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Abstract—In this paper, we propose a truthful combinatorial
auction for the joint radio and processing resource allocation
problem in the context of a Cloud-based Radio Access Network
(C-RAN). We formulate the auction as an Integer Linear
Program (ILP), taking into accurate account interference
constraints while leveraging radio resource reuse to generate an
optimal revenue for the RAN operator. Then, we propose Truthful
Greedy Approach (TGA), an effective and truthful heuristic that
guarantees a close-to-optimum revenue compared to the one
obtained with the ILP formulation. Extensive simulations,
conducted in representative network scenarios, compare and
evaluate our auction with state-of-the-art approaches from the
literature, showing its effectiveness.

Keywords: C-RAN, Multi-resource allocation, Combinatorial auc-
tion, Truthfulness.

I. INTRODUCTION

Virtualization and centralization are two key features that
help the future Radio Access Networks (RAN) reduce op-
erational and capital expenditure costs (OPEX and CAPEX,
respectively) and enhance spectrum utilization [1], [2], [3].
With Cloud RAN (C-RAN), we obtain a RAN architecture
composed of antennas equipped with Remote Radio Head
(RRH) units connected to a centralized pool of Base Band
Units (BBU). In this paper, we address the dynamic aspect of
resource allocation in the context of a C-RAN, proposing a
scheme that jointly allocates the spectrum and the processing
units to end users. To this aim, we first propose a truthful
combinatorial auction and distinguish between two types of
resources: radio and processing ones. We suppose that each
user requests a resource bundle by submitting a bid expressing
her needs in terms of (1) number of radio resource blocks and
(2) number of processing units, in addition to her valuation
for obtaining both commodities. We tackle the case of an
auction with single-minded bidders, where the valuation of
a given user is higher than zero when she receives all the
resources she requires and zero otherwise. The auction takes
as input the set of users’ bids and produces as outcome the
allocation solution and pricing. The resource allocation and the
pricing problem take into accurate account system parameters,
interference constraints and resource re-usability, as well as
solution constraints, namely truthfulness, individual rationality
and computing complexity.
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We formulate the auction as an Integer Linear Program (ILP)
generating optimal revenue. Given the fact that combinatorial
auctions are computationally complex [4] and challenging in
terms of truthfulness, we further propose an approach, which
we term Truthful Greedy Approach (TGA), that can solve
the auction in polynomial time, and prove that it guarantees
truthfulness. We compare the performance of the different
mechanisms by running an extensive simulation campaign and
show that our approach further guarantees an efficient revenue
compared to the ILP formulation.

Auctions constitute an elegant business model for radio
resource allocation, and gained much attention in cognitive
radio networks [5], [6] as well as in Radio Access Networks
[7], [8]. Combinatorial auctions, a specific type of auctions,
are tailored for the allocation of multiple types of goods,
where bidders compete by declaring a price for the bundle
of goods they require [9]. In particular, combinatorial auctions
are well adapted for virtual machine provisioning in cloud-
computing systems, and proved to be efficient in generating
either an efficient social welfare or a high revenue [10],
[11]. Similarly, in wireless systems, combinatorial auctions are
proposed as an allocation approach for spectrum, antennas and
power allocation [12].

Profitable auctions should satisfy economic properties, espe-
cially truthfulness, to avoid market manipulation, and individ-
ual rationality to motivate users to participate in the auctions:
truthfulness guarantees that users do not lie about their valua-
tions by making bidding truthfully a dominant strategy, while
individual rationality ensures that no user has negative profit.
An efficient auction should also be computationally feasible
and should guarantee an optimal revenue.

The well known Vickery-Clarke-Groves (VCG) auction gen-
erates an optimal social welfare and respects auction desired
properties [8], [13]. However, VCG is shown to be NP-hard, to
generate low revenues in some scenarios [14], [13], [15] and
also to violate truthfulness when applied on spectrum allocation
performing channel reuse [14], [10]. Accordingly, multiple
approximation algorithms are proposed to solve the VCG
auction in polynomial time and/or guarantee truthfulness. The
authors in [8] propose a VCG-based auction for radio resource
allocation in the context of C-RAN and provide a greedy
algorithm to solve the auction in polynomial time. However,
the greedy algorithm is not proved to be truthful. The authors
in [14] propose a greedy algorithm for spectrum allocation
that can perform resource reuse and guarantee truthfulness.
However, simulation results showed that the auction cannot
guarantee a high revenue in some scenarios.



