type of ANN, convolutional neural networks (CNNs), was 
then applied to summary statistics computed over 5Kb genomic re-
gions in order to predict selective sweeps (Xue et al., 2019). A con-
siderable shift occurred when several studies applied ANNs directly 
on genomic data instead of using summary statistic. Various CNN 
architectures processing SNP matrices were proposed to infer re-
combination rates along the genome (Chan et al., 2018; Flagel et al., 
2018), selection (Flagel et al., 2018; Torada et al., 2019), introgres-
sion (Flagel et al., 2018) and three-step population size histories 
(Flagel et al., 2018). The CNN implemented by Chan et al. (2018) and 
based on Deep Sets (Zaheer et al., 2017) is invariant to haplotype 
(chromosome) permutation, that is to the permutation of rows in the 
SNP matrix, thanks to convolution filters that treat each haplotype 
in an identical way. The other approaches proposed instead to sort 
haplotypes by similarity before processing them with filters sensitive 
to the haplotype order (Flagel et al., 2018; Torada et al., 2019). More 
recently, recurrent neural networks (RNN) were applied to estimate 
the recombination rate along the genome (Adrion et al., 2019), and 
generative adversarial networks (GAN) to learn the distribution of 
genomic data sets and generate artificial genomes (Yelmen et al., 
2019).

Among the variety of developed ANN architectures, it is not 
straightforward to know which one is the most adapted to genomic 
data for a given population genetic task. In particular, this study 
aims at reconstructing detailed step-wise effective population size 
histories with 21 size parameters under an unknown recombination 
rate, a complex model with a fairly high dimensional parameter space 
compared to the population genetic tasks previously addressed with 
ANNs. Hence, we propose multiple networks, some of which are 
new and designed specifically for population genomics, and others 
which are more basic. We then apply a hyperparameter optimization 
procedure (BOHB, Falkner et al. (2018)) to select the best architec-
ture and hyperparameters. We investigate the performance of two 
MLPs, one using summary statistics and one using SNP data of fixed 
length. We also compare two novel CNN-based architectures, one 
with mixed convolution filter sizes over multiple individuals and an-
other CNN that is adaptive to the genomic input size and invariant to 
the permutation of individuals or haplotypes. Both networks incor-
porate SNP data and their positions (encoded as distances between 
SNPs), a concept also developed in a different fashion by Flagel 
et al. (2018). In our last setup, we combine ABC and ANN by using 
the ANN predictions as summary statistics with the aim to bene-
fit from the advantages of both methods. Because no end-to-end 

deep learning approach for demographic inference had yet been 
compared to ABC or other traditional methods, we carefully bench-
marked all these networks against variations of PopSizeABC, one of 
the highly performing methods for step-wise size inference that is 
based on ABC (Boitard, Rodriguez et al., 2016). We also compare our 
architecture with CNNs developed for a related demographic task 
(Flagel et al., 2018). Finally, we apply our approach to real genomes in 
order to reconstruct the size history of three cattle breeds.

2  | Mater ia ls  and Methods

In this study, we introduce the first deep learning approaches 
for inferring detailed histories of effective population sizes using 
genomic data. Based on whole sequences of SNP data of multi-
ple individuals from a single population, we aimed to predict 21 
population size parameters, each corresponding to a time step. 
Our method and the baseline frameworks all relied on large-scale 
simulated data sets for which the true demographic parameters 
are known and drawn from prior distributions of population sizes 
and recombination rates. For each drawn parameter set (i.e. de-
mographic scenario), we simulated 100 independent genomic loci 
of length 2 Mb (i.e. 100 replicates) for 50 haploid individuals using 
msprime (Kelleher et al., 2016). Using this reference panel, we then 
trained methods based on ABC, deep learning or a combination 
of both, to predict the demographic parameters (Figure 1). In this 
section, we will give an overview of these methods as well as the 
hyperparameter optimization procedure.

2.1 | Simulated data and summary statistics

2.1.1 | Neutral simulations

All methods compared in this study are trained in a supervised fash-
ion and thus require simulated genetic data from numerous popu-
lations under various demographic scenarios. Following Boitard, 
Rodriguez et al. (2016), we defined 21 time windows that grow ex-
ponentially when going further back in time, so that the most ancient 
size change occurs 130,000 generations ago (Appendix S1). The time 
windows are identical for all scenarios. Each demographic scenario 
is generated by drawing a first population size N0 between 10 and 
100,000 from a uniform distribution which corresponds to the most 
recent time window. The population sizes of the next time windows 
follow Ni = Ni-1 × 10β for i in [1,21], with β sampled uniformly be-
tween  −  1 and 1. β is redrawn if it gives a population size out of 
[10;100,000]. We randomly drew from this prior distribution 50,000 
scenarios and simulated 100 independent 2 Mb-long segments of 50 
haploid individuals for each scenario, using the msprime coalescent 
simulator version 0.6.1 (Kelleher et al., 2016). We obtained a total of 
5,000,000 SNP matrices X of size M = 50 haplotypes × S SNP sites, 
each associated with a vector of size S that contains the distances 
between SNPs (in bp). Ancestral and derived alleles are encoded with 
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0 and 1. The mutation rate is set to 10−8 as in MacLeod et al. (2013). 
The recombination rate is sampled uniformly between 10−9 and 10−8 
for each scenario to be consistent with the estimations in cattle 
breeds (Sandor et al., 2012). In order to compare all methods based 
on the same training panel, we set a minimum threshold of 400 SNPs 
per 2 Mb region and designed the networks accordingly. After filter-
ing and splitting (see Appendix S1), we obtained 1,796,100 SNP ma-
trices for the training set, 50,000 for the validation set and 76,700 
for the test set. Except stated otherwise, methods that are not adap-
tive to the number of SNPs used only the first 400 SNPs of each 
SNP matrix. The proportion of these 400 SNPs kept among all SNPs 
from a simulated matrix is on average 28%. Finally, we make the as-
sumption that the 2Mb-long windows of a scenario are independent, 
which is true for simulated data but not for real data. Information 
across windows (100 windows by scenario for simulated data and 
1,213 for real data) is combined during the summary statistics com-
putation step for methods using summary statistics or by averaging 
the network predictions over all windows for methods using SNP 
matrices as input. Thus, the spatial information that may exist across 
these windows for real data is not conserved.

