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Abstract

Let G be a finite simple graph. From the pioneering work of R.P. Stanley it is known that the cycle matd&isafpersolvable
iff Gis chordal (rigid): this is another way to read Dirac’s theorem on chordal graphs. Chordal binary matroids are in general
not supersolvable. Nevertheless we prove that, for every supersolvable binary rivateoidaximal chain of modular flats of
M canonically determines a chordal graph.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction and notations

Throughout this notd/ denotes a matroid of ramlon the ground s¢t:] := {1, 2, ..., n}. We refertd7,9] as standard sources
for matroid theory. We recall and fix some notation of matroid theory. The restrictidhtofa subseX C [n] is denotedV/|X.
A matroid M is said to besimpleif all circuits have at least three elements. A matridds binaryif the symmetric difference of
any two different circuits oM is a union of disjoint circuits. Graphic and cographic matroids are extremely important examples
of binary matroids. The dual o¥ is denotedV/*. Let ¥ = ¢ (M) [resp.6™* = €* (M) = €(M*)] be the set of circuits [resp.
cocircuits] of M. Let 4, := {C € € : |C| < ¢}. In the following the singletorix} is denoted byk. We will denote by

c(X):=XU{xe[n]: AC € ¢,C\X =x},

theclosurein M of a subse C [n]. We say thatX C [n] is aflatof M if X = cl(X). The set# (M) of flats ofM, ordered by
inclusion, is a geometric lattice. Thank of a flat F € 7, denotedr(F), is equal tomif there arem + 1 flats in a maximal
chain of flats from@ to F. The flats of rank 1, 2, 3 and— 1 are calledoints lines planes andhyperplanesrespectively. A
line L with two elements is callettivial and a line with at least three elements is called nontrivial (a binary matroid has no line
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with more than three points). Given a Setc [x], letr(X) := r(cl(X)). A pair F, F’ of flats is callednodularif
r(F)+r(Fy=r(FV F')+r(FAF).

Aflat F € # is modularif it forms a modular pair with every other fld’ € .#. The notion of supersolvable lattices was
introduced and studied by Stanlg}. In the particular case of geometric lattices the definition can be read as follows.

Definition 1.1 (Stanley{8]). A matroidM on[#n] of rankr is supersolvabléf there is a maximal chain of modular flatg
M= Fo(=00)S -+ CF1CFr (=[n)).

We call.# an M-chain of M. To theM-chain.# we associate the partitio# of [n]
Pi= FLW.-- W (F\Fi_1) W W (F\Fr_1).

We call? an M -partition of M.

We recall that a grapks is said to bechordal (or rigid or triangulated if every cycle of length at least four has a chord.
Chordal graphs are treated extensively in Chapter[8]ofThe notion of a “chordal matroid” has also been recently explored in
the literature, sef?].

Definition 1.2 (Barahona and Grotschél, p. 53]). LetM be an arbitrary matroid (not necessarily simple or binary). A circuit
C of M has achordj if there are two circuit€"; andC» such thatC; N C2 = ig andC = C1AC»>. In this case, we say that
the chordig splitsthe circuitC into the circuitsC1 andCo. We say that a matroid i&-chordalif every circuit with at least
elements has a chord. A simple matraidis chordalif it is 4-chordal.

In this paper, we always suppose that the edges of a @aph labelled with the integers pf]. If nothing else is indicated we
suppose thab is a connected graph. L&1(G) be thecycle matroidof the graphG: i.e., the elementary cycles 6f, as subsets
of [n], are the circuits o (G). In the same way, the minimal cutsets of a connected g@fle, a set of edges that disconnect
the graph) are the circuits of a matroid pr], called thecocycle matroidbf G. A matroid isgraphic (resp.cographiq if it is
the cycle (resp. cocycle) matroid of a graph. The cocycle matrofd isfdual to the cycle matroid d& and both are binary.
The cocycle matroids of the complete graifand of the complete bipartite grapy 3 are examples of binary but not graphic
matroids; see Section 13.3[ii] for details. The Fano matroid is an example of a supersolvable binary matroid that is neither
graphic nor cographic. Finally, note that an elementary c@abé G has a chord ifiC seen as a circuit of the matroM (G) has
a chord.

