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Abstract

LetGbe a finite simple graph. From the pioneeringwork of R.P. Stanley it is known that the cyclematroid ofG is supersolvable
iff G is chordal (rigid): this is another way to read Dirac’s theorem on chordal graphs. Chordal binary matroids are in general
not supersolvable. Nevertheless we prove that, for every supersolvable binary matroidM, a maximal chain of modular flats of
M canonically determines a chordal graph.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction and notations

Throughout this noteM denotes amatroid of rankr on the ground set[n] := {1,2, . . . , n}.We refer to[7,9] as standard sources
for matroid theory.We recall and fix some notation of matroid theory. The restriction ofM to a subsetX ⊆ [n] is denotedM|X.

AmatroidM is said to besimpleif all circuits have at least three elements.A matroidM isbinary if the symmetric difference of
any two different circuits ofM is a union of disjoint circuits. Graphic and cographic matroids are extremely important examples
of binary matroids. The dual ofM is denotedM∗. LetC = C(M) [resp.C∗ = C∗(M) = C(M∗)] be the set of circuits [resp.
cocircuits] ofM. LetC� := {C ∈ C : |C|��}. In the following the singleton{x} is denoted byx. We will denote by

cl(X) := X ∪ {x ∈ [n] : ∃C ∈ C, C\X = x},
theclosurein M of a subsetX ⊆ [n].We say thatX ⊆ [n] is aflat of M if X = cl(X). The setF(M) of flats ofM, ordered by
inclusion, is a geometric lattice. Therank of a flatF ∈ F, denotedr(F ), is equal tom if there arem + 1 flats in a maximal
chain of flats from∅ to F. The flats of rank 1, 2, 3 andr − 1 are calledpoints, lines, planes, andhyperplanes, respectively. A
line L with two elements is calledtrivial and a line with at least three elements is called nontrivial (a binary matroid has no line
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Fig. 1. GraphG0.

with more than three points). Given a setX ⊆ [n], let r(X) := r(cl(X)). A pairF,F ′ of flats is calledmodularif

r(F ) + r(F ′) = r(F ∨ F ′) + r(F ∧ F ′).

A flat F ∈ F is modular if it forms a modular pair with every other flatF ′ ∈ F. The notion of supersolvable lattices was
introduced and studied by Stanley[8]. In the particular case of geometric lattices the definition can be read as follows.

Definition 1.1 (Stanley[8] ). A matroidM on [n] of rankr is supersolvableif there is a maximal chain of modular flatsM
M := F0(=∅)� · · · �Fr−1�Fr(=[n]).

We callM anM-chain ofM. To theM-chainM we associate the partitionP of [n]
P := F1 � · · · � (Fi\Fi−1) � · · · � (Fr\Fr−1).

We callP anM-partition ofM.

We recall that a graphG is said to bechordal (or rigid or triangulated) if every cycle of length at least four has a chord.
Chordal graphs are treated extensively in Chapter 4 of[6]. The notion of a “chordal matroid” has also been recently explored in
the literature, see[2].

Definition 1.2 (Barahona and Grötschel[1, p. 53]). LetM be an arbitrary matroid (not necessarily simple or binary). A circuit
C of M has achord i0 if there are two circuitsC1 andC2 such thatC1 ∩ C2 = i0 andC = C1�C2. In this case, we say that
the chordi0 splits the circuitC into the circuitsC1 andC2.We say that a matroid is�-chordal if every circuit with at least�
elements has a chord. A simple matroidM is chordal if it is 4-chordal.

In this paper, we always suppose that the edges of a graphGare labelled with the integers of[n]. If nothing else is indicated we
suppose thatG is a connected graph. LetM(G) be thecycle matroidof the graphG: i.e., the elementary cycles ofG, as subsets
of [n], are the circuits ofM(G). In the same way, the minimal cutsets of a connected graphG (i.e, a set of edges that disconnect
the graph) are the circuits of a matroid on[n], called thecocycle matroidof G. A matroid isgraphic (resp.cographic) if it is
the cycle (resp. cocycle) matroid of a graph. The cocycle matroid ofG is dual to the cycle matroid ofG and both are binary.
The cocycle matroids of the complete graphK5 and of the complete bipartite graphK3,3 are examples of binary but not graphic
matroids; see Section 13.3 in[7] for details. The Fano matroid is an example of a supersolvable binary matroid that is neither
graphic nor cographic. Finally, note that an elementary cycleC of G has a chord iffC seen as a circuit of the matroidM(G) has
a chord.

