
Resource Calendaring for Mobile Edge Computing
in 5G Networks

Bin Xiang
Politecnico di Milano
bin.xiang@polimi.it

Jocelyne Elias
University of Bologna
jocelyne.elias@unibo.it

Fabio Martignon
University of Bergamo

fabio.martignon@unibg.it

Elisabetta Di Nitto
Politecnico di Milano

elisabetta.dinitto@polimi.it

Abstract—Mobile Edge Computing (MEC) is a key technology
for the deployment of next generation (5G and beyond) mobile
networks, specifically for reducing the latency experienced by
mobile users which require ultra-low latency, high bandwidth,
as well as real-time access to the radio network. In this paper,
we propose an optimization framework that considers several
key aspects of the resource allocation problem for MEC, by
carefully modeling and optimizing the allocation of network
resources including computation and storage capacity available
on network nodes as well as link capacity. Specifically, both an
exact optimization model and an effective heuristic are provided,
jointly optimizing (1) the connections admission decision (2) their
scheduling, also called calendaring (3) and routing as well as (4)
the decision of which nodes will serve such connections and (5)
the amount of processing and storage capacity reserved on the
chosen nodes. Numerical experiments are conducted in several
real-size network scenarios, which demonstrate that the heuristic
performs close to the optimum in all the considered network
scenarios, while exhibiting a low computing time.

Index Terms—Calendaring, Network slicing, Network Design,
Edge computing, Joint Optimization

I. INTRODUCTION

Next generation (5G and beyond) mobile networks are
currently being deployed, and need to provide services char-
acterized by ultra-low latency, high bandwidth, as well as
real-time access to the radio network. To achieve these goals,
Mobile Edge Computing (MEC) is envisaged to provide an
IT service environment and cloud-computing capabilities at
the edge of the mobile network, within the Radio Access
Network and in close proximity to mobile subscribers; through
this approach the latency experienced by mobile users can be
considerably reduced. However, the computation power that
can be offered by an edge cloud is limited if compared to
a remote cloud. Considering that 5G networks will be likely
built in an ultra-dense manner, the edge clouds attached to 5G
base stations will also be massively deployed and connected
to each other in a specific mesh topology. Thus, by exploiting
the cooperation among multiple edge clouds and by carefully
allocating edge resources to each connection, we can provide
a solution to the limitations of a single MEC unit.

In this paper, we provide an optimization framework (an
exact model as well as an efficient heuristic approach) that con-
siders several key aspects of the resource allocation problem in
the context of Mobile Edge Computing. Specifically, our pro-
posed model and heuristics jointly optimize (1) the admission
decision (which connections are admitted and served by the

network, based on the profit they can potentially generate with
respect to the required resources for serving demands), (2) the
scheduling of admitted connections, also called calendaring
(taking into account the flexibility that some users exhibit in
terms of starting and ending time tolerated for the required
services), (3) the routing of these flows, (4) the decision of
which nodes will serve such connections as well as (5) the
amount of processing and storage capacity reserved on the
chosen nodes that serve such connections, with the objective
of maximizing the operator’s profit.

To our knowledge, our work is the first one that considers
all these five aspects together. Other works focus, instead,
on specific aspects. For instance, in [1], the authors study a
task offloading model considering constraints on task queue
lengths to minimize the users’ power consumption, while the
work in [2] jointly considers task assignment, computing and
transmission resources allocation to minimize system latency
in a multi-layer MEC context. The authors in [3] study traffic
processing and routing policies for service chains in distributed
computing networks to maximize network throughput. These
works, however, do not consider the resource scheduling
problem. The work in [4] studies bandwidth calendaring to
allocate network resources and schedule deadline-constrained
data transfers, while [5] studies the problem of scheduling and
routing deadline-constrained flows in data center networks to
minimize the energy consumption. However, the allocation of
computing resources is not considered in these works. In [6],
the authors study the problem of dispatching and scheduling
jobs in edge-cloud system to minimize the job response
time; [7] studies online deadline-aware task dispatching and
scheduling in edge computing to maximize the number of
completed tasks. Finally, the work in [8] proposes a two-time-
scale strategy for resource allocation by performing service
placement (per frame) and request scheduling (per slot) to
reduce the operation cost and system instability. These works,
though, do not explicitly consider the routing problem that
arises. In our previous works, we first focus in [9] exclusively
on minimizing the latency of traffic in a hierarchical network,
keeping the network and computation capacity fixed. Then,
in [10], we address the joint network planning, slicing and
edge computing problem, aimed at minimizing both the total
latency and operation cost for arbitrary network topologies.
However, in these works we do not consider the requests
admission as well as the scheduling of the computation,