Example 1.3. Consider the chordal graptio = Go(V, [7]) in Fig. 1and the corresponding cycle matraii(Go). It is clear
that

M =PI C(L, 2, 3)C(1, 2, 3,4, 5)C[7]
is anM-chain. The associatéd-partition is
P :={1}W{2,3} ¥ {4,5} (6, 7).

The linear order of the vertices is such that for evémy{2, 3, 4, 5} the neighbors ofthe vertex contained inthe s¢tq, ..., v;_1}
form a clique; this is Dirac’s well-known characterization of chordal graphs[6p. This is also a characterization of graphic
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supersolvable matroids (see Proposition 2.88i). That is, a graphic matroidif/ (G) is supersolvable iff the vertices & can
be labeled a1, vo, ..., vy such that, for every =2, ..., m, the neighbors of; contained in the sdi1, ..., v;_1} form a
clique. We say that a linear order of the verticesofith the above properties is @ilabelof the vertices of5.

Ziegler proved that every supersolvable binary matroid without a Fano submatroid is graphic (Theorefi@]) in the
next section we answer the following natural question:

e For a generic binary matroidwhat are the relations between the notion§diordal’ and* supersolvabl&

2. Chordal and supersolvable matroids

Lemma 2.1. Let M be a simple binary matroid. The following two conditions are equivalent for every circuitd. of

(2.1.1) CCcl(0),
(2.1.2) C has a chord
For nonbinary matroids only implicatio(2.1.2)= (2.1.1)holds

Proof. If i € cl(C)\C, then there is a circud such that € D andD\iCC. As M is binaryD’ = DAC is also a circuit of\/.
Soiisachord ofC. If i is a chord ofC, then clearlyi € cl(C). Finally, in the uniform rank-two nonbinary matrol¢p 4, the set
C ={1, 2, 3} is a circuit without a chord buf Ccl(C) =[4]. O

Theorem 2.2. A binary supersolvable matroid M is chordal but the converse does not hold in general

Proof. Let # = ¢C--- CF,_1CF, = [n] be anM-chain of M. Suppose by induction that the restrictionMfto F,_1 is
chordal. The result is clear in the case thdt:= [n]\ F,_1 is a singleton. Suppose th&@*| > 1 and consider a circu of M
not contained in the modular hyperplafig_1. Then there are two elementsj € C N C* and the line al{i, j}) meetsF,_1.
SoCCcl(C) and we know from Lemma 2.1 that C has a chord.

A counterexample of the conversefit* (K3 3), the cocycle matroid of the complete bipartite grapfz. It is easy to see
from its geometric representation that it is chordal but not supersolvabl¢l@eand page 514 ifi7] for its geometric repre-
sentation). O

Definition 2.3 (Crapo [4]). Let M be an arbitrary matroid and consider an integer2. The matroidM is ¢-closedif the
following two conditions are equivalent for every subXet [n] :

(2.3.1) Xis closed,
(2.3.2) for every subsa&tof X with at most¢ elements we have @) C X.
We note that condition (2.3.2) is equivalent to

(2.3.2)) for every circuitC of M with at mostZ + 1 elements
ICNX|>|Cl-1 = CCX.
Definition 2.4. Let %’ be a subset oF, the set of circuits oM. Let cl4(¢”) denote the smallest subset®&uch that:

(2.4.1) €' < cl (%)),
(2.4.2) whenever a circut splits into two circuitsC1 andC» that are in ¢k (¢”) thenC is also in cly (¢").

Theorem 2.5. For every simple binary matroid/ the following three conditions are equivalent
(2.5.1) M is ¢-closed

(2.5.2) M is (¢ + 2)-chordal,

(2.5.3) (M) =cl4(6p+1)-

Proof. (2.5.2)<= (2.5.3): This equivalence is a direct consequence of the definitions.
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(2.5.1) = (2.5.2): Consider a circuiC with at least’ + 2 elements and suppose for a contradiction @&t not chordal.
From Lemma 2.1 we know that@') = C. Pick an element € C. Then the seX = C\i is not closed but every subsébf X
with at most¢ elements is closed which is a contradiction.