2.1.2 | Simulations with selection

To investigate the robustness of our approach, an extra set of data 
was simulated under demographic changes and selective pressure. 
We used msms (Ewing and Hermisson, 2010) to simulate scenarios 
including positive selection with additive fitness using varying val-
ues of selection coefficient (s in 2Ne units: 100, 200, 400 or 800), 
selection starting time (Tsel: 200, 1,000 or 2,000 generations ago) 
and initial frequency of the beneficial allele (f0: 0.1%, 1%, 5%). The 
SNP under selection was located at the centre of the region. The 
mutation rate was set to 10-8, the recombination rate to 5 × 10−9, 
the number of haplotypes to 50 and the region length to 2  Mb. 
We generated 16  ×  100 replicates for each of the 36 selection 

parameter combinations (s, Tsel, f0) and 30  ×  100 replicates with 
no selection under three demographic scenarios (constant, declin-
ing or expanding size) leading to a total of 181,800 SNP matrices. 
Inference methods requiring a fixed input size processed the 400 
successive central SNPs (i.e. 200 before and 200 after the SNP 
under selection).

2.1.3 | Summary statistics

For each group of 100 segments corresponding to one scenario, we 
computed the site frequency spectrum and the linkage disequilib-
rium as a function of the distance between SNPs averaged over 19 
distance bins for a total of 68 summary statistics. Our python script 
is partly based on the scikit-allel python module (Miles et al., 2019). 
These predefined summary statistics constitute the training, valida-
tion and test set for all methods based on summary statistics or on 
their combination with SNP matrices.

2.2 | Baselines

We compared our approach to five baselines: an ABC approach and 
a MLP both using linkage disequilibrium and site frequency spectrum 
as summary statistics, and another MLP, a custom CNN and a CNN 
from (Flagel et al., 2018), all using genomic data directly. Each method 
is evaluated using its prediction error given by the following mean 
squared error:

where Θi
j
 and Θ̂

i

j
 are, respectively, the true and predicted standard-

ized population size for the time window i and scenario j, I = 21 is the 
number of time windows and J the number of scenarios in the set. For 

1

I×J

I,J
∑

i,j

(Θ̂
i

j
−Θ

i
j
)2

F I G U R E  1   Overview of the methods compared in this study. Demographic histories are drawn from a prior distribution on 21 population 
sizes Ni

e
 and one recombination rate ρ, and are used to generate SNP matrices with msprime. Two types of summary statistics are computed 

from these simulations (SFS and LD). The predictions (outputs) made by different kind of ANNs (MLP, custom CNN and SPIDNA architecture) 
are compared to an MLP using the summary statistics and to ABC using either the summary statistics, SPIDNA outputs or both. 1ANN 
outputs used are the predictions made by the version of SPIDNA with the lowest prediction error. 2ABC without correction, with linear 
regression, ridge regression or a single layer neural network are compared
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inference based on raw data and neural networks, the prediction Θ̂
i

j
 is 

given by the average of the population sizes (Θ̂
i

jr
)r=1,…,nrep estimated for 

each replicate (independent region) r.

2.2.1 | Approximate Bayesian computation

We compared ABC with the simple rejection procedure (i.e. no cor-
rection) and three correction methods implemented in the R package 
'abc' (Csilléry et al., 2012): local linear regression, ridge regression 
and nonlinear regression based on a single-hidden-layer neural net-
work. Settings were set to default except for the tolerance rate set 
to six possible values (0.05, 0.1, 0.15, 0.2, 0.25 and 0.3). ABC was 
run on (a) predefined summary statistics, (b) SPIDNA outputs (i.e. 
automatically computed summary statistics) or (c) a combination of 
predefined summary statistics and SPIDNA outputs. We used the 
median of the posterior distribution as the demographic parameter 
estimate Θ̂.

2.2.2 | Multi-layer perceptron networks

The first MLP is based on summary statistics, has 3 hidden lay-
ers, ReLU activation functions and uses batch normalization. As in 
Sheehan and Song (2016), the hidden layers have, respectively, 25, 
25 and 10 neurons. It takes 34 summary statistics as input. This net-
work and all the following ones output 21 demographic parameters 
and are trained with a regular L2 loss function and adam optimizer 
(Kingma & Ba, 2014) unless stated otherwise. This MLP has a total 
of 2,986 trainable parameters. Our second MLP is based on 'raw' 
genomic data and takes as input a matrix of 50 haplotypes (rows) for 
400 SNPs (columns) and its associated vector of distances between 
SNPs, both flattened into a single vector. Its hidden layers, respec-
tively, have 20, 20 and 10 neurons, which gives it 408,981 trainable 
parameters.

2.2.3 | Custom CNN

Our convolutional neural network takes as input the same matrix of 
400 SNPs and has 2-dimension filters of various shapes. The first 
layer consists of 5 kernels with rectangular shape (2 × 2, 5 × 4, 3 × 8, 
2 × 10, 20 × 1) applied to the SNP matrix X. Each kernel creates 50 
filters, which amounts to 250 feature maps after the first layer. The 
SNP distance vector d is treated by the 5 associated kernel shapes 
(1 × 2, 1 × 4, 1 × 8, 1 × 10, 1 × 1) with 20 filters each, making 100 
filters in total. The results of the first convolutional layer are then 
concatenated so that the second convolutional layer will couple in-
formation from X and d in a way that emphasizes the original location 
of the SNPs along the genome. The outputs of this second layer are 
then combined and go through 5 convolutional layers and two fully 
connected layers. Adding convolutional layers one after the other 

allows our network to combine patterns and reduce the size of the 
data without adding too many weights to our model. This network 
has a total of 131,731 trainable parameters.

2.2.4 | Flagel network

We reused the code associated with the repository of the first paper 
using a CNN for demographic inference (Flagel et al., 2018) and 
adapted it to our data set and task. We trained the network with 
the exact same architecture as the one published, except that we 
changed the last layer to allow the prediction of our 21 population 
size parameters. We parametrized the network with the set of hy-
perparameters leading to the best performance in the previous work 
for two different types of SNP encoding (0/255 or −1/1). It is note-
worthy that the actual encoding in their code is 0/−1 and not 0/255; 
thus, we kept the same encoding to be able to compare the perfor-
mance. The networks were trained with the same procedure of 10 
epochs with early stopping in case of no progression of the loss after 
3 epochs. The batch size is 200. The input data had 50 haplotypes 
and either 400 SNPs as processed by our custom CNN or we down-
sampled the data to one every ten SNPs as done in the original work, 
leading to 1,784 wide input SNP matrices. This size corresponds to 
the tenth of the biggest SNP matrix in our data set. Smaller simula-
tions are padded with zeros. All parameters can be found in Table S1.