storage and bandwidth resources.
To jointly optimize allocation of multiple resources and

scheduling, we first formulate an exact optimization model,
which turns out to be both nonlinear (due to latency constraints
that we model accurately) and integer, and then we provide
a reformulation1 that transforms our original problem into an
equivalent Mixed Integer Quadratically Constrained Problem
(MIQCP), which can be solved by available commercial
solvers. Subsequently, an effective heuristic, named Sequential
Fixing and Scheduling (SFS), is proposed. We compare our
proposed model and heuristic to a greedy approach, which
provides a benchmark for our solutions. Numerical results
demonstrate that the proposed heuristic performs close to the
optimum in all the considered network scenarios, with a very
short computing time.

The paper is organized as follows: Section II illustrates
the problem formulation and the proposed exact optimization
model. Section III presents the heuristic. A numerical analysis
and comparison of the proposed model and heuristics is
performed and discussed in Section IV. Finally, section V
concludes the paper.

II. PROBLEM FORMULATION

A. System Overview

We consider an edge cloud network represented by an
undirected graph G(V, E), where each node v ∈ V represents
an edge computing node having Dv and Sv as computation
and storage capacity, respectively. The two parameters θv and
φv denote, respectively, the cost of computation and storage
capacity of node v. Each edge e ∈ E corresponds to a network
link characterized by its bandwidth Be and its cost per unit of
flow ψe. Let K denote the set of requests, with different types,
offered to the network. We regard each type of request as
an aggregated communication-computation demand, e.g. web,
video, game traffic etc., which has to be accommodated in the
network and requires some amount of bandwidth, storage and
computation resources. We assume that the calendar (i.e., the
arriving time and duration) of the requests for the upcoming
period is known. This can be achieved assuming that customers
have announced their requirements in advance, or that some
history-based prediction tools [11] are used.

We discretize the time horizon into a set T of equal duration
time-slots, where the slot length is τ . Each request k ∈ K is
defined as a tuple (sk, αk, βk, dk, λk). The parameter sk is the
source node of request k; αk, βk and dk define the arrival

t0

d1
α1 β1

ξ1? {d1+ processing (& link) latency}

d2

α2 β2

Fig. 1: Example of time scheduling of a request.

1http://xiang.faculty.polimi.it/files/TechnicalReport.pdf

time, the latest ending time (deadline) and the duration of
request k, respectively. Finally, we consider a Poisson process
for each request k with an average packet arrival rate λk.
The arrival and ending times coincide, respectively, with the
arrival of the first packet and the departure of the last packet
of request k.

A request k could be processed immediately (for delay-
sensitive tasks) after its arrival, or scheduled for later (for
delay-tolerant tasks). Also, it could be entirely processed
on the local edge computing node or split into multiple
fractions and processed on other nodes. In any case, it must
be completed before the deadline βk. Figure 1 shows the
arrival time α, deadline β and duration d of requests 1 and
2. Also, it highlights that request 1 is scheduled to be served
from time ξ1

? , delayed (shifted) with respect to α1 but still
compatible with β1. The ending time for the request will then
depend on ξ1

? , d1, computing latency, and link latency along
the routing path if (some fraction of) the request is offloaded
to the neighbor edge computing nodes.

Given a calendar of requests T over a time horizon, the
proposed optimization approach must: a) schedule the starting
time of each request, b) decide where to compute the requests,
and c) route some fractions of requests when it is necessary
to process them on other edge computing nodes, in order to
maximize the profit of the provider.

