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Abstract—This paper addresses the joint pricing and network
selection problem in cognitive radio networks, considering both
the point of view of network users and the Primary Operator.
The problem is formulated as a Stackelberg (leader-follower)
game where first the PO sets the network subscription price to
maximize its revenue. Then, users perform the network selection
process, deciding whether to pay for having a guaranteed service,
or use a cheaper, best-effort secondary network, where congestion
and low throughput may be experienced. Such process is modeled
as a population game to study the strategic interactions among
a large number of agents.

For our pricing and network selection game, we provide
equilibrium and convergence properties, and derive optimal
stable price and network selection settings. Numerical results
illustrate that our game model captures the main factors behind
cognitive network pricing and channel selection, thus represent-
ing a promising framework for the design and understanding of
cognitive radio systems.

Index Terms: - Cognitive Radio Networks, Network Selection,
Pricing, Population Game Model, Replicator Dynamics.

I. INTRODUCTION

Cognitive radio networks (CRNs), also referred to as xG

networks, are envisioned to deliver high bandwidth to mobile

users via heterogeneous wireless architectures and dynamic

spectrum access techniques [1], [2]. Such networks provide

the capability to share the wireless channel with primary users

in an opportunistic manner.

In CRNs, a primary (or licensed) user has a license to

operate in a certain spectrum band; his access is generally

controlled by the Primary Operator (PO) and should not be

affected by the operations of any other unlicensed user. On

the other hand, secondary users have no spectrum license, and

they implement additional functionalities to share the licensed

spectrum band without interfering with primary users.

In this work, we focus on a fundamental question concern-

ing CRNs, i.e. whether it is better for a user to pay the Primary

Operator for costlier, dedicated network resources with Quality

of Service guarantees, or act as secondary user, facing little

or no costs without any performance guarantee. Furthermore,

we consider the pricing problem of POs, who must set access

prices to maximize their revenues.

To answer the above question, we consider a cognitive radio

scenario which consists of primary and secondary networks,

as well as a large set of cognitive users that can choose either

to act as secondary (unlicensed) users, sharing the spectrum

holes left available by licensed users (through a secondary

base station), or to act as primary users who access directly

to the primary network through a primary base station, using

a licensed band.

The joint pricing and cognitive radio network selection

problem is modeled as a Stackelberg game, where first the

Primary Operator sets the access price to attract as many

users as possible, in order to maximize its revenue; then, users

perform the network selection process, which is formulated as

a population game [3]. Such games provide a general and pow-

erful framework for characterizing the strategic interactions

among large numbers of agents, whose behavior is modeled

as a dynamic adjustment process. Therefore, in this paper

we formulate the network selection process as a population

game, and cognitive users’ behavior is studied according to

replicator dynamics [3], which well captures the behavior

of users that adapt their choices and strategies based on the

observed system’s state.

We provide equilibrium and convergence properties of the

proposed game, and derive optimal stable price and network

selection settings. Numerical results obtained in different net-

work scenarios illustrate that our evolutionary game captures

the main factors behind cognitive network pricing and selec-

tion, thus representing a promising framework for the design

and performance evaluation of cognitive radio systems.

The paper is organized as follows: related work is reviewed

in Section II. Section III provides the main results on popula-

tion games and replicator dynamics. The considered network

model is described in Section IV, and the proposed game

formulation of the network selection problem in CRNs is

illustrated in Section V. Numerical results are presented in

Section VI, while Section VII draws the conclusions.

II. RELATED WORK

Several recent works, including those proposed in the net-

working context, have considered evolutionary games to study

the behavior of network users [4], [5], [6], [7].

In [4], the authors consider a large number of non-

cooperative mobile users that should (1) choose a subset of

WLAN access points to connect to and multihome to and (2)

split their traffic among the chosen access points. This problem

is studied using a potential game model and replicator as well

as Neumann-Nash dynamics.



A similar approach is presented in [5] to solve the network

selection problem in heterogeneous wireless access networks

(i.e., WMANs, cellular networks, and WLANs) considering

users with different requirements. Evolutionary game theory is

used to investigate the dynamics of user behavior. The solution

given by the evolutionary game model is compared to the

Nash equilibrium solution obtained from a non-cooperative

game model. Finally, a set of algorithms (i.e., population

evolution and reinforcement learning algorithms) are proposed

to implement the evolutionary network selection game model.

Potential games and replicator dynamics are also used in [6]

to study the non-cooperative routing problem in a general

network topology. The routing problem is considered in the

framework of a population game, and the evolution of the

populations’ size is studied using replicator dynamics.