2.3 | Sequence position informed deep neural 
architecture

We called our architecture SPIDNA, for Sequence Position Informed 
Deep Neural Architecture, and designed it to comply to the princi-
pal features of SNP data: data heterogeneity (data include genetic 
markers, and their positions encoded as distances between SNPs), 
haplotype permutation invariance, long range dependencies be-
tween SNPs and variable number of SNPs. Similarly to our custom 
CNN, SPIDNA takes as input a matrix describing haploid individuals 
as rows and SNP as columns, with an additional row for the SNP 
distances.

2.3.1 | Permutation invariance

One of the SNP matrix properties is its invariance to the permutation 
of haploid or diploid individuals (rows of the SNP matrix). The same 
matrix with permuted rows contain the exact same information and 
should lead to the same predictions. Most summary statistics are 
already invariant to the haplotype order by definition. On the other 
hand, typical operations used in ANNs such as rectangular filters and 
fully connected layers are not invariant, and consequently, our base-
line ANNs do not respect this data feature. Here, we implemented 
an architecture invariant by design that stacks function equivariant 
and invariant to row permutations (Lucas et al., 2018). In our study, 
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the equivariant function is a convolutional layer with filters of size 
1 × a, that treats each haplotype (row) independently and computes 
equivariant features, while the invariant function computes the 
mean of these features over the row dimension. The invariant func-
tion reduces the dimension of the data to one row, which is then 
concatenated to each equivariant row (Figure 2). Therefore, the cor-
relation between rows increases at each layer, which progressively 
transforms the equivariant input to an invariant output. However, 
the correlation increase should be moderate and progressive to 
avoid immediate loss of the information at the haplotype level. To 
promote this, we perform two independent normalizations, one over 
the output of the equivariant function and one over the input of the 
invariant function, and associate a correlation control parameter � 
that quantifies the contribution of the invariant function to the next 
layer, thus controlling the speed at which the correlation increases 
between rows.

2.3.2 | Convolution networks to handle data with 
variable size

A major difficulty that arises with genomic data is that the number 
of SNP varies from one data set to another, or from one genomic 
region to another, due to the stochasticity of biological and demo-
graphic processes (and of their corresponding genetic simulations). 
Therefore, we use convolution layers as they can handle data with 

variable size while keeping the number of network weights constant. 
A filter can be repeated more or fewer times to cover the whole input 
entering each layer, letting the network adapts itself to the data. 
Consequently, the output size of each convolution layer will vary de-
pending on the input size. This prevents the use of fully connected 
layers directly after a convolution layer as it is often the case with 
CNNs. Instead, we use fully connected layers only after operations 
independent of the input size and with a fixed output size, namely 
mean functions over the column and row dimensions (Figure 2).

Overall, we designed an architecture accounting for invariance 
and adaptive specificities by stacking multiple equivariant blocks 
(Figure 2, label B). An equivariant block consists in one convolution 
layer with filters of size 1 × 3 that are equivariant (B1), averages of 
the convolution outputs across the haplotype axis (B2) and the SNP 
axis (B3) that are both invariant, a concatenation of the equivariant 
and invariant features (B4), one max pooling layer that is also adap-
tive to the number of SNPs (B5) and one fully connected layer that 
updates the demographic predictions at each block (B6) via a sum 
function (C1) (Figure 2).

We designed three variations of the SPIDNA permutation-in-
variant architecture (fully detailed in Appendix S1). The first one 
uses batch normalization, after each convolution layer, and there-
fore takes as input a fixed number of 400 SNPs, similarly to two of 
the baselines. The second one is invariant to the number of SNPs 
and uses instance normalization, after each convolution layer, to 
normalize layer inputs per-data instead of per-batch (for the batch 

F I G U R E  2   Schematic of SPIDNA architecture. SPIDNA takes as input a SNP matrix associated with its vector of distances between SNPs 
(in blue). A convolution layer is applied to the SNPs (A1), and another convolution layer is applied to the distances (A2). Results of A2 are 
repeated to be concatenated with results from A1 (A3). The output is passed to a series of seven SPIDNA blocks (A4). Each SPIDNA block 
starts with a convolution layer (B1) followed by the mean over rows of the convolution layer result (B2) and the mean over columns of B2 
result (B3). The concatenation of B1 and B2 results (B4) is processed by a max pooling layer (B5) and passed to the next SPIDNA block. In 
parallel, the output of B3 is processed by a fully connected layer (B6). The prediction vector (in green) is updated at each SPIDNA block with 
a sum (C1) of its previous value and B6 results. It is finally output by the last block as the predicted demographic parameters (C2)
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normalization). The last variation is also invariant to the number of 
SNPs, but uses two separate instance normalization steps, as well as 
the correlation control parameter α. The first variation using batch 
normalization has 110,584 trainable parameters, and the other two 
using instance normalization have 110,384.

2.4 | Hyperparameter optimization

Compared to other machine learning methods, ANNs have a potentially 
infinite amount of hyperparameters when including for instance the 
number of layers, the number of neurons in each of them, the learning 
rate, weight decay or the batch size. Moreover, a run over a full data set 
with enough epochs to reach convergence is time-consuming for net-
works with a complex architecture defined by many learnable param-
eters. Therefore, the development of deep learning architectures often 
relies on the experience and intuition of the practitioner in a try-and-
repeat process. Grid search and random search are two strategies for 
exploring the hyperparameter space uniformly. They are commonly used 
but are limited by the computing resources available. In our study, we 
used HpBandSter, a package that implements the HyperBand (Li et al., 
2016) algorithm to run many hyperparameter trials on a smaller resource 
budget (i.e. few epochs) and runs the most promising trials on a greater 
budget. Combined with BOHB (Falkner et al., 2018), a Bayesian optimi-
zation procedure that models the expected improvement of the joint 
hyperparameters, this method provides more guided and faster search 
of the hyperparameter space. At each step, BOHB draws a new combi-
nation of hyperparameter values to be tested according to the expected 
improvement and to a predefined prior. Here, we performed a search 
in a 5-dimensional space defined by uniform priors over the type of ar-
chitecture (architectures from our baselines and variations of SPIDNA 
architecture, based on 400 SNPs or the full number of SNPs), the learn-
ing rate, the weight decay and the batch size. For SPIDNA architectures 
that controlled correlation, we added the control parameter α to the 
Bayesian optimization procedure with a log-uniform prior between 0.5 
and 1. The search was performed for 3 budget steps and replicated 5 
times, leading to a total of 83 successfully trained networks.