B. Life Cycle of A Request

A given request k arriving at an edge node v at time αk

could be: i. rejected, ii. processed immediately – this is needed
if it is a delay sensitive task – or iii. shifted to a future epoch,
if it is delay tolerant. To model the fact the delayed (shifted)
starting time ξk? can vary in the time frame [αk, βk − dk], we
express ξk? as: ξk? =

∑βk−dk
t=αk t · zkt, and we have:

∑βk−dk

t=αk
zkt 6 1, ∀k. (1)

Essentially, zkt is a binary variable that can be 1 at most in
one point of time which corresponds to ξk? for request k. When
zkt = 0 for all possible time slots, this implies that the request
is not admitted and, therefore, not scheduled. Note that by
changing the inequality constraint (1) to an equality, the edge
cloud will be forced to serve all the incoming requests, which
may be unfeasible in some cases.

A request can be either processed locally in a computing
node or split and offloaded to other edge computing nodes. In
the latter case, the processing latency, the storage provisioning
constraints and the link latency along a routing path should be
taken into account by the calendaring scheme. Considering
a node v that is allocated to process a fraction qkv ∈ [0, 1]
of request k, the ending time at v, denoted by ξkvo , can be
expressed as: ξkvo = ξk? +dk+

⌈
Tkv
L

τ

⌉
+
⌈
Tkv
P

τ

⌉
, where T kvL and

T kvP are respectively the link latency and processing latency.
Note that both ξk? and ξkvo are integer values in the time slot set
and τ is the time-slot duration. The ending time of each request

depends on the last finished piece, which must be completed
before the deadline. Such constraint is expressed as:

max
v∈V
{ξkvo } 6 βk, ∀k. (2)

In the following, we will express the request routing and the
two latency components (link and processing latency) in detail.

C. Network Routing

We assume that a request can be split into multiple pieces
only at its source node. Each piece can then be offloaded
to another edge computing node independently of the other
pieces, but it cannot be further split (we say that each piece
is unsplittable). Each link e ∈ E may carry different request
pieces, qkv (remind that qkv is the fraction of request k to be
processed at node v). Then, the total flow of request k on link
e, fke , can be expressed as the sum of all pieces of k that pass
through such link: fke =

∑
v∈V: e∈Rkv qkv , where Rkv ⊂ E

denotes the routing path (set of traversed links) for the partial
request qkv from source node sk to node v. The traffic flow
conservation constraint is enforced by:∑

e∈Φ−v

fke −
∑
e∈Φ+

v

fke =

{
qkv − 1, if v = sk,
qkv, otherwise, ∀k, ∀v, (3)

where Φ−v and Φ+
v are, respectively, the set of incoming and

outgoing links of node v. The fulfillment of this constraint
guarantees continuity and acyclicity for the routing path.

D. Link Latency

Let T kvL denote the link latency for routing request k to node
v. Each request is routed in a multi-path way, i.e., different
pieces of the request may be dispatched to different nodes via
different paths. The transmission time of the requests on each
link is described by an M |M |1 model; hence, ∀k,∀v, T kvL is
defined as:

T kvL =

{ ∑
e∈Rkv

1
pkv
e Be−qkvλk , if qkv > 0 & v 6= sk,

0, otherwise,
(4)

where pkve is the fraction of bandwidth capacity sliced for
the piece of request (qkv) flowing to node v via link e. The
link latency is accounted for only if a piece of request k is
processed at node v (i.e. qkv > 0) and v 6= sk. The following
constraint ensures that the flow of request k on each link of
the routing path does not exceed the allocated capacity:{

qkvλk < pkve Be, if e ∈ Rkv,
pkve = 0, otherwise, ∀k, ∀v,∀e. (5)

Considering that different requests k ∈ K can share the
same link at a given time slot, the reservation constraint of a
link capacity at any time slot is expressed as:∑

k∈K

∑
v∈V

pkvte 6 1, ∀e, ∀t, (6)

where pkvte is the fraction of link e’s bandwidth allocated for a
piece of request qkv at time slot t. Note that we assume that the
reserved bandwidth for each request over its life period does

not change in order to provide consistent service guarantee.
The superscript t in pkvte is used to indicate the life status
of the flow. The relation between pkvte and pkve is given by
pkvte = δkvtpkve , where δkvt is a binary variable which is equal
to 1 if ξk? 6 t < ξk? + dk +

⌈
Tkv
L

τ

⌉
, and 0 otherwise.

