

ARTICLE IN PRESS

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics III (IIII) III-III

www.elsevier.com/locate/disc

Note

How is a chordal graph like a supersolvable binary matroid?

Raul Cordovil^a, David Forge^b, Sulamita Klein^c

^aDepartamento de Matemática, Instituto Superior Técnico, Av. Rovisco, Pais 1049-001, Lisboa, Portugal ^bLRI, Universite Paris XI-Orsay, UMR 8623, Batiment 490 Université Paris-Sud, 91405 Orsay Cedex, France ^cInstituto de Matemática and Coppe-Sistemas, Universidade Federal Do Rio De Janeiro, Caixa Postal 68511, 21945-970,

Rio De Janeiro, RJ, Brazil

Received 5 December 2002; received in revised form 1 July 2004; accepted 4 August 2004

To the memory of Claude Berge

Abstract

Let G be a finite simple graph. From the pioneering work of R.P. Stanley it is known that the cycle matroid of G is supersolvable iff G is chordal (rigid): this is another way to read Dirac's theorem on chordal graphs. Chordal binary matroids are in general not supersolvable. Nevertheless we prove that, for every supersolvable binary matroid M, a maximal chain of modular flats of M canonically determines a chordal graph.

© 2004 Elsevier B.V. All rights reserved.

MSC: primary 05B35; secondary 05CXX

Keywords: Binary matroids; Chordal graphs; Cliques; Supersolvable matroids

1. Introduction and notations

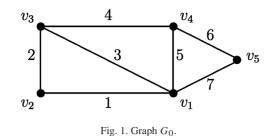
Throughout this note *M* denotes a matroid of rank *r* on the ground set $[n] := \{1, 2, ..., n\}$. We refer to [7,9] as standard sources for matroid theory. We recall and fix some notation of matroid theory. The restriction of *M* to a subset $X \subseteq [n]$ is denoted M|X. A matroid *M* is said to be *simple* if all circuits have at least three elements. A matroid *M* is *binary* if the symmetric difference of any two different circuits of *M* is a union of disjoint circuits. Graphic and cographic matroids are extremely important examples of binary matroids. The dual of *M* is denoted M^* . Let $\mathscr{C} = \mathscr{C}(M)$ [resp. $\mathscr{C}^* = \mathscr{C}^*(M) = \mathscr{C}(M^*)$] be the set of circuits [resp. cocircuits] of *M*. Let $\mathscr{C}_{\ell} := \{C \in \mathscr{C} : |C| \le \ell\}$. In the following the singleton $\{x\}$ is denoted by *x*. We will denote by

 $cl(X) := X \cup \{x \in [n] : \exists C \in \mathscr{C}, C \setminus X = x\},\$

the *closure* in *M* of a subset $X \subseteq [n]$. We say that $X \subseteq [n]$ is a *flat* of *M* if X = cl(X). The set $\mathscr{F}(M)$ of flats of *M*, ordered by inclusion, is a geometric lattice. The *rank* of a flat $F \in \mathscr{F}$, denoted r(F), is equal to *m* if there are m + 1 flats in a maximal chain of flats from \emptyset to *F*. The flats of rank 1, 2, 3 and r - 1 are called *points*, *lines*, *planes*, and *hyperplanes*, respectively. A line *L* with two elements is called *trivial* and a line with at least three elements is called nontrivial (a binary matroid has no line

E-mail addresses: cordovil@math.ist.utl.pt (R. Cordovil), forge@lri.fr (D. Forge), sula@cos.ufrj.br (S. Klein).

⁰⁰¹²⁻³⁶⁵X/ $\$ - see front matter $\$ 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2004.08.004



with more than three points). Given a set $X \subseteq [n]$, let r(X) := r(cl(X)). A pair F, F' of flats is called *modular* if

$$r(F) + r(F') = r(F \lor F') + r(F \land F').$$

A flat $F \in \mathscr{F}$ is *modular* if it forms a modular pair with every other flat $F' \in \mathscr{F}$. The notion of supersolvable lattices was introduced and studied by Stanley [8]. In the particular case of geometric lattices the definition can be read as follows.

