
Geometric Deep Learning for Glassy Materials

1 Internship context
Research lab: INRIA TAU team (joint team between INRIA, CNRS and LISN of Uni-
versité Paris-Saclay)
Location: LISN (building 660 “Digiteo”, at Université Paris-Saclay)
Supervision: François Landes (francois.landes@universite-paris-saclay.fr)

2 Problem statement
Context: geometric deep learning Graph Neural Networks (GNNs) are a well-
known kind of Deep Networks, allowing to enforce node-permutation equivariance (re-
indexing), a symmetry present in all graphs. Likewise, rotation-equivariant networks
allow to enforce rotation equivariance at the level of the very architecture (it constrains the
choice in aggregation or update steps). This is a game-changer that many are comparing
to the introduction of CNNs and then GNNs, and is rapidly taking over the other methods
for physics/chemistry-derived problems, where a learned representation of the input
should not depend on the viewpoint (a rotation of the system of coordinates). The
paradigm of (rotation) equivariant GNNs now dominates the field of molecular properties
prediction (or ab initio replacements with machine learned energies and forces), but also
other fields (using other symmetry groups), and is known as geometric deep learn-
ing [BBCV21]. Formally, equivariance of the map ϕ : X −→ Y (e.g. a network) can be
written, for the group G:

∀g ∈ G : ρY (g) ◦ ϕ = ϕ ◦ ρX(g)

Where ρX , ρY are group representations in the space X, Y (respectively).

Context: Glassy materials We propose to work on a test which represents ideal con-
ditions for studying and designing new equivariant GNNs: the case of glassy mate-
rials. The task is summarized in Fig. 1. This test case has its own scientific significance for
theoretical physics, but also represents a hard problem1 , so that solving it satisfactorily
necessitates the design of extremely expressive, sensitive GNNs. It is somehow different
from the more common benchmarks, which usually involve sparse assemblies of atoms
(as molecules, or at most an adsorbant), here instead space is densely packed with
particles. Predicting glassy dynamics has known a surge of interest recently [JAB+23],
and the state of the art is now disputed by different approaches.

1Physics Nobel Prize 2021 recipient Giorgio Parisi spent a part of his career on this notoriously hard
problem.
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Figure 1: Problem statement. The
input is the 3D location of all particles
(here shown as disks) in the simulation
box. Here only a 2D slice is shown, black
areas mean no particle was present at
this location of the slice. The target
value is the mobility (indicated by color)
of each particle. Notice the heteroge-
neous nature of the target field. Cur-
rent SOTA is a correlation coefficient of
ρ ∼ 0.8. Maximum reachable is about
0.95. To the naked eye, it is impossi-
ble to identify a structure-dynamics re-
lationship.

3 State of the art
Work done in our team Francesco Saverio Pezzicoli, a PhD student soon to defend
his PhD, has developed a very competitive equivariant GNN model [PCL24, JAB+23].
It is a network inspired by the NequIP [BMS+22] architecture, where we combine local
node features with the relative positions of nodes, using Clebsh-Gordan tensor products,
following the Tensor Field Networks approach [Thomas et al 2018]. We do not fully
describe our model here, and refer to [PCL24] or the soon-to-be-released PhD thesis of
Saverio for a full description.

Other methods for glassy dynamics prediction For the specific problem of pre-
dicting glassy materials’ dynamics, the state of the art has been redefined in late 2022:
our own SciPost paper [PCL24], along with a few other independent works [SHSS23,
ASF23, JBB23]. It’s worth noting that Deepmind’s redefinition of the SOTA (from
2020, [BKGB+20]) has been largely surpassed by these 4 independent contributions, with
ours in leading position over a range of sub-tasks (and the only truly equivariant
approach). A good review about the interplay between glassy physics questions and ma-
chine learning, including predicting dynamics, and a benchmark of the various methods,
can be found in [JAB+23] (soon to be published as a Nature Physics Review).

Geometric Deep Learning applied to physics/chemistry in general This is a
very active area, and we are interested in the newer original approaches such as MACE
[BKS+22] or the equivariant attention schemes that are being developed, such as those
in [LS22, HLLZ+21] or [FWFW20]. Part of the intern’s work would be to get up to date
with the most recent/promising developments.
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4 Scientific proposals
There are multiple avenues to explore that look promising. Here are some of the possible
directions that are well-defined and ready to be studied, but this is not exclusive of your
own ideas:

• Fully leveraging the equivariant properties of the network to predict directly the
displacement vector (comprising three components in 3D space), rather than just
its scalar magnitude. At equal backbone, one is interested to understand wether
diversifying the task can help learn better. This is quite an original task:
we are not aware of a paper actually making predictions for vector quantities and
studying how this choice impacts generalization.

