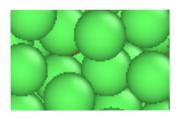
Data Challenge 2018

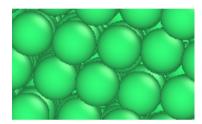
Solution of the Structure-Dynamics paradox in glass-forming liquids

F.P. Landes, G. Biroli @ IPhT CEA & ENS Paris

Simons' Collaboration "Cracking The Glass Problem" SIMONS FOUNDATION The paradox of the formation of amorphous solids: very different dynamics, very similar structure

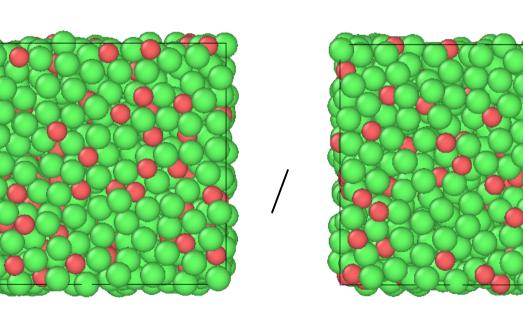
fluid





crystal

"glass" (fluid) high T



"glass" (solid) low T

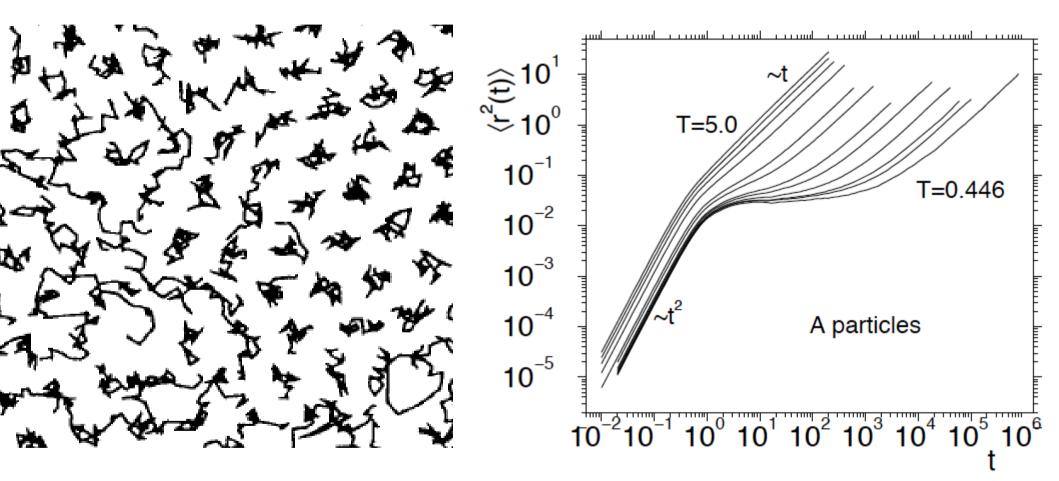
Difficult to guess which is the **fluid/solid**

Understanding the glass transition

- Crucial problem in Physics (statistical physics, condensed matter)
- Several ideas^{*} in the Physics literature, but the problem is still open
- Can Machine Learning help solving it?*

* Review of Modern Physics, 83, 587, Berthier, Biroli, 2011
* For pioneering ML approaches to glasses, see: PNAS, 114(2), 263–267, Schoenholz, Cubuk, et. al.; Nat. Phys., 12(5), 469–471, Schoenholz, Cubuk, Sussman, et.al.