Definition 1.1 (*Stanley* [8]). A matroid *M* on [*n*] of rank *r* is *supersolvable* if there is a maximal chain of modular flats *M*

 $\mathcal{M} := F_0(=\emptyset) \subsetneq \cdots \subsetneq F_{r-1} \subsetneq F_r(=[n]).$

We call \mathcal{M} an *M*-chain of *M*. To the *M*-chain \mathcal{M} we associate the partition \mathcal{P} of [n]

$$\mathscr{P} := F_1 \uplus \cdots \uplus (F_i \backslash F_{i-1}) \uplus \cdots \uplus (F_r \backslash F_{r-1}).$$

We call \mathcal{P} an *M*-partition of *M*.

We recall that a graph G is said to be *chordal* (or *rigid* or *triangulated*) if every cycle of length at least four has a chord. Chordal graphs are treated extensively in Chapter 4 of [6]. The notion of a "chordal matroid" has also been recently explored in the literature, see [2].

Definition 1.2 (*Barahona and Grötschel* [1, p. 53]). Let *M* be an arbitrary matroid (not necessarily simple or binary). A circuit *C* of *M* has a *chord* i_0 if there are two circuits C_1 and C_2 such that $C_1 \cap C_2 = i_0$ and $C = C_1 \Delta C_2$. In this case, we say that the chord i_0 splits the circuit *C* into the circuits C_1 and C_2 . We say that a matroid is ℓ -chordal if every circuit with at least ℓ elements has a chord. A simple matroid *M* is *chordal* if it is 4-chordal.

In this paper, we always suppose that the edges of a graph *G* are labelled with the integers of [*n*]. If nothing else is indicated we suppose that *G* is a connected graph. Let M(G) be the *cycle matroid* of the graph *G*: i.e., the elementary cycles of *G*, as subsets of [*n*], are the circuits of M(G). In the same way, the minimal cutsets of a connected graph *G* (i.e., a set of edges that disconnect the graph) are the circuits of a matroid on [*n*], called the *cocycle matroid* of *G*. A matroid is *graphic* (resp. *cographic*) if it is the cycle (resp. cocycle) matroid of a graph. The cocycle matroid of *G* is dual to the cycle matroid of *G* and both are binary. The cocycle matroids of the complete graph K_5 and of the complete bipartite graph $K_{3,3}$ are examples of binary but not graphic matroids; see Section 13.3 in [7] for details. The Fano matroid is an example of a supersolvable binary matroid that is neither graphic nor cographic. Finally, note that an elementary cycle *C* of *G* has a chord iff *C* seen as a circuit of the matroid M(G) has a chord.

Example 1.3. Consider the chordal graph $G_0 = G_0(V, [7])$ in Fig. 1 and the corresponding cycle matroid $M(G_0)$. It is clear that

 $\mathcal{M} := \emptyset \subsetneq \{1\} \subsetneq \{1, 2, 3\} \subsetneq \{1, 2, 3, 4, 5\} \subsetneq [7]$

is an M-chain. The associated M-partition is

 $\mathscr{P} := \{1\} \uplus \{2, 3\} \uplus \{4, 5\} \uplus \{6, 7\}.$

The linear order of the vertices is such that for every *i* in $\{2, 3, 4, 5\}$ the neighbors of the vertex v_i contained in the set $\{v_1, \ldots, v_{i-1}\}$ form a clique; this is Dirac's well-known characterization of chordal graphs (see [5,6]). This is also a characterization of graphic

ARTICLE IN PRESS

R. Cordovil et al. / Discrete Mathematics III (IIII) III-III

supersolvable matroids (see Proposition 2.8 in [8]). That is, a graphic matroid M(G) is supersolvable iff the vertices of G can be labeled as v_1, v_2, \ldots, v_m such that, for every $i = 2, \ldots, m$, the neighbors of v_i contained in the set $\{v_1, \ldots, v_{i-1}\}$ form a clique. We say that a linear order of the vertices of G with the above properties is an *S*-label of the vertices of G.