Example 1.3. Consider the chordal graphG0 = G0(V , [7]) in Fig. 1and the corresponding cycle matroidM(G0). It is clear
that

M := ∅�{1}�{1,2,3}�{1,2,3,4,5}�[7]
is anM-chain. The associatedM-partition is

P := {1} � {2,3} � {4,5} � {6,7}.
The linearorderof thevertices is such that for everyi in {2,3,4,5} theneighborsof thevertexvi contained in theset{v1, . . . , vi−1}
form a clique; this is Dirac’s well-known characterization of chordal graphs (see[5,6]). This is also a characterization of graphic
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supersolvable matroids (see Proposition 2.8 in[8]). That is, a graphic matroidM(G) is supersolvable iff the vertices ofG can
be labeled asv1, v2, . . . , vm such that, for everyi = 2, . . . , m, the neighbors ofvi contained in the set{v1, . . . , vi−1} form a
clique. We say that a linear order of the vertices ofGwith the above properties is anS-labelof the vertices ofG.

Ziegler proved that every supersolvable binary matroid without a Fano submatroid is graphic (Theorem 2.7 in[10]). In the
next section we answer the following natural question:

• For a generic binary matroid, what are the relations between the notions of“chordal” and“supersolvable”?

2. Chordal and supersolvable matroids

Lemma 2.1. LetM be a simple binary matroid. The following two conditions are equivalent for every circuit C ofM:

(2.1.1) C�cl(C),

(2.1.2) C has a chord.
For nonbinary matroids only implication(2.1.2)⇒ (2.1.1)holds.

Proof. If i ∈ cl(C)\C, then there is a circuitD such thati ∈ D andD\i�C. AsM is binaryD′ = D�C is also a circuit ofM.

So i is a chord ofC. If i is a chord ofC, then clearlyi ∈ cl(C). Finally, in the uniform rank-two nonbinary matroidU2,4, the set
C = {1,2,3} is a circuit without a chord butC�cl(C) = [4]. �

Theorem 2.2. A binary supersolvable matroid M is chordal but the converse does not hold in general.

Proof. LetM := ∅� · · · �Fr−1�Fr = [n] be anM-chain ofM. Suppose by induction that the restriction ofM to Fr−1 is
chordal. The result is clear in the case thatC∗ := [n]\Fr−1 is a singleton. Suppose that|C∗|>1 and consider a circuitC ofM
not contained in the modular hyperplaneFr−1. Then there are two elementsi, j ∈ C ∩ C∗ and the line cl({i, j}) meetsFr−1.
SoC�cl(C) and we know from Lemma 2.1 that C has a chord.
A counterexample of the converse isM∗(K3,3), the cocycle matroid of the complete bipartite graphK3,3. It is easy to see

from its geometric representation that it is chordal but not supersolvable (see[10] and page 514 in[7] for its geometric repre-
sentation). �

Definition 2.3 (Crapo [4] ). LetM be an arbitrary matroid and consider an integer��2. The matroidM is �-closedif the
following two conditions are equivalent for every subsetX ⊆ [n] :

(2.3.1) X is closed,
(2.3.2) for every subsetYof Xwith at most� elements we have cl(Y ) ⊆ X.

We note that condition (2.3.2) is equivalent to

(2.3.2′) for every circuitC ofM with at most� + 1 elements

|C ∩ X|� |C| − 1 �⇒ C ⊆ X.

Definition 2.4. LetC′ be a subset ofC, the set of circuits ofM. Let cl�(C′) denote the smallest subset ofC such that:

(2.4.1) C′ ⊆ cl�(C′),
(2.4.2) whenever a circuitC splits into two circuitsC1 andC2 that are in cl�(C′) thenC is also in cl�(C′).

Theorem 2.5. For every simple binary matroidM the following three conditions are equivalent:

(2.5.1) M is �-closed,
(2.5.2) M is (� + 2)-chordal,
(2.5.3) C(M) = cl�(C�+1).

Proof. (2.5.2)⇐⇒ (2.5.3): This equivalence is a direct consequence of the definitions.
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(2.5.1) �⇒ (2.5.2): Consider a circuitCwith at least� + 2 elements and suppose for a contradiction thatC is not chordal.
From Lemma 2.1 we know that cl(C) = C. Pick an elementi ∈ C. Then the setX = C\i is not closed but every subsetYof X
with at most� elements is closed which is a contradiction.