When VCG is applied on a combinatorial auction it also
loses the truthfulness property and approximation algorithms
fail to guarantee this important property [16], [17], [10], [18].
The work in [17] proposes an approximation algorithm for
combinatorial auctions that can guarantee truthfulness in ex-
pectation which guarantees that users maximize their expected
profit by bidding truthfully.

Motivated by the fact that combinatorial auctions are well
adapted in cloud-based networks but not much applied in the
context of C-RAN, we formulate in this paper a combinatorial
auction framework for joint radio and processing resource
allocation. We propose an algorithm for the allocation and
pricing decisions, and prove that our algorithm guarantees
strong truthfulness and a high revenue with respect to existing
schemes form the literature. To the best of our knowledge,
our work is the first that tackles joint spectrum and processing
resource allocation in a systematic manner, by means of a
combinatorial auction taking into account a scenario with
partial interference on spectrum resources and full interference
on processing units.

The remainder of this paper is organized as follows. Sec-
tion II presents the system model and the proposed auction
mechanism. Section III shows the different formulations and
discusses the economic properties they satisfy. Section IV
illustrates and analyzes numerical results. Finally, Section V
concludes the paper.

II. SYSTEM MODEL

We consider a C-RAN with a centralized BBU and dis-
tributed RRH units, leasing radio network resources in the form
of bundles to a set of users. We designate by Qn = {1,..., N}
the set of users, where [V is the total number of users requiring
a bundle of resources. Specifically, a RAN bundle is defined
as a combination of spectrum and corresponding processing
units. We consider the allocation of spectrum in the form of
resource blocks, where a given resource block can be used by
more than one user at a time if they do not interfere with each
other. In total, there are R resource blocks to be allocated,
and Qr = {1,..., R} is the corresponding set. As for the
processing resources, we consider a total of P units available
at the BBU level, where Qp = {1,..., P} is the corresponding
set.

a) Radio environment: To model the radio environment,
we consider G = (V, E), a conflict graph where V' is the set
of users and E the set of edges. Two users share an edge if
they interfere with each other. We deduce from G the N x N
matrix A, whose element ay; equals to 1 if users k and [ are
two interfering neighbors. We denote by IntSet(i) the set of
users interfering with user .

b) Auction agents and bidding language: The auctioneer
is the RAN operator, as the owner of the spectrum license and
the physical pool of resources at the BBU level. The users
requiring access to the network participate in the auction by
submitting a bid b; = (d;, ¢, w;), where d; and ¢; are the
number of resource blocks and the number of processing units
required by user i, respectively, and w; is the valuation declared
to the auctioneer, which is equal to the maximum price user %

Parameter Definition

R, Qg total number of resource blocks and the corresponding set

P, Qp total number of processing units and the corresponding set

N, Qn total number of users and the corresponding set

b;, B bid of user 7 € Qv and the corresponding set

d; number of resource blocks required by user %

qi number of processing units required by user ¢

w;, ¢i(w;) valuation of user 4 to purchase d; and g; and the corre-
sponding virtual valuation

v; user 7’s true valuation

w;(b;) user #’s utility when she bids b;

Di the price user 7 is going to pay when she bids b; and wins

G=(V,E) conflict graph, where V' is the set of users and E the set
of edges.

IntSet(i) set of users interfering with user ¢

Decision Definition

variable

T; Binary decision variable which is equal to 1 if user ¢ is a
winner, and 0 otherwise

rf Binary decision variable which is equal to 1 if the k — th
resource block is assigned to user ¢, and O otherwise

sf Binary decision variable which is equal to 1 if the k — th

processing unit is assigned to user 4, and O otherwise

Table I: Parameters and variables definition

is willing to pay in order to purchase d; and g;. Parameter w; is
public and might be different from the true valuation v;, which
is private to the user; we have w; <v;.