As the training time of the MLP using summary statistics was 
short, we optimized its hyperparameters with a random search by 
drawing 27 configurations from uniform distributions and trained 
a network for each configuration during 6 epochs. The batch size 
was drawn between 10 and 100, learning rate between 5 × 10-5 and 
1 × 10-2 and weight decay between 5 × 10-5 and 1 × 10-2.

For ABC, the tolerance rates ranged from 0.05 to 0.3 by step of 
size 0.05 and were optimized for 12 ABC algorithms independently 
(4 correction methods × 3 types of inputs: predefined summary sta-
tistics, SPIDNA outputs or both).

2.5 | Cattle breed data

We inferred the demographic history of Angus, Fleckvieh and 
Holstein cattle breeds using the data set of 25 sequenced individuals 

from the 1,000 genome bull project (Daetwyler et al., 2014) that was 
analysed by (Boitard, Rodriguez et al., 2016). As the data of real cat-
tle sequence are prone to phasing and sequencing errors, we con-
verted the real data from haplotype to genotype with a minimum 
allele frequency (maf) of 0.2, as suggested by (Boitard, Rodriguez 
et al. (2016) and applied the same treatment to the simulated train-
ing set. We split the real data of each breed into 2Mb and removed 
segments comprising centromeres leaving 1,213 segments. We ob-
tained a similar number of SNPs for the three breeds: Angus (aver-
age: 4,536 SNPs, maximum: 22,391 and minimum: 775), Fleckvieh 
(average: 4,837 SNPs, maximum: 24,896 and minimum: 896) and 
Fleckvieh (average: 4,732 SNPs, maximum, 24,098 and minimum: 
1,212). Then, we trained ABC, SPIDNA and a combination of both 
with the best hyperparameter configurations on the modified simu-
lated data and performed the inference. The best version of SPIDNA 
without ABC is nonadaptive and therefore uses 400 SNPs from each 
segment which represents 10% of the total number of SNPs in the 
cattle data and 67% for the training data set.

All computational resources used for this study are described in 
the Appendix S1.

3  | Result s

3.1 | Hyperparameter optimization

The configuration with the lowest loss generated by the hyperpa-
rameter optimization procedure used 400 SNPs with SPIDNA, batch 
normalization, a weight decay of 2.069  ×  10−2, a learning rate of 
1.416 × 10−2 and a batch size of 78 (Figure S1). Configurations with 
large batch sizes tended to have lower losses (Figure S1), which is 
expected as large batches provide a better approximation of the full 
training set gradient. However, a batch size too close to the train-
ing set size can lead to overfitting the training set. Here, we did not 
observe overfitting for any run when monitoring training and valida-
tion losses. The best configurations also tended to have low learning 
rates and weight decays (Figure  S1). These low values slow down 
the convergence, but usually decrease the final prediction error if 
the budget (i.e. number of training epochs) is high enough for the 
network to reach convergence.

3.2 | Comparison of the optimized architectures

For each architecture, we selected the best configuration obtained 
with the hyperparameter optimization procedure and trained it for a 
greater budget (i.e. 10 epochs), allowing an in-depth comparison. We 
found no strong decrease of prediction errors after this longer train-
ing compared to their counterparts with a 107 budget (107 training 
SNP matrix, that is 5.57 epochs; Figures 3 and S1). Prediction errors 
for the validation set (used in the hyperparameter optimization pro-
cedure) and the test set are shown in the Table S2. In the following 
paragraph, each method is designated along its index in the Table S2.
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We first compared the optimized neural networks to optimized 
ABC approaches based on predefined summary statistics. The pre-
diction errors achieved by ABC using summary statistics ranged from 
0.496 (index 0, ABC rejection, i.e. without correction) to 0.364 (ABC 
neural networks, index 3). The MLP network based on summary sta-
tistics performed worse than ABC with correction (0.437, index 4). 
Moreover, MLP based on raw data performed very poorly (0.675, 
index 5), and all other networks based on raw data outperformed 
this MLP. Most of them (all except SPIDNA instance normalization 
on 400 SNPs, 0.641 and 0.599, index 12 and 14) outperformed the 
ABC rejection (0.454 and 0.469, index 11 and 15) or led to similar 
errors (0.489, index 13). The Flagel CNNs adapted from Flagel et al. 
(2018) that were not using dropout had average test losses of 0.541 
and 0.444 (index 7 and 8). The two other Flagel networks achieved 
prediction errors similar to SPIDNA (network based on the first 400 
SNPs: 0.609, index 9; network based on 1784 downsampled SNPs: 
0.484, index 10); however, they had 8 to 34 times more learnable 
parameters than SPIDNA. Lastly, we evaluated two methods that 
combine deep learning and ABC, by considering the features au-
tomatically computed by a network as summary statistics for ABC 
(Jiang et al., 2017). When using only the predictions of SPIDNA as 
input to ABC with correction (linear regression, ridge regression or 
neural network), we improved greatly SPIDNA's performance and 
obtained errors similar to the ABC based on predefined summary 
statistics (0.369 compared to 0.364, index 21 and 3). When using 
both SPIDNA predictions and predefined summary statistics as 

input to the ABC algorithm, we decreased further the prediction er-
rors (0.347, index 29).

3.3 | Reconstruction of specific demographic 
histories using SPIDNA and SPIDNA + ABC

We further illustrated the performance of SPIDNA on a subset of 
demographic scenarios that were previously investigated (Boitard, 
Rodriguez et al., 2016) (Figure  4). We simulated six scenarios: 
‘Medium’, ‘Large’, ‘Decline’, ‘Expansion’, ‘Bottleneck’ and ‘Zigzag’ the 
same way as the neutral simulations by specifying the demographic 
parameters instead of drawing them from a prior. The method cor-
rectly reconstructed histories of constant size, expansion and de-
cline, as SPIDNA predictions from 100 independent genomic regions 
(black box plots) approximately followed the real population size 
trend and magnitude. The true parameters were always included 
in the 90% credible intervals (light blue envelopes) predicted by 
SPIDNA combined with ABC without predefined summary statistics 
and, for most cases, in the 50% credible intervals (dark blue). Both 
methods also correctly reconstructed a complex history encom-
passing an expansion interrupted by a bottleneck and followed by a 
constant size (see Figure 4 'Bottleneck'). However, they were unable 
to correctly estimate the parameters of a very complex 'Zigzag' his-
tory except for its initial growth period and instead reconstructed a 
smoother history with values intermediate to the lower and higher 