Ziegler proved that every supersolvable binary matroid without a Fano submatroid is graphic (Theorem 2.7 in [10]). In the next section we answer the following natural question:

• For a generic binary matroid, what are the relations between the notions of "chordal" and "supersolvable"?

2. Chordal and supersolvable matroids

Lemma 2.1. Let M be a simple binary matroid. The following two conditions are equivalent for every circuit C of M:

(2.1.1) $C \subsetneq cl(C)$, (2.1.2) *C* has a chord. For nonbinary matroids only implication (2.1.2) \Rightarrow (2.1.1) holds.

Proof. If $i \in cl(C) \setminus C$, then there is a circuit *D* such that $i \in D$ and $D \setminus i \subseteq C$. As *M* is binary $D' = D\Delta C$ is also a circuit of *M*. So *i* is a chord of *C*. If *i* is a chord of *C*, then clearly $i \in cl(C)$. Finally, in the uniform rank-two nonbinary matroid $U_{2,4}$, the set $C = \{1, 2, 3\}$ is a circuit without a chord but $C \subseteq cl(C) = [4]$. \Box

Theorem 2.2. A binary supersolvable matroid M is chordal but the converse does not hold in general.

Proof. Let $\mathcal{M} := \emptyset \subsetneq \cdots \subsetneq F_{r-1} \subsetneq F_r = [n]$ be an *M*-chain of *M*. Suppose by induction that the restriction of *M* to F_{r-1} is chordal. The result is clear in the case that $C^* := [n] \setminus F_{r-1}$ is a singleton. Suppose that $|C^*| > 1$ and consider a circuit *C* of *M* not contained in the modular hyperplane F_{r-1} . Then there are two elements $i, j \in C \cap C^*$ and the line $cl(\{i, j\})$ meets F_{r-1} . So $C \subsetneq cl(C)$ and we know from Lemma 2.1 that C has a chord.

A counterexample of the converse is $M^*(K_{3,3})$, the cocycle matroid of the complete bipartite graph $K_{3,3}$. It is easy to see from its geometric representation that it is chordal but not supersolvable (see [10] and page 514 in [7] for its geometric representation). \Box

Definition 2.3 (*Crapo [4]*). Let *M* be an arbitrary matroid and consider an integer $\ell \ge 2$. The matroid *M* is ℓ -closed if the following two conditions are equivalent for every subset $X \subseteq [n]$:

(2.3.1) X is closed,

(2.3.2) for every subset *Y* of *X* with at most ℓ elements we have $cl(Y) \subseteq X$.

We note that condition (2.3.2) is equivalent to

(2.3.2') for every circuit C of M with at most $\ell + 1$ elements

 $|C \cap X| \ge |C| - 1 \implies C \subseteq X.$

Definition 2.4. Let \mathscr{C}' be a subset of \mathscr{C} , the set of circuits of M. Let $cl_A(\mathscr{C}')$ denote the smallest subset of \mathscr{C} such that:

(2.4.1) $\mathscr{C}' \subseteq \operatorname{cl}_{\varDelta}(\mathscr{C}')$, (2.4.2) whenever a circuit *C* splits into two circuits C_1 and C_2 that are in $\operatorname{cl}_{\varDelta}(\mathscr{C}')$ then *C* is also in $\operatorname{cl}_{\varDelta}(\mathscr{C}')$.

Theorem 2.5. For every simple binary matroid M the following three conditions are equivalent:

(2.5.1) *M* is ℓ -closed, (2.5.2) *M* is $(\ell + 2)$ -chordal, (2.5.3) $\mathscr{C}(M) = \operatorname{cl}_{\Delta}(\mathscr{C}_{\ell+1}).$

Proof. $(2.5.2) \iff (2.5.3)$: This equivalence is a direct consequence of the definitions.