• As in [JBB23], adding non-local quantities as additional target labels (i.e., adding
terms in the loss function), such as global correlation functions evaluated at specific
lengths (computed for the entire sample, resulting in a graph-wide target), or the
local variance of the target value (variance within a node’s neighborhood). This
could improve prediction quality, particularly in terms of spatio-temporal correla-
tions, and help address over-smoothing, a known issue in GNNs. Studying
carefully the impact of these auxiliary loss tems on the main task could help draft
generic strategies to fight over-smoothing (for any node-wise prediction task).

• Decoding various timescales2 using a single timescale-aware decoder, similar to FiLM
[PSDV+18] (conditioning the decoder with an embedding of the timescale, as pro-
posed in [GB22], allowing for a single final decoder). Here to improve over FiLM,
we propose to use Laguerre polynomials, an orthogonal family. Also, training
the backbone on several temperatures simultaneously, with a single temperature-
aware decoder. Ultimately, one would combine this with the previous idea to create
a decoder that is both timescale-aware and temperature-aware.

• Simply use more expressive equivariant architectures, such as those recently in-
troduced in [BKS+22] (MACE), or equivariant transformer. This could be
combined with previous ideas. The interplay between Spherical Harmonics or-
der (ℓmax), network depth (L) and MACE-style self interaction order needs to be
studied.

• Propose strategies to produce interpretable networks, or produce interpreta-
tions of the network’s output. In terms of interpretability, equivariant GNNs
offer a better outlook than regular GNNs, and we already have some ideas about
how to start thining about this.

Since the learning curve is not saturated, Self-supervised learning is also an interesting
playground. We can think of at least two directions for pre-training:

• Denoising: Adding nonphysical noise to the input positions and asking the network
to denoise the input.

• Predicting known quantities (defined at time 0) such as Epot, or quenched/ther-
mal positions from thermal/quenched inputs.

2Mobility can be measured, and predicted, at any chosen time. Each time constitutes de-facto a new
task, but these tasks are not independent.
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5 Expected results
Using the testbed of glassy materials and starting from our existing codebase, the
intern would study equivariant networks, then develop new architectures or train-
ing curricula to improve generalizability.
Following one or some of the scientific proposition above:

• Study rigorously how it impacts generalization power w.r.t. temperature (perfor-
mance at the training temperature and when generalizing to unseen temperatures).

• Study rigorously how it impacts generalization power w.r.t. training data (compute
the learning curve).

• When applicable, draft conclusions that apply more generally than the case of glassy
materials (i.e. apply to geometric deep learning for science). For instance, adding
non-local terms to the loss may be helpful to fight over-smoothing for a large range
of GNN applications.

• Along the research, draft guidelines for building efficient equivariant GNNs. In
CNNs, there are some well-known rule of thumb (like, one often combines blocks of
two (3× 3) kernels, with batch norm and skip connection in between such blocks).
Such rules of thumb do not exist for equivariant networks. Drafting such rules could
help build geometrical deep learning foundation models for some families of tasks.

The internship could lead to a PhD thesis, provided there is mutual interest for it.

6 Expected skills
We aim to recruit very motivated and talented students. The skills required are:

• Proficiency in python and pytorch

• Scientific rigor

• Some knowledge on GNNs (and possibly of pytorch-geometric)

• Some knowledge on Geometric Deep Learning (and possibly of e3nn or other pack-
age)

• Appeal for theory is appreciated (to understand the maths underlying equivariant
networks)

For information (for MVA students), the topics related and classes of the MVA are the
following. Students from other M2 are welcome to apply as well.

• Representation learning: Representation Learning for Computer Vision and
Medical Imaging

• Deep Learning: Deep Learning, Deep learning in practice

• Geometric Deep: Geometric data analysis (esp. session 4)
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• GNNs: Advanced learning for text and graph data ALTEGRAD (esp. the graph
part, not NLP)

Somewhat related but not necessary:

• Nuages de Points et Modélisation 3D (NPM3D)

• Geometry Processing and Geometric Deep Learning (not required, actually not that
relevant despite the title)

• Graphs in machine learning (although our graphs are actually quite regular)
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