In [7], the authors model the dynamics of a multiple-seller,

multiple-buyer spectrum trading market as an evolutionary

game [8], in which multiple primary users want to sell and

multiple secondary users want to buy spectrum opportuni-

ties. Secondary users evolve over time, buying the spectrum

opportunities that optimize their performance in terms of

transmission rate and price.

An auction framework for the spectrum sharing problem

in CRNs is proposed in [9]. The authors study analytically

and numerically the spectrum auction mechanism, considering

multiple primary and secondary users that are characterized

by two-dimensional and non-continuous strategy (bid). Fur-

thermore, they investigate the spectrum auction with licensed

and free bands, and develop a distributed adaptive algorithm

based on no-regret learning [10] to converge to a correlated

equilibrium of the auction game.

The joint spectrum access and pricing problem has been

studied in [11], for cognitive radio networks considering

elastic traffic.

Unlike previous works, which study the interaction be-

tween two well-defined sets of users (primary and secondary

ones) that already performed the choice of using the primary

(licensed) or the secondary (unlicensed) network, our paper

tackles a fundamental issue in CRNs. In fact, we model the

users’ decision process that takes place before such users

enter the CRN, thus assessing the economic interest of de-

ploying secondary (xG) networks. Such choice depends on

the trade-off between cost and performance guarantees in

such networks. At the same time, we derive the optimal price

setting for a Primary Operator that plays before network users

(Stackelberg approach), in order to maximize its revenue.

We use enhanced game theoretical tools, derived from pop-

ulation game theory, to model the network selection dynamics,

providing convergence conditions and equilibrium settings.

III. POPULATION GAMES: INTRODUCTION AND MAIN

RESULTS

This section briefly introduces the game theoretic concepts

and main theoretical results used in this paper. For more details

on population games, the reader is referred to the book by W.

H. Sandholm [3].

A. Population Games

A population game G, with Q non-atomic classes of players

(i.e., network users) is defined by a mass and a strategy set

for each class, and a payoff function for each strategy. By

a non-atomic population, we mean that the contribution of

each member of the population is very small. This is the case

in our game, where a large set of users compete for CRN’s

bandwidth resources. We denote the set of classes by Q =
{1, . . . , Q}, where Q ≥ 1. The class q has mass mq. Let Sq

be the set of strategies available for players of class q, where

Sq = {1, . . . , sq}. These strategies can be thought of as the

actions that members of q could possibly take (i.e., connecting

to the primary or the secondary network).

During the game play, each player of class q selects a

strategy from Sq. The mass of players of class q that choose

the strategy n ∈ Sq is denoted by xq
n, where

∑
n∈Sq xq

n = mq.

We denote the vector of strategy distributions being used by

the entire population by x = {x1, . . . , xQ}, where xi =
{xi

1, . . . , x
i
si}. The vector x can be thought of as the state

of the system.

The marginal payoff function (per mass unit) of players

of class q who play strategy n when the state of the system

is x is denoted by F q
n(x), usually referred to as fitness in

evolutionary game theory, which is assumed to be continuous

and differentiable. The total payoff of the players of class q

is therefore
∑

n∈Sq F q
n(x)xq

n.

B. Replicator Dynamics

The replicator dynamics describes the behavior of a large

population of agents who are randomly matched to play

normal form games. It was first introduced in biology by

Taylor and Jonker [12] to model the evolution of species, and

it is also used in the economics field. Recently, such dynamics

has been applied to many networking problems, like routing

and resource allocation [4], [6].

Given xq
n, which represents the proportion of players of

class q that choose strategy n, as illustrated before, the

replicator dynamics can be expressed as follows:

ẋq
n = xq

n

(
F q

n(x) −
1

mq

∑

n∈Sq

F q
n(x)xq

n

)
, (1)

where ẋq
n represents the derivative of xq

n with respect to time.

In fact, the ratio ẋq
n/x

q
n measures the evolutionary success

(the rate of increase) of a strategy n. This ratio can be also

expressed as the difference in fitness F q
n(x) of the strategy n

and the average fitness 1
mq

∑
n∈Sq F q

n(x)xq
n of the class q.

C. Summary of results related to Replicator Dynamics

We now summarize the most notable results for the repli-

cator dynamics (derived from [13], [14]), which help estab-

lishing the convergence of such dynamics to stable Wardrop

equilibrium points.

Definition 1 The dynamics ẋ = V (x) is said to be positive

correlated (PC) if
∑

q∈Q

∑
n∈Sq F q

n(x)V q
n (x) > 0, whenever

V (x) 6= 0.