(2.5.3) = (2.5.1): Let X be a subset ofrz] and suppose that for every circ@twith at most¢ + 1 elements such that
|ICNX|>|C| -1, we haveC C X; see(2.3.2'). To prove thaiX is closed it is enough to prove that for every ciroQisuch
that|C N X|>|C| — 1, we haveC C X. Suppose that the result is true for every circuit with at nmslements and leéb
be a circuit withm + 1 elements such thad\d C X with d € D. By hypothesis there are circuits;, C2 € cl4(p41)
such thatC1 N Co =i and D = C1AC5. Suppose w.l.0.g that € C1. We haveCs\i C X and sincgCo| <m which implies
thati € Co C X. We have thaC1\d C X and|C1|<m which implies thatC; C X. This gives thath C X and concludes the
proof. [

We make use of the following elementary but useful proposition which is a particular case of Propositid83.2he reader
can easily check it from Brylawski's characterisation of modular hyperplgjes

Proposition 2.6. Let M be a supersolvable matroid and
M= FoG - CF1CFy

an M-chain. Let F be a flat of M. TheM | F, the restriction of M to the flat Fs a supersolvable matroid ar{d; N F : F; € .4}
is the set ofmodula)) flats of anM | F-chain

Definition 2.7. Let ? = Py ¥ - - - ¥ P be anM-partition of a supersolvable matroid. We associate toM, 2) a graphG »
such that:

e V(Gyp)={P;:i=12,...,r}isthe vertex set oG »,
e {P;, P;}is anedge oG iff there is a nontrivial line of M meetingP; and P; .
We call G » the S-graphof the pair(M, 2).

Note that every nontrivial lin& of the binary supersolvable matrdidl meets exactly twd’lfs and ifL meetsP; and P;, with

i < j,necessarilyP; N L|=1and|P; NL|=2.IndeedF;_; = Ué;%P@ is a modular flat disjoint fronP;, so|F; _1 N L|=1.
This simple property will be used extensively in the proof of Theorem 2.10. Given a chordal@nafih a fixed S-labeling,
we get an associated supersolvable matigids) and an associatdd-partition 2. We say thaiG », the S-graph determined
by (M(G), 2), is thederived S-grapliof G for this S-labeling.

Remark 2.8. Note that the derived S-gragh, of a chordal grapl® is a subgraph o;. Indeed seV (G ») ={P1, ..., Pn}
and consider the mapy — vei1, £=1,...,m. Let{P;, P;}, 1<i < j<m, be an edge ofi . From the definitions we see
that{v; 11, vj 41} is necessarily an edge 6f.

Example 2.9. Consider the S-labeling of the graphy given inFig. 1and the associatéd-partition? (see Example 1.3). The
derived S-grapl@ » is a path fromP; to P4. Consider now thél-partition of M (Go) :

7 = {4 ¥ {3,5)w{1,2} W {67}

In this case the corresponding S-gra@, is K1 3 with P being the degree-3 vertex. It is easy to prove that forrpartition
2 of the cycle matroid of the complete grajh, the S-graphG » is the complete grapR,_1.

Our main result is:
Theorem 2.10. Let M be a simple binary supersolvable matroid with an M-partiti@nThen the S-grapli » is chordal
Proof. Let? = Py ¥ --- @ P.. We claim thatP, is a simplicial vertex ofG 5. Suppose thatP,, P;} and{P,, P;}, i < j, are
two different edges o » and that there are two nontrivial lindg := {x, y, z} andLy = {x', ¥/, z’} wherex, y, x", y' € P,

andz € P;, 7/ € P;. We will consider two possible cases:

e Suppose first, that two of the elementsy, x’, y” are equal; w.l.0.g., we can suppose= x’. As M is binary the elements
x,y,y’ cannot be colinear, so@k, y, y'}) is a plane. From modularity df. _1, we know that al{x, y, y'}) N F,._1 is aline.
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So the line dl{y, y'}) meets the modular hyperplaifz_1 in a pointa. Now the line{z, z’, a} is a nontrivial line which meets

P; and P;. Then by definition{ 7;, P;} is an edge oG .