4

ARTICLE IN PRESS

R. Cordovil et al. / Discrete Mathematics III (IIII) III-III

 $(2.5.1) \implies (2.5.2)$: Consider a circuit *C* with at least $\ell + 2$ elements and suppose for a contradiction that *C* is not chordal. From Lemma 2.1 we know that cl(C) = C. Pick an element $i \in C$. Then the set $X = C \setminus i$ is not closed but every subset *Y* of *X* with at most ℓ elements is closed which is a contradiction.

 $(2.5.3) \implies (2.5.1)$: Let *X* be a subset of [n] and suppose that for every circuit *C* with at most $\ell + 1$ elements such that $|C \cap X| \ge |C| - 1$, we have $C \subseteq X$; see (2.3.2'). To prove that *X* is closed it is enough to prove that for every circuit *C* such that $|C \cap X| \ge |C| - 1$, we have $C \subseteq X$. Suppose that the result is true for every circuit with at most *m* elements and let *D* be a circuit with m + 1 elements such that $D \setminus d \subset X$ with $d \in D$. By hypothesis there are circuits $C_1, C_2 \in cl_d(\mathscr{C}_{\ell+1})$ such that $C_1 \cap C_2 = i$ and $D = C_1 \Delta C_2$. Suppose w.l.o.g that $d \in C_1$. We have $C_2 \setminus i \subset X$ and since $|C_2| \le m$ which implies that $i \in C_2 \subset X$. We have that $C_1 \setminus d \subset X$ and $|C_1| \le m$ which implies that $C_1 \subset X$. This gives that $D \subseteq X$ and concludes the proof. \Box

We make use of the following elementary but useful proposition which is a particular case of Proposition 3.2 in [8]. The reader can easily check it from Brylawski's characterisation of modular hyperplanes [3].

Proposition 2.6. Let M be a supersolvable matroid and

 $\mathscr{M} := F_0 \subsetneq \cdots \subsetneq F_{r-1} \subsetneq F_r$

an *M*-chain. Let *F* be a flat of *M*. Then M|F, the restriction of *M* to the flat *F*, is a supersolvable matroid and $\{F_i \cap F : F_i \in \mathcal{M}\}$ is the set of (modular) flats of an M|F-chain.

Definition 2.7. Let $\mathscr{P} = P_1 \uplus \cdots \uplus P_r$ be an *M*-partition of a supersolvable matroid *M*. We associate to (M, \mathscr{P}) a graph $G_{\mathscr{P}}$ such that:

- $V(G_{\mathcal{P}}) = \{P_i : i = 1, 2, \dots, r\}$ is the vertex set of $G_{\mathcal{P}}$,
- {*P_i*, *P_j*} is an edge of *G_P* iff there is a nontrivial line *L* of *M* meeting *P_i* and *P_j*.
 We call *G_P* the *S*-graph of the pair (*M*, *P*).

Note that every nontrivial line *L* of the binary supersolvable matroid *M* meets exactly two P'_i 's and if *L* meets P_i and P_j , with i < j, necessarily $|P_i \cap L| = 1$ and $|P_j \cap L| = 2$. Indeed $F_{j-1} = \bigcup_{\ell=1}^{j-1} P_\ell$ is a modular flat disjoint from P_j , so $|F_{j-1} \cap L| = 1$. This simple property will be used extensively in the proof of Theorem 2.10. Given a chordal graph *G* with a fixed S-labeling, we get an associated supersolvable matroid M(G) and an associated *M*-partition \mathcal{P} . We say that $G_{\mathcal{P}}$, the S-graph determined by $(M(G), \mathcal{P})$, is the *derived S-graph* of *G* for this S-labeling.