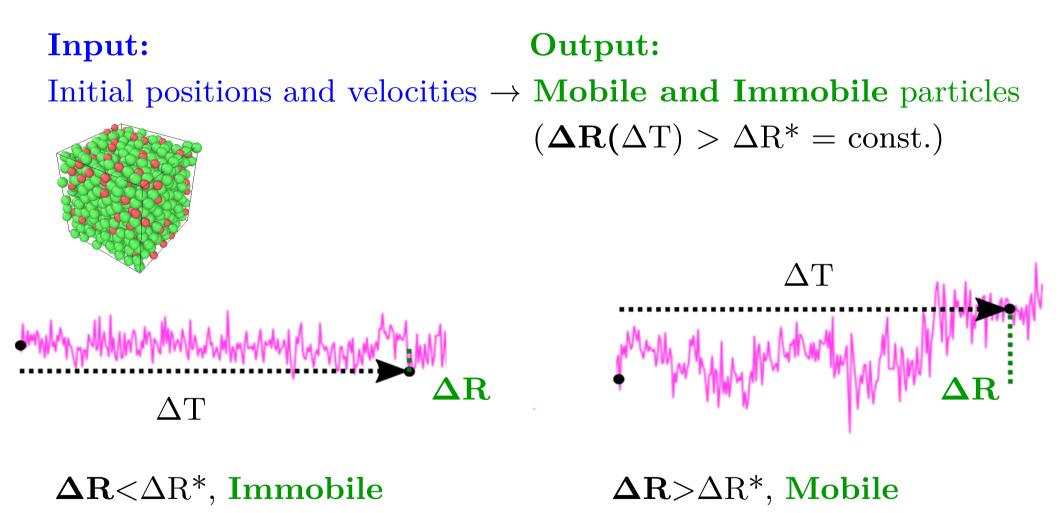
Glasses: Microscopic Dynamics



Particles are **caged over long times**

Cage lifetime increases when T decreases

Mobility (the Label)



(NVE integration, ΔT quite large, a fraction of the α -relaxation time)

Data types

• Inputs:

1000 coordinates (3D) and velocities (3D) (800 A+200 B) for the snapshot number i: $x_i = {x1,y1,z1,x2,y2,z2,...,z1000,vx1,vy1,vz1,...vz1000}$ (6000 values per snapshot)

• Outputs:

the 800 mobilities of atoms of type A, $y_i = \{s1, s2, ..., s800\}$; each $s \in \{0, 1\}$ $y_i = \{which atoms moved between time i and i+T\}$

• n=1877 independent training snapshots (~1.5 M particles) n_t=510 independent Testing snapshots (~0.4 M particles)

Goal : Reformulation

- {x(t),v(t),V(r)} + [Newton's equations] \rightarrow positions at t+ ΔT
- {x(t),v(t), examples} + [Machine Learning] $\rightarrow y=f(x) \text{ at } t+\Delta T$

 \rightarrow Can you "learn" what matters in the initial condition to predict important features at later times? (without knowledge of the Netwon equations nor the potential V(r), but with training examples!)

Scoring

• Classes are approximately balanced

• Score = Accuracy = 1 - Risk =

number correctly classified number tested

Our benchmark

g(r)

- Simple **features***:
 - Histograms of neighbors' density, for AA and AB pairs separately
 - Not even use velocities
- Simple classification with SVM, linear κe^{r} neuron
- Accuracy ~ 60% only !
- Newtons' equations: 100% accuracy, but we **learn nothing about what matters**

*inspired from: PRL, 114(10), 108001, Schoenholz, Cubuk, et. al.; Nat. Phys., 12(5), 469–471, Schoenholz, Cubuk, Sussman, et.al.

Suggestions, Ideas

• Use more exhaustive features?

Higher order correlation functions (more than 2-point)

- Use deeper networks?
- Use the **velocities**?

Outcomes

- High predictability means discovering the physical origin of dynamics in glass-forming liquids, by machine learning
- Great progress in **one of the most studied physics problem** in statistical physics and condensed matter!
- Possible high-profile academic publication, collaboration, NYC conference participation (2019)

Thank you !

- check the website for more information: http://lptms.u-psud.fr/francois-landes/data-challenge/
- A python code is available to take care of the **Periodic Boundary Conditions** (PBC)