Lecture 2
Classical Cryptosystems

Shift cipher
Substitution cipher
Vigenère cipher
Hill cipher
Shift Cipher

• A Substitution Cipher
• The Key Space:
 – [0 ... 25]
• **Encryption** given a key K:
 – each letter in the plaintext P is replaced with the K’th letter following the corresponding number (**shift right**)
• **Decryption** given K:
 – **shift left**
• History: K = 3, Caesar’s cipher
Shift Cipher

• Formally:
• Let $P=C=K=\mathbb{Z}_{26}$ For $0 \leq K \leq 25$

\[e_k(x) = x + K \mod 26 \]

and

\[d_k(y) = y - K \mod 26 \]

\[(x, y \in \mathbb{Z}_{26})\]
Shift Cipher: An Example

- P = CRYPTOGRAPHYISFUN
- K = 11
- C = NCJAVZRCRCLASJTDQFY
- C → 2; 2+11 mod 26 = 13 → N
- R → 17; 17+11 mod 26 = 2 → C
- ...
- N → 13; 13+11 mod 26 = 24 → Y

Note that punctuation is often eliminated
Shift Cipher: Cryptanalysis

• Can an attacker find K?
 – YES: exhaustive search, key space is small (<= 26 possible keys).
 – Once K is found, very easy to decrypt

Exercise 1: decrypt the following ciphertext
 hphtwwxpelextoytrse

Exercise 2: decrypt the following ciphertext
 jbcrlqrcrvnbjenbwrwn

VERY useful MATLAB functions can be found here:
 http://www2.math.umd.edu/~lcw/MatlabCode/
General Mono-alphabetical Substitution Cipher

• The key space: all possible permutations of
 \[\Sigma = \{A, B, C, \ldots, Z\} \]

• Encryption, given a key (permutation) \(\pi \):
 – each letter \(X \) in the plaintext \(P \) is replaced with \(\pi(X) \)

• Decryption, given a key \(\pi \):
 – each letter \(Y \) in the ciphertext \(C \) is replaced with \(\pi^{-1}(Y) \)

• Example

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| \(\pi\) | B | A | D | C | Z | H | W | Y | G | O | Q | X | S | V | T | R | N | M | S | K | J | I | P | E | F | U |

• **BECAUSE** ➔ **AZDBJSZ**
Strength of the General Substitution Cipher

• Exhaustive search is now infeasible
 – key space size is $26! \approx 4 \times 10^{26}$

• Dominates the art of secret writing throughout the first millennium A.D.

• Thought to be unbreakable by many back then
Affine Cipher

- The Shift cipher is a special case of the Substitution cipher where only 26 of the 26! possible permutations are used.
- Another special case of the substitution cipher is the **Affine cipher**, where the encryption function has the form
 \[e(x) = ax + b \mod 26 \quad (a, b \in \mathbb{Z}_{26}) \]

- Note that with \(a = 1 \) we have a Shift cipher.
- **When decryption is possible?**
Affine Cipher

- Decryption is possible if the affine function is injective.
- In order words, for any \(y \) in \(Z_{26} \) we want the congruence

\[
ax + b \equiv y \pmod{26}
\]

to have a unique solution for \(x \).
- This congruence is equivalent to

\[
ax \equiv y - b \pmod{26}
\]
- Now, as \(y \) varies over \(Z_{26} \), so, too, does \(y - b \) vary over \(Z_{26} \).
 Hence it suffices to study the congruence

\[
ax \equiv y \pmod{26}
\]
Affine Cipher

\[ax \equiv y \pmod{26} \]

- This congruence has a unique solution for every \(y \) if and only if \(\gcd(a, 26) = 1 \) (i.e., \(a \) and 26 are relatively prime)
- \(\gcd = \text{greatest common divisor} \)

- Suppose that \(\gcd(a, 26) = d > 1 \)
 - for example \(\gcd(4, 26) = 2 \)
- \(e(x) = 4x + 7 \mod 26 \) is NOT a valid encryption function
- For example, both ‘a’ and ‘n’ encrypt to H
 (more in general: \(x \) and \(x + 13 \) will encrypt to the same value)

\[
\text{affinecrypt('a',4,7)} = \text{affinecrypt('n',4,7)} = 'h'
\]
Cryptanalysis of Substitution Ciphers: Frequency Analysis

• Basic ideas:
 – Each language has certain features: frequency of letters, or of groups of two or more letters.
 – Substitution ciphers preserve the language features.
 – *Substitution ciphers are vulnerable to frequency analysis attacks.*
Frequency of Letters in English