Definition 2 A function Φ : X → R is a potential for a

game G if for every i ∈ U and for every x−i ∈ X−i

Φ(x, x−i)−Φ(z, x−i) = ui(x, x−i)−ui(z, x−i),∀x, z ∈ Xi,

where ui represents the objective function (utility/cost) of

user i.

G is called a potential game if there exists a continuously

differentiable function f : X → R satisfying
∂f(x)
∂x

q

i

= F
q
i (x)

∀x ∈ X , i ∈ Sq and q ∈ Q.

Result 1 If V(x) satisfies PC, all Wardrop equilibria of G

are stationary points of ẋ = V (x).

Result 2 The replicator dynamics is PC.

Result 3 A potential game G, with dynamics V (x) that is

PC, has asymptotically stable stationary points.

For completeness, we briefly review hereafter a com-

monly used concept in the networking context: the Wardrop

equilibrium [15]. Consider any strategy distribution xq =
[xq

1, . . . x
q
Sq

]; there would be some elements which are non-

zero and others which are zero. We call the strategies corre-

sponding to the non-zero elements as the strategies used by

class q.

Definition 3 A state x̂ is a Wardrop equilibrium if for any

class q ∈ Q, all strategies being used by the members of q

yield the same marginal payoff to each member of q, whereas

the marginal payoff that would be obtained by members of q

is lower for all strategies not used by class q.

Let Ŝq ⊂ Sq be the set of all strategies used by class q

in a strategy distribution x̂. A Wardrop equilibrium x̂ is then

characterized by the following relation:

F q
s (x̂) ≥ F

q
s′(x̂) ∀s ∈ Ŝq and s′ ∈ Sq.

IV. NETWORK MODEL

Having reviewed the mathematical tools used in our work,

we now detail the network model, which is illustrated in

Figure 1. We consider a cognitive radio wireless system which

consists of an xG network that coexists with a primary network

at the same location and on the same spectrum band.

Users arrive at this system sequentially, with interarrival

times that are independent and identically distributed, and have

finite mean λ−1. Each arriving user must choose whether to

join the primary network (paying a subscription cost) or the

xG one (which has no subscription cost), based on criteria

to be specified below, i.e., a combination of cost and QoS

(service time/latency).

In our work, we use the population dynamics (and, in

particular, replicator dynamics) to model the behavior of users

that decide to which network they should access, since such

dynamics well captures the behavior of users that adapt their

choices and strategies based on the observed state of the

system (in terms of costs and congestion, in our case).

To this aim, we consider a population game G with a non-

atomic set of players (q = 1), which is defined by a strategy set

Fig. 1. CRN scenario with a primary network and a secondary (xG) network.
Arriving users must decide whether to join the primary network, paying
a subscription fee for guaranteed QoS, or the xG network (which has no
subscription cost and no performance guarantees), based on the expected cost
and congestion levels.

denoted by S = {sp, ss}, identical for all players, and a payoff

function for each strategy; sp means that the player chooses

the primary base station, and ss that the player chooses the

secondary base station, using the spectrum holes left free by

primary users.

V. COGNITIVE USERS’ BEHAVIOR: REPLICATOR

DYNAMICS

We use replicator dynamics to model and analyze the

behavior of users that must decide whether to access the

primary or secondary network.

More specifically, we focus on the cognitive radio scenario

illustrated in the previous section, introducing replicator dy-

namics for the network selection game, and we determine the

optimal price value (p∗) that should be set by the Primary

Operator in order to maximize its revenue, as well as the

network selection settings (XP and XS = 1 − XP ), i.e, the

fraction of players that choose the primary and the secondary

network, respectively.

Table I summarizes the basic notation used in our game

model. The users’ average arrival rate is denoted by λ. The

average service rate of the primary and secondary base stations

is denoted, respectively, by θ and µ; as a consequence, θ−1

and µ−1 represent the average service times.

We assume (like for example in Anshelevich et al. [16])

that the total cost incurred by a player is a combination of the

cost for the player to access the network (which is equal to p

for the primary network, and zero for the secondary network),

and the service time (latency) experienced in such network.

TABLE I
BASIC NOTATION

λ Users’ average arrival rate
µ Service rate of the Secondary Base Station
θ Service rate of the Primary Base Station
XS Fraction of Secondary Users
XP Fraction of Primary Users
p∗, p (Optimal) Price charged by the PO to access its services
K Constant, velocity of convergence

Nu Average number of users in the system



The goal of each user is therefore to minimize the sum of his

cost and latency.