We denote by u;(b;) the utility of user 4, and adopt a quasi-
linear utility function, widely used in auction design: u;(b;) =
v; —p; when user ¢ wins and 0 otherwise; p; is the price user @
is going to pay when she bids b; and wins (p; should always
satisfy p; < w;).

c) Auction framework and process: We design a combina-
torial sealed bid auction, where bidders submit simultaneously
their requests. Bidders are considered to be single minded as
they are satisfied only if they receive the totality of the bundle
they are requesting. The auction will take the bids as an input
and perform the allocation and pricing decisions using the
algorithms which we describe next.

Table I summarizes the parameters and decision variables
introduced in our model.

III. PROBLEM FORMULATION

We describe and discuss in this section our mathematical
formulation for the combinatorial auction. We first formulate
the auction as an ILP model (called Non-Truthful Optimal
Approach) to solve the allocation decision paired with a VCG-
style pricing scheme that generates an optimal revenue. How-
ever, knowing that VCG is no longer truthful when applied
to combinatorial auctions [13], [18], we propose a greedy
algorithm that solves the auction in polynomial time, guarantee
truthfulness and still generates a high revenue, close to the
optimum in several typical network scenarios.

A. Non-Truthful Optimal Approach (NTOA)

1) Allocation decision: We first start by formulating the
allocation problem as an Integer Linear Program (Non-Truthful
Optimal Approach, NTOA), where the operator maximizes his
revenue while taking into consideration capacity constraints



and performing radio resource reuse. We assume that a pro-
cessing resource cannot be used by more than one user at a
time.

We define the decision variables as follows:

e x; equals 1 when bidder ¢ wins the auction and 0 other-

wise, with ¢ € Qp;

o 7F equals 1 when the k — th resource block is assigned

to user ¢ and O otherwise, with k € Qg;

o s¥ equals 1 when the k — th processing unit is assigned

to user ¢ and O otherwise, with k € Qp.

To guarantee revenue maximization, we adopt a Bayesian
optimal mechanism where we consider that user ¢’s valuation,
wj, is drawn from a given distribution F'(w;), known to the
auctioneer. We also consider that users bid truthfully, i.e.,
w; = v;. According to Myerson’s theorem, described in [15],
in Bayesian settings the expected revenue is equal to the sum
of the virtual valuations, where a virtual valuation ¢;(w;) is
defined as follows:

pi(wi) = w; — 1= Flw)

f(w;)
f is the probability density function, and ¢;(w;) is monotone
non-decreasing in w;.

Based on this, we maximize the expected revenue as follows:

max Z ¢i(w;)z; (D
1€EQN
s.t.
Y osh o<1 vkeQp )
JEQN
> > s <P ®
keQp jeQn
ri4rh <1 Vj e IntSet(i), Vi€ Qn,Vk€Qr ()
Y orf=dim VieQy )
kEQR
Z sf = q;T; Vi e Qn (6)
keQp
x; € {0, 1} Vi € Qn (7
rk € {0,1} VieQn,keQgr (8)
s¥€{0,1} VieQn,ke€Qp. )

The objective function in Expression (1) maximizes the
operator’s expected revenue. Constraints (2) and (3) ensure,
respectively, that a given processing unit is allocated at most
to one user at a time and that the capacity in terms of processing
units is respected. Constraint (4) ensures that a given resource
block is allocated to at most one user ¢ among its interfering
neighbors, IntSet(:). Constraints (5) and (6) ensure that a
given user ¢ receives the totality of the radio resources and
processing units requested or nothing. Finally, Constraints (7),
(8) and (9) are binary constraints.

2) Pricing decision: We adopt the classical VCG pricing
scheme, where a user ¢ has to pay p; in case of winning i.e.,
when z; = 1 and 0 otherwise. The price p; is defined as p; =
¢;1(p;) where:

= max w4 ;. — Imax AWw; )T
je{On— z}2¢j i) jeQN;@( 3%

B. Truthful Greedy Approximation (TGA)

Given that the Non-Truthful Optimal Approach (NTOA) pre-
sented above is NP-hard [19], we propose hereafter a Truthful
Greedy Approach (TGA), a greedy algorithm that generates a
sub-optimal, yet good revenue with respect to NTOA.