(2.5.3) �⇒ (2.5.1): Let X be a subset of[n] and suppose that for every circuitC with at most� + 1 elements such that
|C ∩ X|� |C| − 1, we haveC ⊆ X; see(2.3.2′). To prove thatX is closed it is enough to prove that for every circuitC such
that |C ∩ X|� |C| − 1, we haveC ⊆ X. Suppose that the result is true for every circuit with at mostm elements and letD
be a circuit withm + 1 elements such thatD\d ⊂ X with d ∈ D. By hypothesis there are circuitsC1, C2 ∈ cl�(C�+1)
such thatC1 ∩ C2 = i andD = C1�C2. Suppose w.l.o.g thatd ∈ C1. We haveC2\i ⊂ X and since|C2|�m which implies
thati ∈ C2 ⊂ X. We have thatC1\d ⊂ X and|C1|�m which implies thatC1 ⊂ X. This gives thatD ⊆ X and concludes the
proof. �

Wemake use of the following elementary but useful proposition which is a particular case of Proposition 3.2 in[8]. The reader
can easily check it from Brylawski’s characterisation of modular hyperplanes[3].

Proposition 2.6. Let M be a supersolvable matroid and

M := F0� · · · �Fr−1�Fr

an M-chain. Let F be a flat of M. ThenM|F , the restriction of M to the flat F, is a supersolvable matroid and{Fi ∩F : Fi ∈ M}
is the set of(modular) flats of anM|F -chain.

Definition 2.7. LetP = P1 � · · · � Pr be anM-partition of a supersolvable matroidM. We associate to(M,P) a graphGP
such that:

• V (GP) = {Pi : i = 1,2, . . . , r} is the vertex set ofGP,

• {Pi, Pj } is an edge ofGP iff there is a nontrivial lineL ofM meetingPi andPj .
We callGP theS-graphof the pair(M,P).

Note that every nontrivial lineL of the binary supersolvable matroidMmeets exactly twoP ′
i
s and ifLmeetsPi andPj , with

i < j , necessarily|Pi ∩L| = 1 and|Pj ∩L| = 2. IndeedFj−1= ⋃j−1
�=1P� is a modular flat disjoint fromPj , so|Fj−1∩L| = 1.

This simple property will be used extensively in the proof of Theorem 2.10. Given a chordal graphG with a fixed S-labeling,
we get an associated supersolvable matroidM(G) and an associatedM-partitionP.We say thatGP, the S-graph determined
by (M(G),P), is thederived S-graphof G for this S-labeling.

Remark 2.8. Note that the derived S-graphGP of a chordal graphG is a subgraph ofG. Indeed setV (GP) = {P1, . . . , Pm}
and consider the mapP� → v�+1, � = 1, . . . , m. Let {Pi, Pj }, 1� i < j �m, be an edge ofGP. From the definitions we see
that{vi+1, vj+1} is necessarily an edge ofG.

Example 2.9. Consider the S-labeling of the graphG0 given inFig. 1and the associatedM-partitionP (see Example 1.3). The
derived S-graphGP is a path fromP1 to P4. Consider now theM-partition ofM(G0) :

P′ := {4} � {3,5} � {1,2} � {6,7}.
In this case the corresponding S-graphG′

P′ isK1,3 with P2 being the degree-3 vertex. It is easy to prove that for anyM-partition
P of the cycle matroid of the complete graphK�, the S-graphGP is the complete graphK�−1.

Our main result is:

Theorem 2.10.LetM be a simple binary supersolvable matroid with an M-partitionP. Then the S-graphGP is chordal.

Proof. LetP = P1 � · · · � Pr . We claim thatPr is a simplicial vertex ofGP. Suppose that{Pr , Pi} and{Pr , Pj }, i < j, are
two different edges ofGP and that there are two nontrivial linesL1 := {x, y, z} andL2 = {x′, y′, z′} wherex, y, x′, y′ ∈ Pr

andz ∈ Pi, z
′ ∈ Pj . We will consider two possible cases:

• Suppose first, that two of the elementsx, y, x′, y′ are equal; w.l.o.g., we can supposex = x′. AsM is binary the elements
x, y, y′ cannot be colinear, so cl({x, y, y′}) is a plane. Frommodularity ofFr−1, we know that cl({x, y, y′})∩Fr−1 is a line.
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Fig. 2.

So the line cl({y, y′})meets the modular hyperplaneFr−1 in a pointa. Now the line{z, z′, a} is a nontrivial line which meets
Pi andPj . Then by definition{Pi, Pj } is an edge ofGP.