E. Processing Latency and Storage Provisioning

When a request cannot be entirely processed locally, we
assume that such request can be segmented and processed on
different edge computing nodes. Hence, each node can slice
its computation capacity to serve several requests coming from
different source nodes. Notice that a request k also requires a
fixed amount of storage resource mk on a node v if k is to be
processed on this node later. Thus, only if both computation
and storage resources on a node are sufficient, a request could
be processed on that node. Let variable rkv denote the fraction
of computation capacity Dv sliced for the piece of request
qkvλk. The processing of user requests is also described by
an M |M |1 model. Let T kvP denote the processing latency of
edge computing node v for request k. Then, based on the
computational capacity rkvDv with an amount qkvλk to be
served, ∀k, ∀v, T kvP is expressed as:

T kvP =

{ 1
rkvDv−ηkqkvλk , if qkv > 0,

0, otherwise,
(7)

where rkv is the fraction of node v’s computation capacity
sliced to request k, and ηk is the processing density [12]
of request k measured in “cycles/bit”. In the above equation,
when request k is not processed on node v, the latency is set
to 0 and, at the same time, no computation resource should
be allocated to request k. The corresponding constraint is:{

ηkqkvλk < rkvDv, if qkv > 0,
rkv = qkv = 0, otherwise. (8)

qkv and rkv also have to fulfill the consistency constraints:∑
v∈V

qkv =
∑βk−dk

t=αk
zkt, ∀k. (9)

Remind that the right hand of equation (9) represents
whether a request k is admitted in the system or not. If a
request k is rejected by the admission controller, the right
hand expression is equal to 0 and qkv = 0 is enforced.

The storage constraint can be expressed as follows:∑
k∈K: qkv>0

mk 6 Sv, ∀v. (10)

Different requests k ∈ K may share an edge computing
node at a time slot. Thus, the reservation constraint of a node
computation capacity at any time slot is implemented by:∑

k∈K
rkvt 6 1, ∀v,∀t, (11)

where rkvt is the fraction of node v’s computation capacity
allocated for request k at time slot t. We assume that the
reserved computation power for each request over its life
period will not change due to both the computation scaling

overhead and task reconfiguration overhead. The superscript t
in rkvt allows us to keep track of the life status of the request.
The relation between rkvt and rkv is given by rkvt = ρkvtrkv ,
where ρkvt is a binary variable which is equal to 1 if
ξk? +

⌈
Tkv
L

τ

⌉
6 t < ξkvo , and 0, otherwise.

F. Optimization Problem

Our goal in the resource calendaring problem is to maxi-
mize the profit computed as the total revenue obtained from
serving the users’ requests minus the network operation costs
in terms of computation, storage and bandwidth resources,
under the constraints (starting and ending times) of requests
coming from different nodes:

max
∑
t∈T

∑
k∈K

{
µkzkt −

∑
v∈V

{
rkvtDvθv + ρkvtmkφv

+
∑
e∈E

pkvte Beψe

}}
,

s.t. (1)− (11), (P0)

where µk is the revenue gained from serving request k.
Problem P0 contains both nonlinear and indicator con-
straints, therefore, it is a mixed-integer nonlinear programming
(MINLP) problem, which is hard to be solved directly [13].
Moreover, we also face the following difficulties: a) routing
variables Rkv and request fraction variables qkv are “inter-
twined”: to find the optimal routing, the fraction of request
processed at each node v should be known, and at the same
time, to solve the optimal resource allocation for a request,
the routing path should be known; b) P0 contains indicator
functions and constraints, which cannot be directly and easily
processed by most solvers. To deal with the above critical
issues, we propose an equivalent reformulation of P0, which
we call P1 that we can efficiently solve with the Branch and
Bound method.

Intuitively, the reformulation in P1 proceeds as follows: (a)
we first reformulate the link and processing latency constraints,
as well as the node storage constraint (viz., constraints (4),
(7) and (10)), then (b) we handle the difficulties related
to indicator variables δkvt, ρkvt and variables Rkv with the
corresponding routing constraints. For space reasons, we do
not include the reformulation here. The interested readers can
refer to the technical report available online1.