We start by defining the notation we will use in the follow-
ing:

e f3;: is a weight calculated for a given user ¢ in terms of

her bid’s parameters as follows:

¢1(w1)

bi = d;|IntSet(i)|+q; P

e pos;(b;,b_;): is the position of user 7 in the sorted list of
weights, when she bids b;; pos;(b;,b_;) is decreasing in
Bi.

e avPU,;(b;): is the amount of available processing units,
i.e. that have not been allocated to the set of users having
their weight value higher than user i’s weight when she
bids b;.

e avRB;(b;): is the set of resource blocks that have not
been allocated to user ¢’s conflicting neighbors when she
bids b;, (ie., Vj € IntSet(i) such that pos;(b;,b_;) >
pos;i(bi, b_;)).

TGA consists of two procedures: an allocation decision and
a pricing one.

1) Allocation decision: The allocation process is detailed in
Algorithm 1: we start by calculating the weight for each user
¢ (lines 4, 5 and 6). Then, we sort the list of users in non-
increasing order with respect to the weights (line 7). In lines
8 and 9 we make sure that the allocation scheme starts with
the user having the highest weight. We check in line 10 if the
virtual valuation is positive and whether there are enough re-
source blocks available in the set avRB;(b;) as well as enough
processing units avPU;(b;). If yes, the user is designated as
winner (line 11) and assigned the requested resource blocks
and processing units (lines 12-17). Finally, line 18 updates the
list of available resource blocks for conflicting neighbors and
the amount of available processing units.

2) Pricing decision: The idea behind the pricing decision is
to charge user ¢ the price p; defined as:

pi = ;' (p})

where p, = ¢;(i)(d;|IntSet(i)|+q¢;P) and ¢;(i) = f; is the
critical weight corresponding to the critical user [ defined as
follows.

Definition 3.1: For a fixed set of bids B, a critical user [ is
the user that, by winning, would disqualify user ¢ for one of the
following reasons: avPU;(b;) — q; < g; or |avRB;(b;)|—d; <



Algorithm 1 Truthful Greedy Approach (TGA):
Allocation decision

1: Input: N, P, R, B,
Output: z;, 7%, s¥, Vk € Qn, k € Qp, k € Qg
Init: avPU;(b;), IntSet(i), avRB;(b;)

fori=1to N
B = _ Gi(wi)
? d;|IntSet(i)|+q; P

end
Sort the set of bids B in decreasing order according to the weight 3;; let

A O ol

L be the sorted list and I the list of corresponding user indexes.
8: for j=1: N
9: ¢ = I(j)
11: z; 1
12: for | =1:4d;

13: TlavRBi(bi)\—H-l -1

14: end

15: fort=1:¢q;

16: S;wPUi(bi)—t-ﬁ—l -1

17: end

18: Update av PU;/ (by) Vi’ € Oy & avRBk(bk) Vk €
IntSet(7)

19: else

20: xz; < 0

21: end

22: end

d;. By verifies the following condition: if 3; < (; user ¢ loses,
while he wins otherwise.

The pricing algorithm is detailed in Algorithm 2. To deter-
mine the price p;, we find the critical user as follows: we first
remove user ¢’s weight from the list and apply the allocation
decision algorithm (Algorithm 1). After each iteration (line 18
in Algorithm 1), we verify if there are enough processing units
for user i and enough resource blocks in avRB;(b;). If yes,
we continue with the next user in the list B — {i¢} (Line 8 in
Algorithm 1). If no, then this user is the critical user; let [ be
the corresponding user index and (; the corresponding weight.
We have ¢;(i) = §; and

Di = cl(z)(dz|lntSet(z)|+qLP)

3) Auction properties: We discuss hereafter the auction
properties of the TGA mechanism. We first prove that TGA
is individually rational, then prove that TGA is also truthful.

a) Individual rationality: Individual rationality guaran-
tees that no user has a negative utility, where user ¢’s utility is
defined as u;(b;) = v; —p; in case of winning, and 0 otherwise.

