Intranets

- Network Address Translation (NAT)
- Virtual Private Networks (VPN)
Private networks and *Intranets*

- Private networks have evolved based on IP technology.
- Private networks are usually partitioned using layer-2 switches, VLAN and IP routers.
- An *intranet* is just a private network using IP technology for LAN (or VLAN) interconnection, and providing some services on the INTERNET (web server, mail server, etc.).
Characteristics of Intranets

- The evolution of services and protocols made Intranets quite different from public IP networks.
 - Security issues
 - Address management
 - Differentiation of services offered to Intranet users and INTERNET users.
 - etc.
The exponential increase of the number of hosts in the Internet makes the availability of IPv4 addresses a real problem. This problem has pushed the standardization of IPv6. In the meanwhile, another solution has been found by means of private addresses. If an IP network is not connected to the Internet, it can use any arbitrary addressing plan...
Private addressing (1)

- Different intranets can reuse the same set of IP addresses (RFC 1597, Address Allocation for Private Internets).
 - Class A: net 10.xx.xx.xx (16 millions addresses)
 - Class B: from 172.16.0.0 to 172.31.255.255 (16 nets with 65536 addresses each)
 - Class C: nets 192.168.xx.xx (256 nets with 254 addresses each)
- It's not allowed that packets with private addresses (source or destination addresses) travel in the public Internet
- The development of some technologies like Proxy and NAT allowed the use of private addressing even to intranets connected to the Internet
Private addressing (2)

- A private network has usually some services that can be accessed from the public Internet.

- Servers of these services need a *public address*, while internal hosts can use a private address.
Private addressing (3)

- Without an interconnection mechanism between private and public world, private hosts cannot access to Internet services.
- Commonly adopted methods for interconnection are *NAT* and *Proxy*.*
Connection *Intranet/Internet*

- Intranet using public addresses
 - Application Proxy
 - Simple Router

- Intranet using private addresses
 - NAT
 - Application Proxy
Connection with a simple Router

- The intranet uses public IP addresses
- The *intranet* is actually a part of the big Internet
- Communications are always possible
- Low security
Connection through an application Proxy

- This solution works either with public or private addresses
- Intranet and INTERNET are not connected at the IP layer
- Any request (application layer) is forwarded to the proxy that forwards it to the Internet using its public IP address
- A proxy for each application is required
Application Proxy

- http proxy
- ftp proxy

Internet

Remote web server

Private addr.

- Routing tables with public and private addresses
Network Address Translation (NAT)

- NAT (Network Address Translation) routers have all classical functionalities of IP routers ...
- ... and in addition they can map a (private) addressing space into another (public) addressing space.
Network Address Translator (NAT)

- NAT permits to associate (usually temporarily) a *private* address to a *public* address. The set of private addresses is usually much larger than that of public addresses.

Diagram:

- **Available addresses:** subnet 131.175.13.0/24
- **Source:** 10.24.1.177 → 131.175.13.55
- **Destination:** 145.13.2.34 → 145.13.2.34

Network Address Translator (NAT)

Packets to the Internet are filtered and forwarded to the NAT.
NAT Table

To allow bidirectional connections, a mapping table is required:
- Static mapping
- Dynamic mapping
NAT methods

- **Traditional NAT**
 - **Basic NAT** (a.k.a. one-to-one NAT)
 - Only the IP addresses, IP header checksum and any higher level checksums that include the IP address are changed, the rest of the packet is left untouched
 - **Network Address and Port Translation** (a.k.a. One-to-many NAT, NAPT)
 - To avoid ambiguity in the handling of returned packets, a one-to-many NAT must alter higher level information such as TCP/UDP ports in outgoing communications and must maintain a translation table so that return packets can be correctly translated back

- **Bi-directional NAT**
 - **Twice NAT**
Common features

- **Transparent Address Translation**
 - Association (binding/unbinding) transparent to hosts
 - Two association modes:
 - Static (easy but inefficient)
 - Dynamic (efficient but complex)

- **Transparent Routing**
 - Routing must be managed according to the address type (private addressing plans must not be redistributed to the public network)

- **ICMP Packet Translation**
 - Portions of ICMP messages include IP addresses, therefore they have to be translated
Dynamic assignment is based on the concept of session.

When NAT receives the first packet of a session, it creates the association between public and private addresses.

At the end of the session the public address is released.

What’s a session?
- Its definition is protocol-dependent
- For TCP and UDP a session is based on the socket
- For ICMP, a set of three addresses (source IP, destination IP, Protocol Identifier)
- The direction of a session is the direction of the first packet
Once defined the session, we have to assess when it starts and ends

Session start:
- TCP: SYN packet
- UDP, ICMP: connectionless, there is not a unique method

Session end:
- TCP: FIN packets or RESET
- Other protocols: there is not a unique method
- Timers are always required to recover from error states.
NAT – Application Level Gateway (ALG)

- Several applications include IP addresses in the messages (ASCII or binary formats) and port numbers
- *Application Level Gateways (ALG)* add some functionalities to NATs for a correct operation with such applications
- Based on the application and messages type, not only IP headers but also message contents are translated, and if needed TCP segments are modified accordingly
- ALG are similar to *proxy*, but they are transparent to hosts
Traditional NAT (1)

- Also named *Outbound* NAT
- It allows only sessions initiated from the private network (from the Intranet to the Internet)
- Routing information is redistributed from the Internet to the Intranet, but not in the opposite direction
- 2 sub-types
 - Basic NAT
 - NAPT (*Network Address and Port Translator*)
Traditional NAT (2)

- Basic NAT
 - Only the IP address is translated
 - There is a one-to-one mapping during a session and two hosts cannot use the same public address at the same time
 - Requests can be blocked due to the limited number of available public addresses

- NAPT
 - The couple (IP, port) is translated
 - Many private addresses can be mapped on the same public address at the same time
 - Some problems arise with flows not using UDP or TCP (with ICMP it is possible to use the protocol identifier field)
 - With fragments it does not work
Bi-Directional NAT

- A session can start in any direction
- Problem:
 - How can a public host start a session with a private host without a public address?
 - Symbolic names must be used and the DNS service must support the NAT

![Diagram showing DNS query and response with NAT table]
NAT – Some comments

- Address mapping is not an easy task
- It requires
 - To recalculate the *Header Checksum*
 - To replace address into ICMP message and to recalculate the *header checksum*
 - To recalculate the *checksum* of TCP or UDP with the new *pseudo-header*
- ALG are required with applications including addresses or ports into application messages
- IPsec and all security protocols are difficult to manage
WAN connection of remote intranets (1)

- Different Intranets (of the same organization/company) can be connected together

- Problems:
 - cost
 - use of private addresses
 - security
WAN connection of remote intranets (2)

- Dedicated channels
- Problem:
 - Very high cost
WAN connection of remote intranets (3)

- Public packet networks (e.g. Frame Relay)
- Problems:
 - Quite high cost
WAN connection of remote intranets (4)

INTERNET (Virtual Private Network - VPN)

Problems:
- Private addresses
- Security
- Performance
Virtual Private Networks

- Tunnels
IP tunneling

- Tunnel can be created through encapsulation of IP packets into IP packets
- The payload traveling in the public network can be encrypted (IPsec)
- Addresses in the remote intranets are usually private