![Bar chart showing the frequency of letters in the English language. The letter 'e' is the most frequent, followed by 't', 'a', 'o', 'i', 'n', 's', 'h', 'r', 'd', 'l', 'u', 'c', 'p', 'm', 'f', 'g', 'y', 'v', 'w', 'x', 'z'.]
Frequency of Letters in French
Other Frequency Features of English

• Vowels, which constitute 40 % of plaintext, are often separated by consonants.
• Letter “A” is often found in the beginning of a word or second from last.
• Letter “I” is often third from the end of a word.
• Letter “Q” is followed only by “U”
• And more ...
Substitution Ciphers: Cryptanalysis

• The number of different ciphertext characters or combinations are counted to determine the frequency of usage.
• The cipher text is examined for patterns, repeated series, and common combinations.
• Replace ciphertext characters with possible plaintext equivalents using known language characteristics
Frequency Analysis History

• Earliest known description of frequency analysis is in a book by the ninth-century scientist al-Kindi

• Rediscovered or introduced in Europe during the Renaissance

• *Frequency analysis made substitution cipher insecure*
Improve the Security of the Substitution Cipher

• Using nulls
 – e.g., using numbers from 1 to 99 as the ciphertext alphabet, some numbers representing nothing are inserted randomly

• Deliberately misspell words
 – e.g., “Thys haz thi ifekkt off diztaughting thi ballans off frikwenseas”

• Homophonic substitution cipher
 – each letter is replaced by a variety of substitutes

• These make frequency analysis more difficult, but not impossible
Summary

• Shift ciphers are easy to break using brute force attacks, they have small key space.
• Substitution ciphers preserve language features and are vulnerable to frequency analysis attacks.
Towards the Polyalphabetic Substitution Ciphers

• Main weaknesses of monoalphabetic substitution ciphers
 – each letter in the ciphertext corresponds to only one letter in the plaintext
 – Idea for a stronger cipher (1460’s by Alberti)
 • use more than one cipher alphabet, and switch between them when encrypting different letters

• Developed into a practical cipher by Vigenère (published in 1586)
The Vigenère Cipher

• **Definition:**
 Given \(m \), a positive integer, \(P = C = (\mathbb{Z}_{26})^n \), and \(K = (k_1, k_2, \ldots, k_m) \) a key, we define:

• **Encryption:**
 \[e_k(p_1, p_2, \ldots, p_m) = (p_1+k_1, p_2+k_2, \ldots, p_m+k_m) \pmod{26} \]

• **Decryption:**
 \[d_k(c_1, c_2, \ldots, c_m) = (c_1-k_1, c_2-k_2, \ldots, c_m-k_m) \pmod{26} \]

• **Example:**
 Plaintext: C R Y P T O G R A P H Y
 Key: L U C K L U C K L U C K
 Ciphertext: N L A Z E I I B L J J I
Vigenère Square

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A
C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B
D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C
E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D
F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E
G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F
H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G
I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H
J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I

Plaintext:

CRYPTOGRAPHY

Key:

LUCKLUCKLUCK

Ciphertext:

NLASEIIBLJJI
Security of Vigenere Cipher

• Vigenere *masks the frequency* with which a character appears in a language: one letter in the ciphertext corresponds to multiple letters in the plaintext. Makes the *use of frequency analysis more difficult*.

• Any message encrypted by a Vigenere cipher is a collection of as *many shift ciphers* as there are letters in the key.
Vigenere Cipher: Cryptanalysis

- Find the length of the key.
- Divide the message into that many shift cipher encryptions.
- Use frequency analysis to solve the resulting shift ciphers.
 - how?
How to Find the Key Length?

• For Vigenere, as the length of the keyword increases, the letter frequency shows less English (or French)-like characteristics and becomes more random (when key length -> infinite, see One Time Pad).

• Two methods to find the key length:
 – Kasisky test
 – Index of coincidence (Friedman)
Kasisky Test

• (First described in 1863 by Friedrich Kasiski)
• Note: two identical segments of plaintext, will be encrypted to the same ciphertext, if they occur in the text at a distance Δ, ($\Delta \equiv 0 \pmod{m}$, m is the key length).
• Algorithm:
 – Search for pairs of identical segments of length at least 3
 – Record distances between the two segments: Δ_1, Δ_2, ...
 – m divides $\gcd(\Delta_1, \Delta_2, \ldots)$
Example of the Kasisky Test

- Key:
 K I N G K I N G K I N G K I N G K I N G K I N G

- Plaintext:
 t h e s u n a n d t h e m a n i n t h e m o o n

- Ciphertext:
 D P R Y E V N T N B U K W I A O X B U K W W B T

8 positions

The length of the keyword probably divides 8 evenly
(e.g. it may be 2, 4 or 8)
Index of Coincidence (Friedman)

• **Informally:** Measures the probability that two random elements of the n-letters string x are identical.