Lemma 3.1: TGA is individually rational.
The complete proof is provided in Appendix A.

b) Truthfulness: Truthfulness, a crucial property in auc-
tion market, is challenging when it comes to combinatorial auc-
tions. In order to guarantee truthfulness, two main properties
should be satisfied: (1) the allocation must be monotone and

Algorithm 2 Truthful Greedy Approach (TGA):
Pricing decision
1: Input: N, P, R, B,
2: Output: p;
33fori=1: N
4: if z; = 1 remove b; from B and run the allocation
decision algorithm. After each iteration (line 18 in Algo-
rithm 1):

5: if avPUz(b1)<ql or \avRBl(bl)|<d2
6: cl(i) = () (with | the corresponding user index)
7: break from Algorithm 1

8: else

9: continue with Algorithm 1

10: end

11: pi = ¢7  (c(d)(di| IntSet(i)|+q; P)

12 else

13 pi =0

14 end

15: end

(2) the users should pay the critical price. However, in combi-
natorial auctions finding the critical price can be complex [10],
which makes them hard to guarantee truthfulness. With TGA,
we propose an allocation mechanism that is monotonic and
charges the user the critical price, which makes it truthful.

Lemma 3.2: TGA is truthful in terms of the valuations and
the request in terms of resource blocks and processing units.
The complete proof is provided in Appendix B.

IV. PERFORMANCE EVALUATION

We now evaluate numerically the performance of the pro-
posed approach, TGA, quantifying the revenue obtained and
comparing it to the optimal one achieved with NTOA. We also
compare the revenue of TGA with the one obtained by two
additional benchmark allocation approaches in the literature:
(1) the Truthful in Expectation Approach (TEA) proposed
in [16], [17], [10] and (2) the Fixed Price Approach (FPA)
described next.

TEA is based on the formulation described in [17] which
is itself based on an ILP relaxation. It can be implemented
by considering all decision variables to be fractional in [0, 1].
To apply this approach, we implement the allocation decision
described in Algorithm 3. As for the pricing algorithm, we
conduct a binary search on A € [0,v;] and run the allocation
decision algorithm at each iteration: user ¢ will pay the critical
price p; = \g, where Ay would result in z; = 0 when running
the allocation decision algorithm with v; = .

As of FPA, the idea of this allocation scheme, also used
in [10], is to fix a price py and charge it to all winners: the
allocation decision algorithm first sorts the users according to
their valuation, then designates a given user ¢ as a winner
Regarding the pricing scheme, users pay py if they win and 0
otherwise.

We specifically implemented all these different approaches
using MATLAB. In particular, the ILP-based optimization
model used in the NTOA approach was solved using the



Algorithm 3 Truthful in Expectation Approach (TEA):
Allocation decision algorithm

1: Input: N, P, R, B,

2: Output: z;

3 R+~ (1—-¢)R

4: P + (1 —€)P

5: Solve the relaxation of the ILP model described in section
II-A and let * = {z7,..,z% } be the solution

6: fori=1:N

7: generate randomly y € [0, 1]

8 if y <af & |avRB;(b;)|< d; & avPU;(b;) < q;

9: x; 1

10: Assign resources (lines 12-17 in Algorithm 1)

11: Update avPU,;(b;)Vl € Qn and avRB;(b;) Vj €
IntSet (i)

12: else

13: z; <0

14: end

15: end

CPLEX commercial solver on a server equipped with an Intel
CPU at 2.60 GHz and 64 GByte of RAM.

A. Network settings

We consider a scenario where the RAN operator runs an
auction over R resource blocks and P processing units. In
total, N users participate in the auction. The interference
graph G = (V, E) is generated in a random fashion. Table II
summarizes the parameter settings for the case studies we have
used. We assume that users valuations are generated from a
uniform distribution in [0, 1]. In this case, po = 0.5 is the
reserve price in TGA, i.e., it is the minimum bid valuation
required to become a winner. We used this price as the fixed
price in FPA.

We compare the performance of the different approaches by
measuring the achieved revenue, rejection rate, social welfare
and computing time as a function of the number of users, which
are illustrated in Figures (1a), (1b), (1c) and (2), respectively.