• Suppose now that the elementsx, y, x′, y′ are different. Then asM is binary we haver({x, y, x′, y′}) = 4. From modularity
of Fr−1, we know thatr(cl({x, y, x′, y′})∩Fr−1)=3. Then the six lines cl({�, �}), for � and� in {x, y, x′, y′}meetFr−1 in
six coplanar points; let these points be labelled as inFig. 2. LetP� be the set that containsa. We will consider three subcases.
◦ Suppose first thati < j < �. From the property given immediately after Definition 2.7, we have thatc is also inP�. Consider
the modular flatF�−1=⋃�−1

h=1Ph.We know that the plane cl({a, c, z, z′})meetsF�−1 in a line, so cl({z, z′}) is a nontrivial
line meetingPi andPj and so{Pi, Pj } is an edge ofGP.

◦ Suppose now that�< i < j . Then the nontrivial line{a, d, z} meetsPi andP� and we haved ∈ Pi . So the nontrivial line
{c, d, z′} meetsPi andPj and{Pi, Pj } is an edge ofGP.

◦ Suppose finally thati���j . The nontrivial line{a, d, z} meetsPi andP� sod ∈ P�. The nontrivial line{c, d, z′} meets
P� andPj and necessarily we havec ∈ Pj . We conclude that the nontrivial line{b, c, z} meetsPi andPj and{Pi, Pj } is
an edge ofGP.

By induction we conclude thatGP is chordal. �

We say that twoM-chains

M := ∅� · · · �Fr−1�Fr = [n]
and

M′ := ∅� · · · �F ′
r−1�F ′

r = [n]
are related by anelementary deformationif they differ by at most one flat. We say that twoM-chains areequivalentif they can
be obtained from each other by elementary deformations.

Proposition 2.11. Every two M-chains of the same matroidM are equivalent.

Proof. We prove it by induction on the rank. The result is clear forr = 2. Suppose it is true for all matroids of rank at most
r − 1. Consider two differentM-chains

M := ∅� · · · �Fr−1�Fr = [n],
M′ := ∅� · · · �F ′

r−1�F ′
r = [n].
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LetF� be the flat of highest rank of theM-chainM contained inF ′
r−1. We know thatFj ∩ F

′
r−1, j = 0,1, . . . , r, is a modular

flat of the matroidM and that

r(Fj ∩ F
′
r−1) = j − 1, for j = � + 2, . . . , r − 1.

LetM0 := M and fori = 1, . . . , r − 1− �, letMi be theM-chain

∅� · · · �Fl�F�+2 ∩ F ′
r−1� · · ·F�+i+1 ∩ F ′

r−1�F�+i+1 · · · �[n].
We have clearly by, definition, that fori = 0, . . . , r − 2− �, theM-chainsMi andMi+1 are equivalent. This sequence of
equivalences shows thatM is equivalent toMr−1−�. Finally, note that the twoM-chainsM

′ andMr−1−� have the same
component of rankr − 1, which by the induction hypothesis implies thatM′ is equivalent toMr−1−�. We have obtained the
equivalence ofM andM′ which concludes the proof.�

Remark 2.12. Proposition 2.11 can be used to obtain all the S-labels of a given chordal graphG from a fixed one. IfG is doubly
connected the number ofM-chains ofM(G) is equal to the half the number of such labelings, see[8, Proposition 2.8].

It is natural to ask if, given a chordal graphG, there is a supersolvable matroidM together with anM-partitionP such that
G = GP. Can the matroidM be supposed graphic? The next proposition gives a positive answer to these questions.

Proposition 2.13. LetG = (V ,E) be a chordal graph with an S-labelingv1, . . . , vm of its vertices, andG̃ the extension of G
by a vertexv0 adjacent to all the vertices, i.e.

V
G̃

= VG ∪ v0 and E
G̃

= EG ∪ {{vi , v0}, i = 1, . . . , m}.
ThenGP̃, the derived S-graph of̃G for the S-labelingv0, v1, . . . , vm is isomorphic to G.

Proof. As v0 is adjacent to every vertexvi , i = 1, . . . , m, it is clear thatv0, v1, . . . , vm is an S-labeling of̃G. Let P and
P̃ denote the correspondingM-partitions of the graphic matroidsM(G) andM(G̃). We haveP = P1 � · · · � Pm−1 and
P̃=P̃1(={v0, v1}),�P̃2�· · ·�P̃m with P̃i=Pi−1∪{vo, vi}, for i=2, . . . , m.Nowwe can see that if{vi , vj }, 0� i < j �m−1,
is an edge ofG then{P̃i , P̃j } is an edge ofGP̃. From Remark 2.8 we get that reciprocallyGP̃ is a subgraph ofG. �
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