F I G U R E  3   Prediction errors on the test set of the best run of each method after the hyperparameter optimization. The best 
configurations of each ANN (MLP, custom CNN and SPIDNA) have been retrained for 10 epochs. Traditional ABC methods are depicted 
in yellow, deep MLPs and CNNs in red and orange, SPIDNA ANNs in blue, and combinations of ANNs and ABC in green. Methods are 
grouped into 4 families: ‘Summary statistics’ (processed by ABC or ANN), ‘SNP matrices’ (processed by ANN), ‘SPIDNA outputs’ (processed 
by ABC, no summary statistic used) and ‘Summary statistics and SPIDNA outputs’ (processed by ABC). Vertical black lines on top of 
each bar represent the 95% confidence interval of prediction errors. Horizontal dashed line indicates the lowest error obtained (adaptive 
SPIDNA + ABC with local linear regression using summary statistics and SPIDNA outputs)
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population sizes (see Figure 4 'Zigzag'). This confirmed the smooth-
ing behaviour identified previously for ABC and MSMC on these 
demographic scenarios (Boitard, Rodriguez et al., 2016). Finally, simi-
larly to ABC on predefined summary statistics (Boitard, Rodriguez 
et al., 2016), SPIDNA predictions of very recent population sizes 
were slightly biased towards the centre of the prior distribution; 
however, combining SPIDNA with ABC tended to correct this bias 
in most cases.

3.4 | Impact of positive selection on SPIDNA and 
ABC inference

We investigated the impact of positive selection on SPIDNA and 
ABC inference for three illustrative demographic cases (scenarios 
medium, decline and expansion of Figure 4). Because including se-
lection required a change in the genetic simulator (msms instead 
of msprime), we first ensured that the change of tool to generate 
the new test data set had no influence on the prediction accuracy 
(Figure S2). We then simulated 2 Mb regions including a central SNP 
under positive selection, with varying selection strength, starting 
time and frequency of the beneficial allele at this time (100 regions 
for each scenario). We chose a conservative approach in which all 
100 regions are under selection (worst case scenario). For each sce-
nario, we predicted the population size history using SPIDNA (batch 
normalization) or ABC (with local linear correction) on summary 

statistics. Both ABC and SPIDNA predictive errors varied with the 
selection coefficient (Figure S3). On average, a moderate selective 
pressure (100–400) did not decrease the performance (Figure S3 top 
row). ABC inference for declining population data sets was the only 
one negatively impacted (increased error for s = 200 and 400). In 
fact, in multiple cases increasing s decreased the prediction error 
mean. Very strong selection (s = 800) on the other hand led to an 
increased prediction error mean in all cases except for the declin-
ing histories inferred by SPIDNA. In addition, the 95% quantile and 
standard deviations of the prediction errors tend to increase with 
s (Figure  S3) indicating that the prediction should be taken more 
cautiously in the presence of strong positive selection. This vari-
ance was systematically smaller for SPIDNA than ABC. In particu-
lar, a handful of histories reconstructed with ABC were far off while 
SPIDNA prediction errors remained comparatively low for all sce-
narios (Figure S4).

3.5 | SPIDNA infers the decline of effective 
population size of cattle

We inferred the effective population size history of three breeds of 
cattle (Angus, Fleckvieh and Holstein) based on the same 75 individ-
uals studied by (Boitard, Rodriguez et al. (2016) and sampled by the 
1,000 Bull Genomes Project (Figure 5). The best ABC and SPIDNA 
configurations both infer a large ancestral effective population size 

F I G U R E  4   Predictions of SPIDNA 
and ABC using SPIDNA outputs, for six 
predefined scenarios (dashed black lines). 
100 replicates were simulated for each 
scenario. Box plots show the dispersion 
of SPIDNA predictions (over replicates). 
For each history inferred by SPIDNA 
combined with ABC, we display the 
posterior median (plain blue line), the 50% 
credible interval (dark blue) and the 90% 
credible interval (light blue)
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and a decline for the past 70,000 years. However, SPIDNA reports 
higher recent population sizes (Angus:11,334, Holstein:12,311 
and Fleckvieh:13,579) than ABC (Angus:344, Holstein:389 and 
Fleckvieh:1,436). Interestingly, SPIDNA infers the same population 
sizes for all three breeds before 10 thousand years ago. This is in 
agreement with the estimation of the beginning of the domestica-
tion (Zeder, 2008). Posterior point estimates obtained by SPIDNA 
combined with ABC also indicated a decline after domestication, but 
with larger population sizes for the last 30,000 years than SPIDNA 
alone and fairly large credible intervals at recent times (Figure S6). 
Angus had the largest recent population size and Fleckvieh the 
smallest in contrary to the two previous methods. Credible intervals 
of ABC based on SPIDNA outputs overlapped SPIDNA predictions 
except for the most ancient time window. On the contrary, credible 
intervals of ABC based on summary statistics overlap SPIDNA pre-
dictions except for the most recent time windows (Figure S6). Finally, 
SPIDNA combined with ABC identified an episode of smooth decline 
and recovery of the population size preceding the domestication (be-
tween 400,000 and 30,000 years ago). ABC on summary statistics 
did not infer this ancient change (this study and Boitard, Rodriguez 
et al. (2016)), however, Boitard, Boussaha et al. (2016) also estimated 
that 123,465 years ago the ancestral population size increased from 
73,042 to 137,775 using fastsimcoal2 (Excoffier et al., 2013).

4  | Discussion

In this paper, we introduced a deep learning approach to infer the 
detailed size history of a single population directly from genomic 
data given an unknown recombination rate. This consisted in infer-
ring jointly 21 population size parameters. We not only increased 
the complexity of the demographic model with respect to previ-
ous works such as Flagel et al. (2018), but also compared the per-
formance of our architecture to other methods including ABC, and 

applied our approach to real data sets. We found that our approach 
compared competitively with one of the best to date approaches, 
with the added advantage of not relying on summary statistics. A 
robustness analysis based on a subset of demographic scenarios 
also indicated that SPIDNA might be more robust than ABC to the 
presence of positive selection in the data. Finally, we reconstructed 
the effective population size fluctuations of three cattle breeds and 
confirmed that they all had similar sizes when they were part of the 
same ancestral species Bos taurus and underwent a decline likely 
linked to their domestication, although the estimated strength of 
this decline depended on the inference method.