• **Definition:**
Suppose $x = x_1x_2...x_n$ is a string of n alphabetic characters. Then, the index of coincidence of x, denoted $I_c(x)$, is defined to be the probability that two random elements of x are identical.
Index of Coincidence (cont.)

• Reminder: binomial coefficient

\[\binom{n}{k} = \frac{n!}{k!(n-k)!} \]

• It denotes the number of ways of choosing a subset of \(k \) objects from a set of \(n \) objects.

• Suppose we denote the frequencies of A, B, C ... Z in \(x \) by \(f_0, f_1, \ldots f_{25} \) (respectively).

• We want to compute \(I_c(x) \)
Begin Math
Elements of Probability Theory

• A random experiment has an unpredictable outcome.

• Definition
 The *sample space* \((S)\) of a random phenomenon is the *set of all outcomes* for a given experiment.

• Definition
 The *event* \((E)\) is a *subset of a sample space*, an event is any collection of outcomes.
Basic Axioms of Probability

• If E is an event, *$Pr(E)$ is the probability that event E occurs*, then
 - $0 \leq Pr(A) \leq 1$ for any set A in S.
 - $Pr(S) = 1$, where S is the sample space.
 - If E_1, E_2, \ldots, E_n is a sequence of mutually exclusive events, that is $E_i \cap E_j = 0$, for all $i \neq j$ then:

$$Pr\left(E_1 \cup E_2 \cup \ldots \cup E_n\right) = \sum_{i=1}^{n} Pr\left(E_i\right)$$
Probability: More Properties

• If E is an event and Pr(E) is the probability that the event E occurs then
 – Pr(Ê) = 1 - Pr(E) where Ê is the complimentary event of E
 – If outcomes in S are equally like, then
 Pr(E) = |E| / |S|
 (where |S| denotes the cardinality of the set S)
Example

• Random throw of a pair of dice.
• What is the probability that the sum is 3?
 Solution: Each dice can take six different values \{1,2,3,4,5,6\}. The number of possible events (value of the pair of dice) is 36, therefore each event occurs with probability \(1/36\).

 Examine the sum: \(3 = 1+2 = 2+1\)
 The probability that the sum is 3 is \(2/36\).

• What is the probability that the sum is 11?
End Math
Index of Coincidence (cont.)

• Reminder: binomial coefficient

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}
\]

• It denotes the number of ways of choosing a subset of k objects from a set of n objects.

• Suppose we denote the frequencies of A, B, C ... Z in x by \(f_0, f_1, \ldots, f_{25}\) (respectively).

• We want to compute \(I_c(x)\)
Index of Coincidence (cont.)

• We can choose two elements of \(x \) (whose size is \(n \)) in \(\binom{n}{2} \) ways. Example: if \(n=3 \), \(\text{nchoosek}(3,2)=3 \); there are 3 ways of choosing couples of \(n=3 \) items. \textit{Example}: string ABC

• For each \(i \) in \([0...25]\), there are \(\binom{f_i}{2} \) ways of choosing both elements to be \(i \). Hence we have the formula

\[
I_c(x) = \frac{\sum_{i=0}^{25} \binom{f_i}{2}}{\binom{n}{2}} = \frac{\sum_{i=0}^{25} f_i(f_i - 1)}{n(n-1)}
\]
Example: IC of a String

• Consider the text
 \[x = "\text{THEINDEXOFCOINCIDENCE}\)"

• There are 21 characters, with frequencies

\[I_c(x) = \frac{\sum_{i=0}^{25} f_i (f_i - 1)}{n(n-1)} \]

• \(I_c = (3 \times 2 + 2 \times 1 + 4 \times 3 + 1 \times 0 + 1 \times 0 + 3 \times 2 + 3 \times 2 + 2 \times 1 + 1 \times 0 + 1 \times 0) / 21 \times 20 = 34/420 = 0.0809 \)
Index of Coincidence (cont.)

Now, if we suppose that \(n \) is very big (e.g., we take all words in the English dictionary), then we can further approximate the formula:

\[
I_c(x) = \frac{\sum_{i=0}^{25} \binom{f_i}{2}}{\binom{n}{2}} = \frac{\sum_{i=0}^{25} f_i(f_i - 1)}{n(n-1)} \approx \frac{\sum_{i=0}^{25} f_i^2}{n^2} = \sum_{i=0}^{25} p_i^2
\]

These are the real frequencies of letters in English (see Table).