B. Results and discussion

We observe in Figures (1a), (1b), (1c) that the performance
of TGA is remarkably close to the ILP-based one (NTOA), in
terms of revenue, social welfare and rejection rate. In fact, the
revenue is only 7,5% lower than the optimum, in the worst
case, and just 3% lower on average. TEA is designed to gener-
ate an optimal social revenue while guaranteeing truthfulness
in expectation. In fact, the authors in [17] compared TEA to
VERITAS [14], a truthful approximation algorithm used for
spectrum auction with channel reuse, and TEA was shown
to generate higher social welfare than VERITAS. However,
both approaches were shown to be weak at revenue generation.
Figures (la) and (1c) show that TGA generates higher social
welfare than TEA, as well as a higher revenue: the social
welfare and revenue are, respectively, 8% and 38% higher with
respect to TEA.

Parameter Values

R 10

P 20

N [10, 20, 30, 40, 50]

d; & q; Generated from a uniform distribution in [1, 5]
w; Generated from a uniform distribution in [0, 1]
#i(wi) $i(wi) = 2w; — 1

Table II: Parameter settings

Comparing the performance of FPA with the auction based
approaches (TGA and NTOA) permits to underline the effi-
ciency of auction mechanisms in generating higher revenue and
admitting a higher number of users; this is due to the fact that
auctions admit in the system users who value the commodities
the most. However, Figure (1a), shows that FPA can generate
higher revenue than TEA; this is due to the fact that FPA
charges the users the reserve price, which is the minimum
valuation that users should bid in order to win, and in this
way it guarantees a threshold for the revenue achieved by the
auctioneer.

As of the computational efficiency, Figure (2) shows the
average computing time for the ILP-based optimal solution
and for the two heuristics (TGA and TEA). We observe that
TGA contributes to an average time saving of about 88% with
respect to TEA, which is indeed remarkable, especially when
the number of users is large.

V. CONCLUSION

We considered in this paper a combinatorial auction for joint
radio and processing allocation in the context of C-RAN. We
formulated the auction as an Integer Linear Program (ILP),
taking into accurate account interference constraints while
leveraging radio resource reuse to generate an optimal revenue.
Since solving such ILP problem can be time consuming in
medium-to-large network scenarios, we further proposed Truth-
ful Greedy Approach (TGA), an effective and truthful heuristic
that guarantees a close-to-optimum revenue compared to the
one obtained with the ILP formulation.

We proved TGA to be truthful and to generate a high
revenue, not far from the optimal one obtained with the ILP-
based solution (NTOA). Our numerical evaluation conducted in
several typical network scenarios demonstrated the efficiency
of TGA compared to existing, state-of-the-art heuristics from
the literature.

APPENDIX A
PROOF OF LEMMA 3.1

We now prove that user ¢’s utility when she bids truthfully
and wins is always positive, i.e., u(b;) = v; — p;>0, Vi € Qp,
with b; = (v;,d;, q;). Let B; be the critical weight, we have:
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Figure 1: Performance evaluation of the proposed allocation schemes (NTOA, TGA)
and comparison with state-of-the-art approaches (TEA, FPA).

¢4 (vi)
d;i|IntSet(i)|+q; P

_ @1 (wy) o
B = gmiserFar < Bi =

=>  By(di|IntSet(i)|+qi P) < ¢i(v;)
=>  pl<i(vi)

=>  ¢7' ) <

=>  w(b) = v — ¢ (p) >0

which completes the proof.

APPENDIX B
PROOF OF LEMMA 3.2

Truthfulness is guaranteed if bidding the truthful bid is a
dominant strategy i.e., if users will not maximize their utility
by bidding other than their truthful bid. It is known that an
auction where the allocation is monotonic and where users pay
the critical price in case of winning is a truthful auction [15],
[20].

Lemma B.1: For a fixed set of bids B excluding user i’s bid
bi, lavRB;(b;)| and avPU;(b;) are decreasing with respect to
pos(b;, b_;) and non-decreasing with respect to [3;;

i.e., for pos;(b;,b_;) > pos;(b;,b_;) we have avPU;(b;) <
avPU;(b;) and |avRB;(b})|< |avRB;(b;)].