4.1 | On the practicability and importance of 
architecture design

When applying deep learning techniques, the design of the neural 
network architecture is critical, as poor design can lead to a lack of 
expressive power, information loss, underfitting, overfitting or un-
necessary complications that slow down the training process. The 
recent history of successes in Computer Vision consists in architec-
ture improvements, leading to performance jumps (e.g. from MLP 
to LeNet, AlexNet, VGG, Inception and ResNet (He et al., 2016; 
Krizhevsky et al., 2012; LeCun et al., 1998; Simonyan and Zisserman, 
2014; Szegedy et al., 2017)). But these successes have been built 
incrementally by relatively small changes over the last years, involv-
ing a large number of studies, researchers, tasks and tested archi-
tectures. Therefore, automating architecture and hyperparameter 
choice is an important challenge that can yield benefit to smaller 
fields such as population genetics. In our study, the Bayesian hyper-
parameter optimization procedure allowed us to test multiple net-
works thanks to a better usage of the computational power available 
by giving more budget to the most promising ANN architectures 
and hyperparameters. This procedure could be extended to hyper-
parameters that further describe the architecture of the network 
such as the number and type of layers, number and type of neurons, 
the type of nonlinearity or the topology. Thanks to this procedure, 
we investigated a series of architectures, starting from the simple 
multi-layer fully connected network (MLP) and moving on to more 
complex architectures, and exhibited the link between design and 
performance.

To interpret the results and compare them, let us first note that 
in Figure  3, a 0 error means perfect prediction, while an error of 
1 means that no information is extracted from the input. Indeed, a 
function outputting always the same value, for all samples, can at 
best predict the average target value over the data set, in which case 
the error is the standard deviation over the data set of the value to 
predict, which is normalized to 1 in our setup.

Processing the SNP and distance matrices with a MLP led to high 
prediction errors, especially for recent population sizes. This is not 
surprising, since genomic information is encoded as a simple list of 
values, where the order has no meaning from the MLP point of view, 
which then cannot exploit information given by the data structure. In 

F I G U R E  5   Effective population size of three cattle breeds 
inferred by ABC (dotted lines), by the best SPIDNA architecture, 
SPIDNA batch normalization (plain lines) and by ABC based on 
SPIDNA outputs (dashed lines). Domestication is estimated to have 
occurred 10,000 years ago (vertical dotted line)
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summary, an MLP configuration has several drawbacks: (a) the num-
ber of network parameters to estimate is high; (b) the MLP can only 
retrieve the geometry of the data through training, with no guar-
antee that it will learn the spatial structure of the genome (i.e. the 
column order and distance between SNPs) or distinguish from which 
individual comes each SNP. In spite of all these hindrances, the MLP 
still performed far better than random guesses or constant predic-
tion (32% better).

On the contrary, CNN layers process input elements by groups, 
allowing close SNPs to be processed together. This feature, com-
bined with the stacking of layers in CNNs, helps the network to 
construct features dependent on the SNPs proximity. Important 
summary statistics used in ABC or other inference methods such as 
linkage disequilibrium can potentially be easily expressed by such 
CNN. Hence, we proposed several novel convolutional architec-
tures, tailored to genetic data. We first developed a custom CNN 
with 2D filters that could have different shapes, that is mixed kernel 
sizes but also nonsymmetrical masks. There is indeed no rational be-
hind considering square masks only as is usually done in computer 
vision to describe pixel neighbourhoods, as rows and columns in our 
case correspond to different entities (individual or phased haplo-
type versus markers). Using varied mask shapes (e.g., 2 × 2, 5 × 4 or 
3 × 8) helps our custom CNN to learn features of various patterns, 
potentially mimicking different types of summary statistics (‘vertical’ 
masks integrate over individuals, enabling the computation of allele 
frequencies at a SNP, while ‘horizontal’ ones integrate over SNPs, as 
IBS or IBD sharing tract length does). Such mixed size filters have 
proven useful in the Computer Vision literature also, under the name 
of Inception architectures (Szegedy et al., 2017); they allow the ex-
traction of a mixture of different kinds of information from multiple 
scales within the same layer. The large gap in performance between 
a simple MLP and this custom CNN confirms the importance of such 
considerations. A natural extension would be to integrate this fea-
ture into SPIDNA, our permutation-invariant architecture.

4.2 | Novel architectures tailored to genomic data

4.2.1 | Invariance to haplotype permutation

The order in which simulated haplotypes are arranged in a SNP ma-
trix has no meaning. Although the custom CNN network above can-
not be guaranteed to be exactly invariant to the haplotype order, it 
can approximately learn this data property. To avoid wasting training 
time to learn that there is no information in the row order, it has been 
proposed to systematically sort the haplotypes according to a pre-
defined rule (Flagel et al., 2018; Torada et al., 2019). Because there 
is no ordering in high dimensional space that is stable with respect 
to perturbations (Qi et al., 2017), we chose yet another alternative 
and enforced our network to be permutation-invariant by design. 
Permutation-invariant networks, or exchangeable networks, were 
successfully applied in population genetics by Chan et al. (2018) for 
inferring local recombination, but our architecture is different in 

that the invariant operations are performed at each block, enabling 
both individual equivariant features and global invariant features 
to contribute to the next layer. It has been proven that this type 
of architecture provides universal approximation of permutation-
invariant functions (Lucas et al., 2018; Zaheer et al., 2017). Here, 
we applied the methodology from Lucas et al. (2018) by using the 
mean as our invariant operation, but we encourage developers to ex-
periment with other invariant functions such as moments of higher 
order. Among our permutation-invariant architectures, the best one 
(SPIDNA using batch normalization) had a smaller prediction error 
than our custom CNN. However, it is not clear whether this improve-
ment is directly linked to its built-in permutation-invariance prop-
erty, or to other differences between the two networks. Controlling 
the speed to invariance thanks to the parameter α improved the 
performance of the instance normalization SPIDNA, but not sig-
nificantly the performance of the instance normalization adaptive 
SPIDNA (see Table S2).