This is an approximation if \(n \) is very big.
Example: IC of a Language

• For English, p_i can be estimated as follows

<table>
<thead>
<tr>
<th>Letter</th>
<th>p_i</th>
<th>Letter</th>
<th>p_i</th>
<th>Letter</th>
<th>p_i</th>
<th>Letter</th>
<th>p_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.082</td>
<td>H</td>
<td>0.061</td>
<td>O</td>
<td>0.075</td>
<td>V</td>
<td>0.010</td>
</tr>
<tr>
<td>B</td>
<td>0.015</td>
<td>I</td>
<td>0.070</td>
<td>P</td>
<td>0.019</td>
<td>W</td>
<td>0.023</td>
</tr>
<tr>
<td>C</td>
<td>0.028</td>
<td>J</td>
<td>0.002</td>
<td>Q</td>
<td>0.001</td>
<td>X</td>
<td>0.001</td>
</tr>
<tr>
<td>D</td>
<td>0.043</td>
<td>K</td>
<td>0.008</td>
<td>R</td>
<td>0.060</td>
<td>Y</td>
<td>0.020</td>
</tr>
<tr>
<td>E</td>
<td>0.127</td>
<td>L</td>
<td>0.040</td>
<td>S</td>
<td>0.063</td>
<td>Z</td>
<td>0.001</td>
</tr>
<tr>
<td>F</td>
<td>0.022</td>
<td>M</td>
<td>0.024</td>
<td>T</td>
<td>0.091</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0.20</td>
<td>N</td>
<td>0.067</td>
<td>U</td>
<td>0.028</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$$I_c(x) = \sum_{i=0}^{25} p_i^2 = 0.065$$
IC of a ciphertext

Now, the same reasoning applies if x is a ciphertext obtained by means of any monoalphabetic cipher. In this case, the individual probabilities will be permuted, BUT the quantity

$$I_c(x) = \sum_{i=0}^{25} p_i^2 = 0.065$$

will be unchanged!
Find the Key Length

• For Vigenere, as the length of the keyword increases, the letter frequency shows less English-like characteristics and becomes more random.

• Two methods to find the key length:
 – Kasisky test
 – Index of coincidence (Friedman)
Finding the Key Length

- Suppose we start with a ciphertext $q = q_1 q_2 \ldots q_n$
- Define m substrings $y_1 \ldots y_m$ as follows:

\[
\begin{bmatrix}
q_1 & q_{m+1} & q_{n-m+1} \\
q_2 & q_{m+2} & q_{n-m+2} \\
\vdots & \vdots & \vdots \\
q_m & q_{2m} & q_n
\end{bmatrix}
\]

$y_1 \ y_2 \ \ldots \ \ y_m$
Finding the Key Length

- In our previous example, supposing we already guessed, \(n=12, m=4 \)

Plaintext: C R Y P T O G R A P H Y
Key: L U C K L U C K L U C K
Ciphertext: N L A Z E I I B L J J I

\[
\begin{pmatrix}
q_1 & q_{m+1} & q_{n-m+1} \\
q_2 & q_{m+2} & q_{n-m+2} \\
\ldots & \ldots & \ldots \\
q_m & q_{2m} & q_n
\end{pmatrix}
\]

\[y_1 = CTA, \quad y_2 = ROP, \quad y_m = PRY\]
Guessing the Key Length

• If this is done, and m is indeed the key length, then each $I_c(y_i)$ should be roughly equal to 0.065 (e.g. it will “look like” English text)

$$I_c(y_i) = \sum_{i=0}^{25} p_i^2 = 0.065 \quad \forall 1 \leq i \leq m$$

• If m is not the key length, the text will “look like” much more random, since it is obtained by shift encryption with different keys. Observe that a completely random string will have:

$$I_c(x) \approx \sum_{i=0}^{25} \left(\frac{1}{26} \right)^2 = 26 \cdot \frac{1}{26^2} = \frac{1}{26} = 0.0385 \quad \forall 1 \leq i \leq m$$
Guessing the Key Length

• For French language, the index of coincidence is approximately 0.0778
• The values 0.065 (or 0.0778 for French) and 0.0385 are sufficiently far apart that we will often be able to determine the correct keyword length (or confirm a guess that has already been made using the Kasiski test)
Finding the Key, if Key Length Known

- Consider vectors y_i, and look for the most frequent letter
- Check if mapping that letter to e will not result in unlikely mapping for other letters
- Use *mutual index of coincidence* between two strings
 - To determine relative shifts, and hence the key
Summary

• Vigenère cipher is vulnerable: once the key length is found, a cryptanalyst can apply frequency analysis.
The Hill Cipher

• Use *linear equations*
 – each output bit (ciphertext, C) is a linear combination of the input bits (plaintext message, M)
 – the key *k is a matrix*
 • \(C = k \cdot M \)
 • \(M = k^{-1} \cdot C \)
 – known as the *Hill cipher*
 – easily breakable by known-plaintext attack
The Hill Cipher

• It’s another polyalphabetic cryptosystem, invented in 1929 by Lester S. Hill.