Remark 2.8. Note that the derived S-graph $G_{\mathscr{P}}$ of a chordal graph G is a subgraph of G. Indeed set $V(G_{\mathscr{P}}) = \{P_1, \ldots, P_m\}$ and consider the map $P_{\ell} \to v_{\ell+1}, \ell = 1, \ldots, m$. Let $\{P_i, P_j\}, 1 \le i < j \le m$, be an edge of $G_{\mathscr{P}}$. From the definitions we see that $\{v_{i+1}, v_{j+1}\}$ is necessarily an edge of G.

Example 2.9. Consider the S-labeling of the graph G_0 given in Fig. 1 and the associated *M*-partition \mathscr{P} (see Example 1.3). The derived S-graph $G_{\mathscr{P}}$ is a path from P_1 to P_4 . Consider now the *M*-partition of $M(G_0)$:

 $\mathscr{P}' := \{4\} \uplus \{3, 5\} \uplus \{1, 2\} \uplus \{6, 7\}.$

In this case the corresponding S-graph $G'_{\mathscr{P}}$ is $K_{1,3}$ with P_2 being the degree-3 vertex. It is easy to prove that for any *M*-partition \mathscr{P} of the cycle matroid of the complete graph K_{ℓ} , the S-graph $G_{\mathscr{P}}$ is the complete graph $K_{\ell-1}$.

Our main result is:

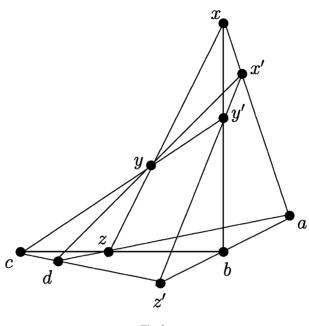
Theorem 2.10. Let M be a simple binary supersolvable matroid with an M-partition \mathscr{P} . Then the S-graph $G_{\mathscr{P}}$ is chordal.

Proof. Let $\mathscr{P} = P_1 \uplus \cdots \uplus P_r$. We claim that P_r is a simplicial vertex of $G_{\mathscr{P}}$. Suppose that $\{P_r, P_i\}$ and $\{P_r, P_j\}$, i < j, are two different edges of $G_{\mathscr{P}}$ and that there are two nontrivial lines $L_1 := \{x, y, z\}$ and $L_2 = \{x', y', z'\}$ where $x, y, x', y' \in P_r$ and $z \in P_i, z' \in P_j$. We will consider two possible cases:

• Suppose first, that two of the elements x, y, x', y' are equal; w.l.o.g., we can suppose x = x'. As M is binary the elements x, y, y' cannot be colinear, so $cl(\{x, y, y'\})$ is a plane. From modularity of F_{r-1} , we know that $cl(\{x, y, y'\}) \cap F_{r-1}$ is a line.

ARTICLE IN PRESS

R. Cordovil et al. / Discrete Mathematics III (IIII) III-III



So the line $cl(\{y, y'\})$ meets the modular hyperplane F_{r-1} in a point *a*. Now the line $\{z, z', a\}$ is a nontrivial line which meets P_i and P_j . Then by definition $\{P_i, P_j\}$ is an edge of $G_{\mathscr{P}}$.