4.2.2 | Robustness to the number of individuals

Importantly, SPIDNA adapts to the number of individuals, which is an 
advantageous property compared to many methods relying on sum-
mary statistics. SPIDNA can be trained on data sets having similar 
or varying sample sizes, and, once trained, it can be directly applied 
to a data set of reasonably close sample size, but unobserved dur-
ing training. We provide an example of robustness in an experiment 
focusing on a subset of demographic scenarios (decline, growth, me-
dium or large constant size) and a wide range of sample sizes (from 
10 to 150, Figure S5). SPIDNA using batch normalization (trained on 
exactly 50 individuals) did not suffer a strong loss of accuracy when 
the sample sizes remained in the [45,65] range. Outside of this range, 
the predictions were inaccurate in two cases: small sample sizes 
under expanding and constant size scenarios and large sample sizes 
under the expansion scenario. This was expected because this spe-
cific network was not exposed to diverse sampling sizes during train-
ing. Given the observed variations across scenarios and if the sample 
size is expected to vary substantially from 50, we advise the user to 
perform a similar experiment based on her/his targeted sample size 
and a larger number of scenarios drawn from the prior distribution. If 
needed, the user can then train a new SPIDNA network without any 
change in its architecture, either on a set containing a wider range 
of sampling sizes or on a set matching the targeted sample sizes. To 
fasten the training, this network could be initialized with the weights 
of the network optimized for the sample size 50, and fine-tuned on 
the new set.

4.2.3 | Automatic adaptation to the number of SNPs

The two networks designed to be adaptive to the number of SNPs 
have the advantage of being applicable to genetic data of any length, 
the opposite of networks specific to a particular number of SNPs, 
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which transform the data with padding or compression, or are re-
trained for different lengths, or take as input portions of larger se-
quences. Our two SPIDNA adaptive networks show results close 
to the best of nonadaptive versions, though slightly worse (0.469 
versus 0.454, see Table  S2), although the difference disappears 
when SPIDNA is combined with ABC (0.369 versus 0.372). This 
small performance drop is likely due to differences in normalization 
rather than to the adaptive feature. Indeed, the best nonadaptive 
SPIDNA uses batch normalization while the adaptive versions use 
instance normalization as there is currently no implementation of 
batch normalization for batches with inputs of mixed sizes. We think 
that adaptive architectures could greatly benefit from an optimized 
implementation of adaptive batch normalization or from an imple-
mentation of batches with mixed data sizes. Nonetheless, SPIDNA 
networks with instance normalization had a much better perfor-
mance when using all SNPs rather than the 400 first SNPs only, 
which suggests that adaptability is a useful feature (see Table S2).

Our adaptive architecture provides an alternative to data com-
pression based on computer vision algorithms: since compression is 
not optimized for the task of interest, it could induce information 
loss by reducing data prematurely. Note indeed that the success of 
deep learning in computer vision lies precisely in the replacement 
of ad hoc data descriptors and processing pipelines (e.g., SIFT fea-
tures to describe image keypoints (Lowe, 2004), and the ‘bag of vi-
sual words’ pipeline (Sivic & Zisserman, 2003) to build an exploitable 
representation of them through clustering and histograms) by ones 
that can be optimized. It is also an alternative to padding, a tech-
nique that consists in completing the SNP and distance matrices at 
the edges so that they all match the biggest simulated SNP matrix; 
it is left to the neural network to guess where the real genetic data 
stop and where padding starts. As such it may make the task more 
difficult, given that the SNP matrix size is highly variable between 
different demographic histories and some examples would contain 
more padding values that actual genetic information. RNN are also a 
natural alternative to process sequence of variable size, though they 
induce an unequal contribution of SNPs to the final result, depend-
ing on their ordering along the sequence. Indeed, as the information 
from the previous elements of the sequence is stored in the internal 
state of the RNN, earlier parts of the sequence can be more easily 
forgotten. Nonetheless, they were very recently proven to be useful 
to predict local recombination rate along the genome (Adrion et al., 
2019), and future works should investigate whether this scales up to 
global characteristics and to a different task.

4.3 | Advantages and challenges of deep learning

Alongside the ability of deep learning to automatically extract in-
formative features from high dimensional data, artificial neural 
networks are also very flexible. For instance, they can be used for 
transfer learning, that is, a network trained for a specific task can be 
reused for another one by only modifying the last layers (e.g. a net-
work trained for population size history inference could be reused 

for classification between demographic scenarios) (Pan & Yang 
2009). The new network will benefit from the embedding already 
learned for the previous task, improving error and learning time. 
We also highlight that, as for most ABC methods, the parameters 
are inferred jointly, a major point as the common population genet-
ics model parameters almost never have an independent impact on 
shaping genetic diversity. We noted that for highly fluctuating popu-
lation sizes, SPIDNA estimated smooth histories. Smoothing can be 
seen as a good byproduct and was for example achieved on purpose 
by SMC++ thanks to a spline regularization scheme (Terhorst et al., 
2017). A tentative explanation for SPIDNA's smoothing effect while 
no regularizer was used is that it is easy for neural networks to ex-
press smoothing filters in their last layer. As, in our task, smoothing 
is correlated with lower prediction variance, the training of SPIDNA 
naturally chooses to smooth out its predictions. This could be seen 
as a tendency to favour low variance in the bias/variance trade-off.

4.3.1 | Combining deep learning and Approximate 
Bayesian Computation to approximate the posterior 
distribution

We found that adding an ABC step to the deep learning approach 
increased its performance. This ABC step takes as input the demo-
graphic parameters predicted by SPIDNA instead of the usual sum-
mary statistics. This strategy was proposed by Jiang et al. (2017) 
who showed that a deep neural network could approximate the 
parameter posterior means, which are desirable summary statistics 
for ABC. It was applied under the name of ABC-DL in two popula-
tion genetics studies for performing model selection; however, both 
papers relied on the joint SFS as predefined candidate summary sta-
tistics (Lorente-Galdos et al., 2019, Mondal et al., 2019). Here, we are 
taking advantage of both the deep architecture to bypass summary 
statistics and the Bayesian framework to refine the prediction and 
approximate the posterior distribution. The statistics currently pro-
cessed by ABC are the average over multiple independent regions of 
SPIDNA predicted population sizes. A natural future step would be 
to investigate whether combining differently these regions leads to 
improved predictions.