III. HEURISTICS

To solve our problem in a reasonable computational time,
we propose a heuristic named Sequential Fixing and Schedul-
ing (SFS) which realizes a good trade-off between admitting
“valuable” connections (the ones that provide high return to
the service provider) and the resources they request in terms
of transmission rate, storage and computation.

SFS is detailed in Algorithm 1. We first introduce some
auxiliary variables of P1, viz., bkv: whether request k is
processed on node v, and γkve : whether request piece qkv is
routed via link e. The hat notation (like b̂kv) represents the
values of the corresponding variables in the solution set S?.

We start by sorting all requests in descending order according
to the ratio µk

dkλkmkηk
; this ranking is designed to give a

higher weight to requests that generate more revenue and
less cost to the operator. Then, we try to define a schedule
where we admit as many requests as possible. For each request
k, we check whether its activation period overlaps with the
one of other requests k′ that are already admitted, and in
such case we say there is a conflict. The overlap value Fk′

is determined by the function check overlap(·) (line 6 of
Algorithm 1). This function takes as input k, k′ and the partial
solution S? computed up to the current point, returns Fk′ and
proceeds as follows: i) it initializes two local variables α and
β with the arrival time αk

′
and deadline βk

′
of request k′,

respectively; ii) it verifies if k′ is admitted; if yes, it updates,
respectively, α and β with the exact starting time ξ̂k

′

? and
ending time maxv∈V ξ̂

k′v
o of k′ according to the solution S?;

iii) it computes the (partial) overlapping between k and k′

as: overlap = βk − α, if α > αk; overlap = β − αk,
otherwise (a negative value of overlap means no overlapping);
iv) Finally, it calculates and returns the maximum relative
overlap value Fk′ between k and k′, which is expressed as:
min(max(overlap, 0)

min(βk−αk, β−α)
, 1).

Based on {Fk′ |k′ ∈ K\{k}}, for each edge node v ∈ V ,
we select the maximum Fk′ for all k′ being processed at v,
and we identify this overlap value with Cv (line 7). Next,
we compute the ordered set Qk which contains sets Vi of
best candidate edge nodes to process request k. In doing so,
we consider Cv and limit to Lv the computation resource of
each node in Vi,∀Vi ∈ Qk (line 8 of Algorithm 1; details in
Algorithm 2). If we successfully find some candidates (Qk 6=
∅), we further update the residual bandwidth B′e for all links e
and create a weighted graph G′ with the reciprocal bandwidth
B′−1
e . Then (lines 12-16), we select the first Vi in Qk that

permits to find a profitable solution (O > 0) according to

Algorithm 1 Sequential fixing and scheduling

1: Initialize zkt = 0, ∀k, t and profit O = 0 for P1 ;
2: Set b̂kv = 0, r̂kv = 0, p̂kve = 0 (in S?), ∀k, v, e;
3: Sort K in descending order as Kr by µk

dkλkmkηk
, k ∈ K;

4: for k ∈ Kr do
5: Reset admission zkt 6 1, t ∈ [αk, βk − dk];
6: Fk′ ← check overlap(k, k′,S?), ∀k′ ∈ K\{k};
7: Cv ← maxk′∈K\{k}{b̂k

′vFk′}, ∀v ∈ V;
8: Qk, Lv ← find candidates(k,G,S?, Cv);
9: if Qk 6= ∅ then

10: B′e ← Be(1−
∑

(k′,v)∈K×V|Cv>0 p̂
k′v
e), ∀e ∈ E ;

11: Create graph G′ weighted by B′−1
e ;

12: for Vi ∈ Qk do
13: Set bkv = 1, rkv 6 Lv, ∀v ∈ Vi;
14: Fix route (γkve) using Dijkstra;
15: Optimize P1 to get profit O and solution S;
16: if O > 0 then break; . P1 is feasible
17: if O > O? & Qk 6= ∅ then
18: Update O? ← O, S? ← S;
19: Admit k and allocate resources based on S?;
20: Set P1 ’s lower bound LB = O?;
21: else Reject k (set zkt = 0,∀k, t);

Algorithm 2 Find candidates

Input: k, G, S?(solution), Cv(conflict);
Output: Qk(candidates), Lv(limit);