Proof B.1: Let us denote by J and J’ the sets of users
having their weights value higher than user ¢’s weight, when
she bids b; and b} respectively. We have J = {j} € Q5 such
that pos;(b;,b_;) < pos;(b;,b_;).

By definition, we have: |[avRB;(b;)|l=N— >  d; and

je{JNIntSet(i)}
avPU;(b;)=P — > g;. With pos;(b;,b_;) < pos; (b, b_;)
jeJ

jJE.
we have |J|<|J'| leading to, > d;< > djand
je{JNIntSet(i)} je{J'NIntSet(i)}
also to, |avRB;(b;)|>|avRB;(b;)| and avPU;(b;)>avPU;(b;)

Lemma B.2: The allocation decision performed by TGA is
monotonic.

Proof B.2: Let us consider that user ¢ wins by bidding b; =
(vi,d;, q;). We demonstrate in the following that the allocation
is monotonic by proving that if user ¢ wins by bidding b; =
(w;,d;, q;) she will also win when bidding b, = (w';,d;, ¢;)
with w’; > w; and also b = (w;, d},q}) with d} < d; or/and
a4 < 4.

e Case 1: if user ¢ wins by bidding b; = (v, d;,q)

she will also win when bidding b, = (w';,d;,q;) with
w'; > v;. In this case, given that IntSet(i) and P
are fixed parameters, we will have S;(b)) > B;i(b;),
leading to pos;(b;,b_;)<pos;(b;,b_;) which, according
to lemma B.1, leads to avPU;(b;)>avPU;(b;) and
lavRB;(b)|>|avRB;(b;)|, which makes b; a winning bid.

e Case 2: if user ¢ wins by bidding b; = (wi,d;,q;)

she will also win when bidding b, = (w;,d},q;) with

d; < d; or/and ¢, < ¢; since in this case we will

have §;(b;) > f;(b;) and also pos; (b}, b_;)<pos;(b;, b_;)

leading to avPU;(b))>avPU;(b;)) > ¢ > ¢, and

lavRB;(b;)|>|avRB;(b;)|> d; > di. And so b} is a
winning bid.

Lemma B.3: The critical weight 3; of a given user ¢, for
a fixed set of bids excluding user i’s bid B — {b;}, is non-
decreasing with d; and g;.

We prove now that for b; = (w;,d;,q;) and b, = (w;,d}, ¢})
with d} > d; and/or ¢, > g; we have 5, >p.

Proof B.3: As shown in Algorithm 2, the critical weight /;
depends on the list of the sorted weights and on d; and g¢;. In
fact, line 18 shows that with d; and/or ¢, less iterations are
needed to get to the user !’ that would disqualify user i, with
respect to [ (corresponding the critical weight that disqualifies
user 4 when bidding d; and ¢;). Hence, user [’ has a lower
position in the list and a higher or equal weight 5, >0;.

Now we will use the lemmas described earlier to prove the
following key lemma:

Lemma B.4: User ¢ will not maximize her utility by bidding
a bid different from the true one.

Proof B.4: We prove that wu(b;)>u(b)) V b, =
(wi, d}, ¢})#b; = (v, d;,q;) where v;, d; and g; are user’s 4
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game theory. Cambridge University Press, 2007.

— if w; > v;, in this case, if user ¢ wins we have u(b;) =
v; — ¢; (p) where p, = Bi(d;|IntSet(i)|+qP) >
Bi(d;| IntSet(i)|+q; P) = ¢;(v;), leading to ¢; ' (p}) <
v; and u(b}) <0

- if w; < v;, then B} < B; < f; and user i loses

- if w;#v; and d;>d; and/or ¢;>q;, we have 3; < 5;<fy
(lemma B.3) leading to p} = By (d}|IntSet(i)|+q,P) >
Bi(di|IntSet(i)|+q¢; P) = ¢:(v;) leading to ¢; *(p’) >
v; and to u(b}) < 0.

Which completes the proof.
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