- Suppose now that the elements x, y, x', y' are different. Then as M is binary we have $r(\{x, y, x', y'\}) = 4$. From modularity of F_{r-1} , we know that $r(cl(\{x, y, x', y'\}) \cap F_{r-1}) = 3$. Then the six lines $cl(\{\alpha, \beta\})$, for α and β in $\{x, y, x', y'\}$ meet F_{r-1} in six coplanar points; let these points be labelled as in Fig. 2. Let P_{ℓ} be the set that contains a. We will consider three subcases.
 - Suppose first that $i < j < \ell$. From the property given immediately after Definition 2.7, we have that *c* is also in P_{ℓ} . Consider the modular flat $F_{\ell-1} = \bigcup_{h=1}^{\ell-1} P_h$. We know that the plane $cl(\{a, c, z, z'\})$ meets $F_{\ell-1}$ in a line, so $cl(\{z, z'\})$ is a nontrivial line meeting P_i and P_j and so $\{P_i, P_j\}$ is an edge of $G_{\mathscr{P}}$.
 - Suppose now that $\ell < i < j$. Then the nontrivial line $\{a, d, z\}$ meets P_i and P_ℓ and we have $d \in P_i$. So the nontrivial line $\{c, d, z'\}$ meets P_i and $\{P_i, P_j\}$ is an edge of $G_{\mathscr{P}}$.
 - Suppose finally that $i \leq \ell \leq j$. The nontrivial line $\{a, d, z\}$ meets P_i and P_ℓ so $d \in P_\ell$. The nontrivial line $\{c, d, z'\}$ meets P_ℓ and P_j and necessarily we have $c \in P_j$. We conclude that the nontrivial line $\{b, c, z\}$ meets P_i and P_j and $\{P_i, P_j\}$ is an edge of $G_{\mathscr{P}}$.

By induction we conclude that $G_{\mathscr{P}}$ is chordal. \Box

We say that two M-chains

$$\mathcal{M} := \emptyset \subsetneq \cdots \subsetneq F_{r-1} \subsetneq F_r = [n]$$

and

$$\mathcal{M}' := \emptyset \subsetneq \cdots \subsetneq F'_{r-1} \subsetneq F'_r = [n]$$

are related by an *elementary deformation* if they differ by at most one flat. We say that two *M*-chains are *equivalent* if they can be obtained from each other by elementary deformations.

Proposition 2.11. Every two M-chains of the same matroid M are equivalent.

Proof. We prove it by induction on the rank. The result is clear for r = 2. Suppose it is true for all matroids of rank at most r - 1. Consider two different *M*-chains

$$\mathcal{M} := \emptyset \subsetneq \cdots \subsetneq F_{r-1} \subsetneq F_r = [n],$$
$$\mathcal{M}' := \emptyset \subsetneq \cdots \subsetneq F'_{r-1} \subsetneq F'_r = [n].$$

R. Cordovil et al. / Discrete Mathematics III (IIII) III-III

Let F_{ℓ} be the flat of highest rank of the *M*-chain \mathcal{M} contained in F'_{r-1} . We know that $F_j \cap F'_{r-1}$, j = 0, 1, ..., r, is a modular flat of the matroid M and that

$$r(F_{j} \cap F_{r-1}^{'}) = j - 1$$
, for $j = \ell + 2, \dots, r - 1$.

Let $\mathcal{M}_0 := \mathcal{M}$ and for $i = 1, ..., r - 1 - \ell$, let \mathcal{M}_i be the *M*-chain

$$\emptyset \subsetneq \cdots \subsetneq F_l \subsetneq F_{\ell+2} \cap F'_{r-1} \subsetneq \cdots F_{\ell+i+1} \cap F'_{r-1} \subsetneq F_{\ell+i+1} \cdots \subsetneq [n].$$

We have clearly by, definition, that for $i = 0, ..., r - 2 - \ell$, the *M*-chains \mathcal{M}_i and \mathcal{M}_{i+1} are equivalent. This sequence of equivalences shows that \mathcal{M} is equivalent to $\mathcal{M}_{r-1-\ell}$. Finally, note that the two *M*-chains \mathcal{M}' and $\mathcal{M}_{r-1-\ell}$ have the same component of rank r - 1, which by the induction hypothesis implies that \mathcal{M}' is equivalent to $\mathcal{M}_{r-1-\ell}$. We have obtained the equivalence of \mathcal{M} and \mathcal{M}' which concludes the proof. \Box

Remark 2.12. Proposition 2.11 can be used to obtain all the S-labels of a given chordal graph G from a fixed one. If G is doubly connected the number of M-chains of M(G) is equal to the half the number of such labelings, see [8, Proposition 2.8].