1: Lv ← 1−
∑
k′∈K|Cv>wc

r̂k
′v, ∀v ∈ V; . wc = 0.6

2: Vs = {v ∈ V | Cv 6 wc || Lv > wl}; . wl = 0.25

3: Yv ← (−hop(G, sk, v), v /∈ {sk
′
|k′ ∈ K}, Lv), ∀v ∈ Vs;

4: Sort Vs in descending order by Yv;
5: V1 = ∅, DΣ = 0;
6: for v ∈ Vs do
7: if λk > wdDΣ then V1 ← V1 ∪ {v}; . wd = 0.9

8: DΣ ← DΣ +DvLv;
9: Qk = (V1) ∪ ({v}, v ∈ Vs − V1);

the following criteria: we outsource k to the nodes in Vi and
bound the computation resource by setting bkv and rkv . Based
on G′, we route each piece of request qkv using the Dijkstra
algorithm (lines 10-14). After fixing variables bkv, γkve and
the constraints related to zkt, rkv in P1 , we start to optimize
P1 to get the profit and the solution denoted, respectively,
by O and S. If P1 results infeasible in the current setting
(O < 0), we reiterate on the other elements of Qk. If the result
of the new optimization improves, we update the current best
profit O? and solution S?, we admit request k and allocate
resources to it (including time slots, computation, bandwidth,
and storage). We also update the lower bound of P1 to LB =
O? to accelerate the optimization (line 20). Finally, if the result
does not improve or no candidate could be found, we reject k
and clear its corresponding variables settings.

In Algorithm 2, we first estimate Lv , the remaining compu-
tation capacity of each node v, based on r̂k

′v in the solution S?
verifying that the conflicts are higher than a given threshold
wc (Cv > wc). Then, we define Vs as the set of nodes v
satisfying Cv 6 wc || Lv > wl, where wl is a threshold on
the remaining computation. Hence, Vs represents the set of
nodes that are either in less conflict (for request k) or have
enough remaining computation power. For each v ∈ Vs, we
compute three features (denoted by Yv), i.e., the negative hop
distance between sk and v (−hop(G, sk, v)), the indicator of
whether v is a source node or not (v /∈ {sk′ |k′ ∈ K}) and the
estimated left computation capacity Lv (lines 1-3). Based on
Yv , we sort Vs in descending order to give more priority to a
node that is closer to the ingress node for k, better not to be
a source, and has more remaining computation capacity with
respect to other nodes. Then, we try to add nodes to V1, in
order, until λk > wdDΣ, where DΣ denotes the estimated total
computation capacity that can be used and wd is a threshold
controlling the total required computation capacity. Finally, we
return the ordered set Qk with V1 at the first place and the left
nodes Vs − V1 being separately stored as unit sets of backup
candidates (lines 5-9). Notice that the values of the thresholds
wc/l/d are appropriately chosen based on our experiments.

Greedy approach: We further present an alternative bench-
mark heuristic, which we call Greedy. It first sorts the requests
in ascending order by the priority key (−µk, αk, βk) and then
tries to schedule them one by one. The sorting considers the
revenue µk of a request in the 1st place, the arrival time αk

in the 2nd place and the deadline βk in the 3rd (last) place.
For each request k, we try to guarantee sufficient computation
power by using its closest neighbor nodes with a condition
λk

DΣ
6 wgreedy, wgreedy = 0.6 is a threshold appropriately

chosen based on our experiments.

IV. NUMERICAL RESULTS

We evaluate the performance of the proposed model, the
SFS and Greedy heuristics in terms of the operator’s profit,
expressed as in P0, the serving rate (the fraction of admitted
requests) and the computing time to get the solution. We first
present the experimental setup and then we discuss our results.

Experimental Setup: All numerical results presented in
this section have been obtained on a server equipped with an
Intel(R) Xeon(R) E5-2640 v4 CPU @ 2.40GHz and 126 GB
of RAM and with an open-source framework, SCIP (Solving
Constraint Integer Programs). The parameters of SCIP used
in our experiments are set to their default values. The results
illustrated in Figure 2 are obtained by averaging over 50
instances, with 97% narrow confidence intervals.