• Let m be a positive integer (we will see an example with m=2), and define $P=C=(Z_{26})^m$

• The idea is to take m linear combinations of the m alphabetic characters in one plaintext element, thus producing the m alphabetic characters in one ciphertext element.
The Hill Cipher

• Example with \(m=2 \)
• We can write a plaintext element as \(x=(x_1, x_2) \) and a ciphertext element as \(y=(y_1, y_2) \).
• Here \(y_1 \) would be a linear combination of \(x_1 \) and \(x_2 \), as would be \(y_2 \)
• We might take

\[
\begin{align*}
y_1 &= 11x_1 + 3x_2 \\
y_2 &= 8x_1 + 7x_2
\end{align*}
\]

All computed Mod 26
The Hill Cipher

• We might take
 \[y_1 = 11x_1 + 3x_2 \]
 \[y_2 = 8x_1 + 7x_2 \]
• Of course, this can be written more succinctly in matrix notation as follows:
 \[(y_1, y_2) = (x_1, x_2) \begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix}\]
• In general, we will take an m x m matrix K as our key. We will write y=xK
• The ciphertext is obtained from the plaintext by means of a linear transformation.
The Hill Cipher (Decryption)

• To decrypt, we should multiply both sides for the inverse of K, K^{-1}:
 – $yK^{-1} = xKK^{-1}$
 – hence $x = yK^{-1}$

• Does K^{-1} always exist? Of course not!

• By definition, the *inverse matrix* to an $m \times m$ matrix K (if it exists) is the matrix K^{-1} such that $KK^{-1} = I_m$

• For example:

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

• We can verify that the encryption matrix above has an inverse modulo 26

$$(\begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix})^{-1} = \begin{pmatrix} 7 & 18 \\ 23 & 11 \end{pmatrix} \rightarrow \begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix} \begin{pmatrix} 7 & 18 \\ 23 & 11 \end{pmatrix} = \begin{pmatrix} 261 & 286 \\ 182 & 131 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod 26$$
The Hill Cipher (example)

- The key is $K = \begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix}$
- From the computation above $K^{-1} = \begin{pmatrix} 7 & 18 \\ 23 & 11 \end{pmatrix}$
- We want to encrypt the plaintext *july*
 - Hence we have two elements of plaintext to encrypt: (9,20), corresponding to *ju* and (11,24) corresponding to *ly*
- We compute as follows:

 $$(9,20) \begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix} = (99 + 60, 72 + 140) = (3,4)$$
 $$(11,24) \begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix} = (121 + 72, 88 + 168) = (11,22)$$

DE → LW → DELW
The Hill Cipher (example)

- Verify that DELW decrypts to *july* using the matrix

\[K^{-1} = \begin{pmatrix} 7 & 18 \\ 23 & 11 \end{pmatrix} \]
The Hill Cipher

• Now the question is: when K is invertible?
• The invertibility of a matrix depends on the value of its determinant \((\det K = k_{11}k_{22} - k_{12}k_{21})\)
• We know that a \textit{real} matrix K has an inverse if and only if its determinant is \textbf{non-zero}
• However, it is important to remember that we are working over \(\mathbb{Z}_{26}\)
• The relevant result for our purposes is that a matrix K has an inverse modulo 26 if and only if \(\gcd(\det K, 26)=1\)
 – In our example, \(\det K=53 \pmod{26} = 1\) and \(\gcd(1,26)=1\)
The Hill Cipher

• How to compute K^{-1} (when it exists, of course)?

• Recall that $\text{det } K = k_{11}k_{22} - k_{12}k_{21}$

• It can be shown that:

$$K^{-1} = (\text{det } K)^{-1} \begin{pmatrix} k_{22} & -k_{12} \\ -k_{21} & k_{11} \end{pmatrix}$$

• In our example
 – $\text{det } K = 53 \mod 26 = 1$
 – Now, $1^{-1} \mod 26 = 1$
 – Hence

$$K^{-1} = 1 \begin{pmatrix} 7 & -8 \\ -3 & 11 \end{pmatrix} \mod 26 = \begin{pmatrix} 7 & 18 \\ 23 & 11 \end{pmatrix}$$