It is natural to ask if, given a chordal graph G, there is a supersolvable matroid M together with an M-partition \mathcal{P} such that $G = G_{\mathcal{P}}$. Can the matroid M be supposed graphic? The next proposition gives a positive answer to these questions.

Proposition 2.13. Let G = (V, E) be a chordal graph with an S-labeling v_1, \ldots, v_m of its vertices, and \tilde{G} the extension of G by a vertex v_0 adjacent to all the vertices, i.e.

$$V_{\widetilde{G}} = V_G \cup v_0$$
 and $E_{\widetilde{G}} = E_G \cup \{\{v_i, v_0\}, i = 1, \dots, m\}.$

Then $G_{\widetilde{\mathcal{P}}}$, the derived S-graph of \widetilde{G} for the S-labeling v_0, v_1, \ldots, v_m is isomorphic to G.

Proof. As v_0 is adjacent to every vertex v_i , i = 1, ..., m, it is clear that $v_0, v_1, ..., v_m$ is an S-labeling of \widetilde{G} . Let \mathscr{P} and $\widetilde{\mathscr{P}}$ denote the corresponding *M*-partitions of the graphic matroids M(G) and $M(\widetilde{G})$. We have $\mathscr{P} = P_1 \uplus \cdots \uplus P_{m-1}$ and $\widetilde{\mathscr{P}} = \widetilde{P}_1(=\{v_0, v_1\}), \ \ \widetilde{\mathbb{P}}_2 \uplus \cdots \uplus \widetilde{\mathbb{P}}_m$ with $\widetilde{P}_i = P_{i-1} \cup \{v_0, v_i\}$, for i = 2, ..., m. Now we can see that if $\{v_i, v_j\}, 0 \le i < j \le m-1$, is an edge of G then $\{\widetilde{P}_i, \widetilde{P}_j\}$ is an edge of $G_{\widetilde{\mathscr{P}}}$. From Remark 2.8 we get that reciprocally $G_{\widetilde{\mathscr{P}}}$ is a subgraph of G. \Box

Acknowledgements

The authors are grateful to the anonymous referees for their detailed remarks and suggestions on a previous version of this paper. The first author's research was supported in part by FCT/FEDER/POCTI (Portugal) and the project SAPIENS/FEDER/36563/00. The third author was partially supported by CNPq, MCT/FINEP PRONEX Project 107/97, CAPES (Brazil)/COFECUB (France), project number 213/97, FAPERJ. The second author was partially supported by the European network ADONET (in the Marie Curie Training Program).

References

- [1] F. Barahona, M. Grötschel, On the cycle polytope of a binary matroid, J. Combin. Theory Ser. B 40 (1) (1986) 40-60.
- [2] J. Bonin, A. de Mier, T-uniqueness of some families of k-chordal matroids, Adv. Appl. Math. 32 (2004) 10–30.
- [3] T. Brylawski, Modular constructions for combinatorial geometries, Trans. Amer. Math. Soc. 203 (1975) 1–44.
- [4] H. Crapo, Erecting geometries, in: Proceedings of the Second Chapel Hill Conference on Combinatorial Mathematics and Applications, University of North Carolina Press, Chapel Hill, NC, 1970, pp. 74–99.
- [5] G.A. Dirac, On rigid circuits graphs, Abl. Math. Univ. Hamburg 38 (1961) 71-76.
- [6] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
- [7] J.G. Oxley, Matroid Theory, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992.
- [8] R.P. Stanley, Supersolvable lattices, Algebra Univ. 2 (1972) 197-217.
- [9] N. White (Ed.), Theory of matroids, Encyclopedia of Mathematics and its Applications, vol. 26, Cambridge University Press, Cambridge, New York, 1986.
- [10] G. Ziegler, Binary supersolvable matroids and modular constructions, Proc. Amer. Math. Soc. 113 (3) (1991) 817-829.