The network topologies used in our experiments are gen-
erated based on Erdös-Rényi random graph by specifying the
numbers of nodes and edges. Due to space constraints, we
present and discuss in this section the results obtained for a
representative topology (denoted as 30N50E30R), composed of
30 nodes and 50 edges with 30 requests, as well as those for
a small topology (denoted as 5N5E3R) consisting of 5 nodes,
5 edges, and 3 incoming requests. The 5N5E3R topology
allows us to compare the SFS heuristic to the optimal solution
(Figure 2(d)). The full set of results is available online1.

We uniformly extract, at random, a source node as well
as the arrival/ending times and duration, and the revenue
gained by the operator in serving each request, in range
[100, 300]. We further generate random request rates according
to a Gaussian distribution N(λk, σ2), where λk is randomly
selected in range from 30 to 60 Gb/s and σ = 0.5. For
the sake of simplicity, we assume that all links have the
same bandwidth (Be = 30 Gb/s) and nodes have the same
computation capacity (Dv = 30 Giga cycles/s) and storage
capacity (Sv = 40 GB). The costs of using one unit of these
three resources, ψe, θv , and φv , are all set to 0.01. Finally, we
set the processing density ηk = 1 and the storage requirement
mk = 10 for all requests. Note that our proposed model and
heuristics are general, and can be applied to optimize resource
allocation in all network scenarios with any parameters setting.

Effect of the request rate and revenue (λk, µk): Fig-
ures 2(a) and 2(b) illustrate the variations of profit and serving
rate versus the request rate and revenue in the 30N50E30R
topology. Values of λk and µk, k ∈ K are both scaled from
0.5 to 2.0 with respect to their initial values. This implicitly
indicates that serving each request provides a revenue propor-
tional to its arrival rate. As (λk, µk) increase, the profits for all
approaches increase; the network operator, in fact, is able to
select and admit the requests which can cover the system cost
and provide higher profit at the same time. When the request
rate is low, all connections can be served; when it increases,

0.5 1.0 1.5 2.0
Scale of request rate and revenue

500

1000

1500

Pr
of

it
Greedy
SFS

(a) 30N50E30R (λk, µk)

0.5 1.0 1.5 2.0
Scale of request rate and revenue

0.7

0.8

0.9

1.0

Se
rv

in
g

ra
te

Greedy
SFS

(b) 30N50E30R (λk, µk)

0.50 0.75 1.00 1.25 1.50
Scale of computation capacity

700

800

900

1000

Pr
of

it

Greedy
SFS

(c) 30N50E30R Dv

0.2 0.4 0.6 0.8 1.0
Scale of request rate

100

200

300

400

Pr
of

it

Greedy
SFS
Optimal

(d) 5N5E3R λk

Fig. 2: Profit and serving rate against scaling parameters (λk, µk), Dv and λk.

specifically after the point around 1.2, the serving rate of SFS
decreases since the system can accommodate less requests,
which become more demanding, hence costlier in terms of
required resources, as the scale factor (thus λk) increases.
Finally, SFS exhibits better performance compared to Greedy
with gaps up to 18% for profit and 20% for serving rate.

Effect of the computation capacity Dv: Figure 2(c) shows
the variations of the profit against the edge node computation
capacity Dv , scaled with respect to its initial value from 0.5
to 1.5, in the 30N50E30R topology. When Dv increases, the
profit (and serving rate, not shown for space reasons) increase
and converge to a specific value for all approaches. Note that,
for SFS, the profit increases from 700 up to 980, while for
Greedy, from about 630 to 950. As for the serving rate it
increases for SFS from 0.64 up to 1, while for Greedy, from
about 0.61 to 0.98. These trends reflect the strong effect of
the available computation capacity on the profit and serving
rate. Additionally, SFS performs better than Greedy with clear
gaps: up to 13% for profit and 14% for serving rate. As
expected, with large available node computation capacity, the
performance gap between SFS and Greedy decreases since the
utilization of enhanced algorithms is less critical to perform a
good resource allocation, when resources are abundant.

Optimum and Computing time: The exact model P0
could be solved in a reasonable time only in the small topology
(5N5E3R), and Figure 2(d) plots the profit versus the request
rate λk keeping the revenue µk fixed. The decreasing trend of
the profit for all the three approaches, when increasing λk, is
due to the fact that more and more resources are needed and
hence the cost incurred by the operator continues to increase
while the revenue is fixed, and therefore the profit decreases.
SFS exhibits indeed very good performance since its curve
and that of the optimal solution are completely overlapping,
while the Greedy approach shows lower performance.

