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  Difficult to guess which is the fluid/solid

The paradox of the formation of amorphous solids:

very different dynamics, 
very similar structure

fluid                   /                           crystal  

"glass"                                                    "glass"
(fluid)                      /                      (solid)
high T                                             low T



  

Understanding the glass transition
● Crucial problem in Physics (statistical physics, 

condensed matter)
● Several ideas* in the Physics literature, 

but the problem is still open
● Can Machine Learning help solving it?*

* Review of Modern Physics, 83, 587, Berthier, Biroli, 2011
* For pioneering ML approaches to glasses, see: 
PNAS, 114(2), 263–267, Schoenholz, Cubuk, et. al.;
Nat. Phys., 12(5), 469–471, Schoenholz, Cubuk, Sussman, et.al.



  

Glasses: Microscopic Dynamics

Particles are caged
over long times 

Cage lifetime increases 
when T decreases



  

Mobility (the Label)
Input:                              Output:
Initial positions and velocities → Mobile and Immobile particles
                                            (ΔR(ΔT) > ΔR* = const.)

(NVE integration, ΔT quite large, a fraction of the -relaxation time)α

ΔT

ΔT ΔR ΔR

ΔR<ΔR*, Immobile                  ΔR>ΔR*, Mobile



  

Data types
● Inputs: 

1000 coordinates (3D) and velocities (3D)  (800 A+200 B)
for the snapshot number i:   x_i = 
{x1,y1,z1,x2,y2,z2,…,z1000,vx1,vy1,vz1,…vz1000}
(6000 values per snapshot)

● Outputs: 
the 800 mobilities of atoms of type A,
y_i={s1,s2,…,s800} ; each s {0,1}∈
y_i={which atoms moved between time i and i+T}

● n=1877   independent training snapshots  (~1.5 M particles)
n_t=510 independent Testing snapshots  (~0.4 M particles)



  

Goal : Reformulation
● {x(t),v(t),V(r)}         + [Newton’s equations]

                         →  positions at  t+ΔT
● {x(t),v(t), examples} + [Machine Learning]

                         →  y=f(x) at  t+ΔT

→ Can you “learn” what matters in the initial 
condition to predict important features at later times? 
(without knowledge of the Netwon equations nor the 
potential V(r), but with training examples!) 



  

Scoring

● Classes are approximately balanced

● Score = Accuracy = 1 – Risk = 

number correctly classified
number tested



  

● Simple features*:
– Histograms of neighbors’ 

density, for AA and AB 
pairs separately

– Not even use velocities
● Simple classification with SVM, linear Kernel
● Accuracy ~ 60% only !
● Newtons’ equations: 100% accuracy, 

but we learn nothing about what matters
*inspired from: PRL, 114(10), 108001, Schoenholz, Cubuk, et. al.;
Nat. Phys., 12(5), 469–471, Schoenholz, Cubuk, Sussman, et.al.

Our benchmark



  

● Use more exhaustive features? 

Higher order correlation functions (more than 2-point)
● Use deeper networks?
● Use the velocities?

● High predictability means discovering the physical origin 
of dynamics in glass-forming liquids, by machine learning 

● Great progress in one of the most studied physics problem 
in statistical physics and condensed matter! 

● Possible high-profile academic publication, collaboration, 
NYC conference participation (2019)

Suggestions, Ideas 

Outcomes



  

Thank you !

- check the website for more information:
http://lptms.u-psud.fr/francois-landes/data-challenge/

- A python code is available to take care of the 
 Periodic Boundary Conditions (PBC)
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