e Suppose now that the elementsy, x’, y’ are different. Then a&f is binary we have ({x, y, x’, y'}) = 4. From modularity
of F,_1, we know that (cl({x, y, x", y'}) N F,_1) = 3. Then the six lines ¢|«, }), for x andBin {x, y, x’, y'} meetF,_1 in
six coplanar points; let these points be labelled dSdn 2 Let P, be the set that contairs We will consider three subcases.
o Suppose firstthdat< j < ¢. From the property given immediately after Definition 2.7, we havedigalso inP,. Consider

the modular flaty_1 = Uf,;llPh- We know that the plane dl, ¢, z, z'}) meetsF,_1 inaline, so cl{z, z’}) is a nontrivial
line meetingP; and P; and so{ P;, P;} is an edge 06 5.

o Suppose how that< i < j. Then the nontrivial linda, d, z} meetsP; and P, and we havel € P;. So the nontrivial line
{c.d, 7'} meetsP; andP; and{P;, P;} is an edge 065 5.

o Suppose finally that< ¢ < j. The nontrivial line{a, d, z} meetsP; and P, sod € P,. The nontrivial ling{c, d, 7'} meets
Py and P; and necessarily we havec P;. We conclude that the nontrivial ling, c, z} meetsP; andP; and{P;, P;} is
an edge of5 ».

By induction we conclude thag » is chordal. O

We say that twdvi-chains
M= CF 1 G Fr = [n]
and
M =0C - CF_CF =|n]

are related by arlementary deformatioifithey differ by at most one flat. We say that tWbchains areequivalentf they can
be obtained from each other by elementary deformations.

Proposition 2.11. Every two M-chains of the same matrdifiare equivalent

Proof. We prove it by induction on the rank. The result is clear/fee 2. Suppose it is true for all matroids of rank at most
r — 1. Consider two differeni-chains

M =P - CF 1S Fr = [n],

M =PC - CF_1CF. =|n].
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Let F; be the flat of highest rank of thé-chain./# contained inF’ - We know thatF N Fr J=01...r, is a modular
flat of the matroidM and that

r(Fj ﬂF _p=j-1 forj=¢+4+2...,r=-1
Let #o:=.#andfori=1,...,r —1— ¢, let.#; be theM-chain
0C - CRCF 2N F G Fryipa N F 1 GFeqiy1--- Clnl.

We have clearly by, definition, that fer=0,...,r — 2 — ¢, theM-chains.#; and.#; 1 are equivalent. This sequence of
equivalences shows tha# is equivalent ta#, _1_,. Finally, note that the twd/-chains.#’ and.#,_1_, have the same
component of rank — 1, which by the induction hypothesis implies that is equivalent to#,_1_,. We have obtained the
equivalence of# and.#’ which concludes the proof.(J

Remark 2.12. Proposition 2.11 can be used to obtain all the S-labels of a given chordal@ifapim a fixed one. IS is doubly
connected the number M-chains ofM (G) is equal to the half the number of such labelings,[8e®@roposition 2.8]

It is natural to ask if, given a chordal graph there is a supersolvable matraidl together with arM-partition 2 such that
G = G ». Can the matroid/ be supposed graphic? The next proposition gives a positive answer to these questions.

Proposition 2.13. Let G = (V, E) be a chordal graph with an S-labeling, . .., v, of its verticesandé the extension of G
by a vertexvg adjacent to all the vertices.e.

Vg=VgUvw and Ez=EgU{{vi,vo}.i=1....,m}

ThenGi,, the derived S-graph ab for the S-labelingy, v1, . .., vy isisomorphic to G

Proof. As vg is adjacent to every vertex, i = 1,...,m, itis clear thatvg, vy, ..., v is an S-labeling oG. Let 7 and
] denote the correspondirig-partitions of the graphlc matroid& (G) and M(G) We have? = Pi W --- W P,_1 and
P= Pl( {vo, v1}), UP2U UPmW|thP P;i_1U{vo, v}, fori=2, ..., m. Nowwe cansee thatib;, v;}, O<1 <j<m-1,
is an edge of5 then{Pl, PJ} is an edge oG;,. From Remark 2.8 we get that reciprocadh_@) is asubgraph of;. O
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