The optimal solution has an average computing time of
146 s, while SFS took just 5 s, and Greedy 4 s. Further-
more, in larger scenarios (up to 30N50E30R) SFS exhibited a
computing time always inferior to 1096 s, thus confirming its
efficiency in computing very good solutions in a short time.
The Greedy approach needs less computation time, on average
822 s, to obtain the solution, at the cost of higher performance
gaps with the proposed model and SFS heuristic.

V. CONCLUSION

In this paper we formulated and solved the resource cal-
endaring problem in mobile networks equipped with Mobile

Edge Computing (MEC) capabilities. Specifically, we proposed
both an exact optimization model as well as an effective
heuristic able to obtain near-optimal solution in all the con-
sidered, real-size network scenarios.

The decisions we optimized include admission control for
the connections offered to the network, their calendaring
(scheduling) and bandwidth constrained routing, as well as the
determination of which nodes provide the required computa-
tion and storage capacity. Calendaring, in particular, permits
to exploit the intrinsic flexibility in the services demanded
by different users, whose starting time can be shifted without
penalizing the utility perceived by the user while, at the same
time, permitting a better resource utilization in the network.

ACKNOWLEDGMENT

This research was supported by the H2020-MSCA-ITN-2016
SPOTLIGHT under grant agreement number 722788.

REFERENCES

[1] C.-F. Liu, M. Bennis, M. Debbah, and H. V. Poor, “Dynamic task
offloading and resource allocation for ultra-reliable low-latency edge
computing,” IEEE Trans. Commun., 2019.

[2] P. Wang, Z. Zheng, B. Di, and L. Song, “Joint task assignment
and resource allocation in the heterogeneous multi-layer mobile edge
computing networks,” in IEEE GLOBECOM, 2019.

[3] J. Zhang, A. Sinha, J. Llorca, A. Tulino, and E. Modiano, “Optimal
control of distributed computing networks with mixed-cast traffic
flows,” in IEEE INFOCOM, 2018, pp. 1880–1888.

[4] M. Dufour, S. Paris, J. Leguay, and M. Draief, “Online bandwidth
calendaring: On-the-fly admission, scheduling, and path computation,”
in IEEE ICC, 2017.

[5] L. Wang, F. Zhang, K. Zheng, A. V. Vasilakos, S. Ren, and Z. Liu,
“Energy-efficient flow scheduling and routing with hard deadlines in
data center networks,” in IEEE 34th Int. Conference on Distributed
Computing Systems, 2014, pp. 248–257.

[6] H. Tan, Z. Han, X.-Y. Li, and F. C. Lau, “Online job dispatching and
scheduling in edge-clouds,” in IEEE INFOCOM, 2017, pp. 1–9.

[7] J. Meng, H. Tan, X.-Y. Li, Z. Han, and B. Li, “Online deadline-
aware task dispatching and scheduling in edge computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 31, no. 6, pp. 1270–1286, 2020.

[8] V. Farhadi, F. Mehmeti, T. He, T. La Porta, H. Khamfroush, S. Wang,
and K. S. Chan, “Service placement and request scheduling for data-
intensive applications in edge clouds,” in IEEE INFOCOM, 2019.

[9] B. Xiang, J. Elias, F. Martignon, and E. Di Nitto, “Joint network slicing
and mobile edge computing in 5G networks,” in IEEE ICC, 2019.

[10] ——, “Joint planning of network slicing and mobile edge computing
in 5G networks,” arXiv preprint arXiv:2005.07301, 2020.

[11] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” in ACM SIGCOMM Comp. Comm. Rev., vol. 43, 2013, pp. 15–26.

[12] J. Kwak, Y. Kim, J. Lee, and S. Chong, “DREAM: Dynamic resource
and task allocation for energy minimization in mobile cloud systems,”
IEEE JSAC, vol. 33, no. 12, pp. 2510–2523, 2015.

[13] R. Kannan and C. L. Monma, “On the computational complexity
of integer programming problems,” in Optimization and Operations
Research, Springer, 1978, pp. 161–172.