Hence, we can formalize our population game as follows:

ẊS = KXS [
−1

µ − λXS

−
( −XS

µ − λXS

− XP (θ−1 + p)
)
]

= KXS [(1 − XS)(θ−1 + p −
1

µ − λXS

)], (2)

where ẊS represents the derivative of XS with respect to

time. This equation has the same structure as the replicator

dynamics of equation (1): the first term (F q
n(x) ≡ −1

µ−λXS
) cor-

responds to the delay perceived by users that choose to connect

to the secondary network, using a M|M|1 approximation; the

second term ( 1
mq

∑
n∈Sq F q

n(x)xq
n ≡ −XS

µ−λXS
−XP (θ−1 + p))

represents the average cost/delay incurred by the fraction XS

of secondary users (as explained before) and that experienced

by the fraction XP of primary users (θ−1 +p, i.e., the service

delay plus the price charged by the Primary Operator).

In particular, the speed of variation of XS is proportional to

the population size XS (via the proportionality coefficient K),

which models the willingness of the population to change

strategy.

We observe that the arrival rate λ should be smaller than

the service rate µ of the secondary network, since otherwise

a positive fraction of users (in average) would be forced to

use the primary network, and consequently the PO could set

an arbitrarily large cost p to obtain infinite revenue. Note that,

alternatively, the network access problem can be reformulated

assuming that users decide to subscribe to the primary network

services only if p does not exceed a maximum cost.

As stated in Section III, Wardrop equilibria are the station-

ary points of equation (2). As a consequence, the fraction of

users that choose the xG network (secondary users) at the

equilibrium (XS) is given by:

XS =
µ − 1

θ−1+p

λ
. (3)

The average number of users in the system, Nu, can be

obtained using Little’s theorem, which gives a correlation

between the average user arrival rate, λ, the average time spent

in the system by such users, T , and Nu: Nu = λT .

Therefore, the revenue R (per unit time, i.e., T=1) obtained

at the equilibrium by the Primary Operator is equal to:

R = pNu(1 − XS) = p(λ − µ +
1

θ−1 + p
). (4)

The optimal price (p∗) the Primary Operator must set in

order to maximize its revenue can be obtained solving the

equation ∂R
∂p

= 0, and is given by the following expression:

p∗ =

√
θ−1

µ − λ
− θ−1. (5)

Note that expression (5) is valid only if θ−1 < 1
µ−λ

, since

otherwise all users would choose the secondary network, even

if p = 0. In other words: if θ−1 > 1
µ−λ

, then the PO’s revenue

is null for all p values, since no user will choose the primary

network.

VI. NUMERICAL RESULTS

In this section, we analyze and discuss the numerical results

obtained from simulating the evolutionary network selection

game in different cognitive radio scenarios. More specifically,

we evaluate the proposed game model in terms of stability and

convergence, and we study the impact of different parameters

(i.e., service rate θ and access price p) on the network selection

process, and as a consequence, on the Primary Operator’s

revenue.

To this aim, we first consider a CRN scenario with µ=100,

λ=80 and θ=40 users/(unit time). The parameter K in equa-

tion (2) is set to 1.

Figure 2 illustrates the convergence (expressed in steps

needed in the replicator dynamics) of network users to a

stationary solution, for two different prices set by the PO, i.e.,

p=0.01 and p=0.005. More specifically, the figure reports the

fraction XS of users that choose the secondary network. It can

be observed that XS increases for increasing p values, since

more users will have an incentive to choose the secondary

network instead of paying a high price to use the primary

network’s resources.

Note that, in this scenario, a large fraction of users (approx-

imately 90% for p = 0.01, more than 80% for p = 0.005)
choose the xG network in spite of the primary one, since the

service rate (µ) of the former network is quite large with

respect to the subscribed (guaranteed) rate of the primary

network (θ).

Figure 3 shows, in the same scenario, the revenue obtained

by the Primary Operator as a function of the price p charged

for the access. It is interesting to notice that such revenue has

a maximum, corresponding to the optimal price (p∗=0.01 in

this scenario), while it is lower both for smaller and larger p

values. It can be observed that the PO’s revenue can change
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Fig. 2. Convergence of Secondary Users to the stationary points.



consistently based on the price p setting, so that an accurate

choice of p must be performed. Our game model can help in

deciding such setting.
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Fig. 3. Primary Operator’s Revenue as a function of the access price p.

Finally, Figure 4 illustrates the optimal price p∗ that the PO

must charge in order to maximize its revenue, as a function of

the service rate θ of the primary base station. The scenario is

the same considered before, and it can be observed that such

optimal price p∗ increases consistently when θ increases from

small values up to the maximum, which is obtained for θ =
80. This is due to the fact that the primary network services

become increasingly attractive for higher θ values; the PO can

therefore charge higher prices to primary users.
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Fig. 4. Optimal price p∗ (corresponding to maximum revenue for the PO)
as a function of the primary base station’s service rate θ.