It not yet clear why this combination decreases the prediction 
error. Neural networks, such as SPIDNA, learn a very general map-
ping of the whole input space to the output demographic parameter 
space. On the other hand, ABC learns a local relationship, the poste-
rior distribution of the demographic parameters, for each targeted/
observed example based on its neighbourhood in the input space. 
Combining ABC with SPIDNA thus adds a local inference step to the 
general mapping learnt by SPIDNA, and this might help readjust the 
predictions locally. This is illustrated in Figure 4 where recent popu-
lation sizes estimated by SPIDNA have a tendency towards the cen-
tre of the prior while SPIDNA + ABC corrects it. This combination 
might be modifying the bias/variance trade-off favoured by SPIDNA 
towards higher variance. These hypotheses could be investigated 
further in future works.
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This gain, however, comes with a disadvantage which is the need 
for ABC to approximate a posterior distribution for each new data 
set. This can be fairly time-consuming for large panels containing 
many populations for which demography has to be reconstructed. 
Contrary to ABC, SPIDNA and other deep learning approaches, 
once trained, provide immediate predictions. This amortization of 
the training time is relevant for all studies processing large number 
of data sets such as meta-analyses over populations or species (e.g. 
Roux et al. (2016)) or addressing window-based tasks, such as selec-
tion and introgression scans, local ancestry or recombination esti-
mations. In these cases, the parameter predictive uncertainty could 
be estimated by the network (Chan et al., 2018; Lakshminarayanan 
et al., 2017) rather than through an ABC procedure.

Finally, we showed that applying ABC to SPIDNA predictions 
combined with precomputed summary statistics led to an error 
4.7% smaller than the one of a regular ABC and 6.0% smaller than 
SPIDNA. This indicates that the information retrieved by SPIDNA 
does not completely overlap the information encoded in the pre-
defined summary statistics but is not completely orthogonal either. 
The different behaviours of SPIDNA and ABC in terms of robustness 
to the presence of selection also support this hypothesis. These are 
the first steps towards understanding and interpreting the artificial 
neural networks currently used in population genetics, a major chal-
lenge that the deep learning field currently faces for many of its ap-
plications (Gilpin et al., 2018) and that has not yet been investigated 
in our community.

4.3.2 | Application to real data

Applying a method trained on simulated data to a real data set can be 
a difficult task. Here, we show that the estimated effective popula-
tion sizes of the three cattle breeds were qualitatively similar across 
the different methods used. All of them were able to recover the large 
ancestral population size shared by the three breeds, followed by its 
decline after domestication. However, the methods produced size 
estimates that were quantitatively different, notably in the strength 
of the decline and the recent population sizes. For quality reasons, 
inference was done using genotypes pruned of low-frequency al-
leles rather than haplotypes. The architecture and hyperparameters 
were optimized based on simulated haplotypes, and the network 
was trained on simulated genotypes. It is possible that an architec-
ture designed with a new hyperparameter optimization procedure 
calibrated for filtered genotypes would decrease SPIDNA error rate. 
However, the discrepancy between ABC and SPIDNA reconstruc-
tions in the last 10,000 years might also be due to the sensitivity 
of ANNs to overfitting and to mispecifications in the model gener-
ating training data. For example, decrease in performance due to 
demographic mispecification has already been shown for selection 
inference based on ANNs (Torada et al., 2019). In our work, we inves-
tigated whether positive selection on de-novo mutation or standing 
variation could have such a strong effect on demographic inference 
and found that SPIDNA was robust to various selective scenarios. In 

the cattle case, model mispecification arises because cattle breeds 
are subjected to strong artificial selection pressures based on ob-
served phenotypes, with few males contributing to the next genera-
tions, which is an extreme case of selection and a clear violation of 
the coalescent assumptions underlying our training simulated set. In 
addition, errors or missing information in real data were not mod-
elled in the training set, a procedure that can improve ABC perfor-
mance when using multiple summary statistics such as haplotype 
length statistics (Jay et al., 2019). When comparing performance on 
training and validation sets, we found that our architectures were 
not overfitting. Yet it is possible that the features automatically con-
structed by ANNs are more sensitive to a gap between real and sim-
ulated data (e.g. unmodelled errors and artificial selection) than an 
ABC method based on SFS and LD statistics. Although we checked 
the robustness of SPIDNA to the simulator tool and to multiple cases 
of natural selection on haplotype data (Figures S2 and S3), artificial 
selection based on phenotype and pedigree information is yet an-
other type of model violation. Systematically testing and improving 
the robustness of ANNs trained on simulations is a great challenge 
for the coming years.

5  | Conclusion

We addressed a challenging task in population genetics, that is, 
reconstructing effective population size through time. We showed 
that this demographic inference could be done for unknown re-
combination rates. The approach combining SPIDNA and summary 
statistics has a slight increase in performance compared to the 
more classical method (ABC based on summary statistics), while 
the approach based on SPIDNA performs similarly without requir-
ing any expert knowledge regarding the computation of summary 
statistics. Besides, the combination with an ABC approach (with-
out predefined statistics) allows to obtain posterior distributions. 
We are confident that a network exchangeable and adaptive to 
the input size is a promising architecture for future lines of work 
for other population genetics tasks, as it could prevent premature 
loss of information and favour learning new features rather than 
known haplotype invariance. These new features can be seen 
as automatically learned summary statistics and will be crucial 
in areas where inference is challenging and for which research-
ers are always designing novel and hopefully expressive summary 
statistics (see, e.g. the recent line of research on adaptive intro-
gression (Racimo et al., 2015)). As for now, co-estimating multiple 
processes remains a hard task, and inference is mostly done under 
simplifying assumptions, for example selection or recombination 
are inferred under a fixed demographic scenario and step-wise 
population size is reconstructed for a single panmictic population. 
The success of ABC and simulation-based methods is partly due 
to their ability to include complex models via simulations. Here, 
we showed, for the first time, that a well-designed artificial neu-
ral network is capable of retrieving information about fluctuating 
effective population size, competes favourably with a commonly 
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used approach and can also be combined with existing summary 
statistics if needed. Additionally, recent studies showed that ar-
tificial neural networks could detect introgression and selection 
(Flagel et al., 2018; Torada et al., 2019). For the above reasons, and 
because extracting information automatically should lead to the 
identification of features that disentangle processes hardly distin-
guishable, we are hopeful that future robust networks trained on 
complex simulations could help solve some of these tasks. Finally, 
we provided (a) a tool for users wanting to infer population size 
history of any species that can be applied to phased or unphased 
genomes (available from https://gitlab.inria.fr/ml_genet​ics/publi​c/
dlpop​size); (b) new exchangeable network architectures, some of 
which have the promising feature of being adaptive to input size; 
and (c) guidelines for future developers on building architectures 
and hyperoptimization to facilitate the development of new artifi-
cial neural networks for population genomics.
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