VII. CONCLUSION

In this paper, we tackled a fundamental question related

to Cognitive Radio Networks, i.e., the trade off between the

cost savings that such networks promise to realize and the

QoS degradation (with respect to reserved, licensed spectrum

bands) due to the competition of secondary users for common

network resources.

In particular, we considered the problem of joint pricing and

network selection in CRNs. We modeled this problem using a

leader-follower game, where the Primary Operator first sets the

access price to maximize its revenue, and then users perform

a network selection process, modeled using a population game

and replicator dynamics. We derived optimal stable price and

network selection settings, illustrating numerical examples in

different network scenarios. Our game model captures the

main factors behind cognitive network pricing and network

selection, thus representing a promising framework for the

design and understanding of cognitive radio systems.

ACKNOWLEDGMENTS

This work was partially supported by MIUR in the frame-

work of the PRIN GATECOM project.

REFERENCES

[1] I.F. Akyildiz, W.Y. Lee, M.C. Vuran, and S. Mohanty. A survey on spec-
trum management in cognitive radio networks. IEEE Communications

Magazine, pages 40–48, vol. 46, no. 4, April 2008.
[2] J. Elias, F. Martignon, A. Capone, and E. Altman. Non-cooperative

spectrum access in cognitive radio networks: a game theoretical model.
Computer Networks, pages 3832–3846, vol. 55, no. 17, December 2011.

[3] W. H. Sandholm. Population Games and Evolutionary Dynamics. MIT
press, January 2011.

[4] S. Shakkottai, E. Altman, and A. Kumar. Multihoming of users to access
points in WLANs: A population game perspective. IEEE Journal on

Selected Areas in Communications (JSAC), pages 1207–1215, vol. 25,
no. 6, 2007.

[5] D. Niyato and E. Hossain. Dynamics of network selection in heteroge-
neous wireless networks: an evolutionary game approach. IEEE Tran.

on Vehicular Technology, pages 2008–2017, vol. 58, no. 4, 2009.
[6] E. Altman, Y. Hayel, and H. Kameda. Evolutionary dynamics and

potential games in non-cooperative routing. In Proc. of (WiOpt 2007),
pages 1–5, Limassol, Cyprus, April 16-20, 2007.

[7] D. Niyato, E. Hossain, and Z. Han. Dynamics of Multiple-Seller
and Multiple-Buyer Spectrum Trading in Cognitive Radio Networks:
A Game-Theoretic Modeling Approach. IEEE Transactions on Mobile

Computing, pages 1009–1022, vol. 8, no. 8, 2009.
[8] T.L. Vincent and J.S. Brown. Evolutionary game theory, natural

selection, and Darwinian dynamics. Cambridge University Press, 2005.
[9] L. Chen, S. Iellamo, M. Coupechoux, and P. Godlewski. An auction

framework for spectrum allocation with interference constraint in cog-
nitive radio networks. In Proc. of INFOCOM 2010, pages 1–9, San
Diego, CA, USA, March 2010.

[10] S. Hart and A. Mas-Colell. A simple adaptive procedure leading to
correlated equilibrium. Econometrica, pages 1127–1150, vol. 68, no. 5,
2000.

[11] J. Elias and F. Martignon. Joint Spectrum Access and Pricing in
Cognitive Radio Networks with Elastic Traffic. In Proc. of IEEE

International Conference on Communications, ICC’10, Cape Town,
South Africa, May, 2010.

[12] P.D. Taylor and L.B. Jonker. Evolutionary stable strategies and game
dynamics. Math. Biosciences, pages 145–156, vol. 40, no. 1–2, 1978.

[13] S. Shakkottai, E. Altman, and A. Kumar. The case for non-cooperative
multihoming of users to access points in IEEE 802.11 WLANs. In Proc.

of IEEE INFOCOM, Barcelona, Spain, April 23-29, 2006.
[14] W.H. Sandholm. Potential games with continuous player sets. Journal

of Economic Theory, pages 81–108, vol. 97, no. 1, 2001.
[15] J.G. Wardrop. Some theoretical aspects of road traffic research. In Proc.

of the Institute of Civil Engineers, part II, pages 325–378, vol. 1, 1952.
[16] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and

T. Roughgarden. The price of stability for network design with fair cost
allocation. In Proc. of the 45th Annual Symposium on Foundations of

Computer Science, pages 295–304, Rome, Italy, October 17-19, 2004.


