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On Counting the k-face Cells of Cyclic Arrangements

D. FORGE ANDJ. L. RAMIREZ ALFONSIN

In this paper, we compute the exact numberkdace cells of thecyclic arrangementsvhich
are the dual to the well-known cyclic polytopes. The proof uses the combinatorial interpretation of
arrangements in terms of oriented matroids.
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1. INTRODUCTION

A projective d-arrangement of n hyperplanegdin) is a finite collection of hyperplanes

in the real projective spacB9 such that no point belongs to every hyperplaneHafi, n).
Any arrangement (d, n) decompose#$? into a d-dimensional cell compleX . We may
call cellsof H(d, n) thed-cells of K, andfacetsof H (d, n) the (d — 1)-cells of K. Clearly
any cell of H(d, n) has at least (resp. at most}+ 1 (resp.n) facets. We shall denote by

fo[H (d, n)] the number ofi-cells of H(d, n) having exactlyp facetsd +1 < p < n.

The cyclic polytopeof dimensiond with n verticesCqy(t1, ..., ty) was discovered by
Caratleodory B, 4] and has been rediscovered many times; it is usually defined as the convex
hull in the Euclidean spacﬁd, d > 2,0ofn,n > d+ 1, different pointsx(ty), ..., X(ty) of
themoment curve x R — RY, t — (t,t2, ..., t%). Cyclic polytopes, and simplicial neigh-
bourly polytopes, in general, play an important role in the combinatorial convex geometry due
to their connection with certain extremal problems. For example, the upper bound theorem es-
tablished by McMullen7, 8], says that the number gfdimensional faces af-polytope with
n vertices is maximized b€y(ty, ..., th).

Here, we focus our attention tyclic arrangementsA(d, n), defined as the dual to cyclic
polytopesCqy(t1, ..., tn). As for cyclic polytopes, cyclic arrangements also have extremal
properties. For instance, Shannd2][has introduced cyclic arrangemerfsd, n) as exam-
ples of projective arrangements with a minimum number of cells gdith 1)-facets. In this
paper, we give an explicit formula to computtg[ A(d, n)] foreachd +1 < p <n.

THEOREM1.1. Letd, n, p be positive integers such thatidl < p < n. Then

i (000 Gla) + (o) (plate) P <n.

Our proof uses the combinatorial interpretation of the cyclic arrangements in terms of ori-
ented matroid. Indeed, cyclic arrangementa bfperplanes irP¢ are combinatorially equiv-
alent toalternating oriented matroidef rankr = d 4+ 1 onn elements, by the representation
of Folkman and Lawrencef] (for the basic notation of oriented matroid theory, we refer
the reader toq]). The (uniform)alternating oriented matroidd(r, n) of rankr on n ele-
ments is defined as follows, se#]:[let E denote am-element set witm > r, together
with a total order<. The signed circuits ofA(r, n) are the subset€ = {ey,..., &+1},
€ < € < --- < 641, of E with the signatur€* = {g,i odd} andC~ = {g, i even}, and
their negatives.

In Sectiorn?2, we give general results concerning the acyclic reorientations together with their
corresponding interior elements of the alternating oriented matroid that play an important role
in the main result.
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In Section3, we prove Theoremi.l Finally, in Sectiord, we apply Theorem..1to give
straightforward proofs for some known results and to improve an upper bound on the number
of completecells in A(d, n).

2. INTERIORELEMENTS OFA(r, n)

Let M(r, n) be an oriented matroid of rankwith n elements. LeT ¢ {+, —}". We call
T asign nvectorand denote by (i) the sign of elemeritin T. We denote by\y (r, n) the
oriented matroid obtained froom by reorientingelement if and only if T (i) = —. Notice
that T partitions{1, ..., n} into signed intervals 4, ..., Im, 1 < m < n, wherel; denote a
maximal set of consecutive elements having the same sign. We dengtg the number of
elements inj and byd(T) the number of intervals it .

OBSERVATIONS. Let T be a sigm-vector andk € {1,...,n}. Let T’ be a sigm-vector
such thafl’(j) = T(j) forall j # kandT’(k) = —T (k).
(A)If2 <k <n-—1then:

@) d(T)=d(M +2ifandonlyif T(k) = T(k+ 1) = T(k — 1),
(i) d(T)=d(T) —2ifandonly if T(k) = -T(k+1) = -T(k—1) and
(i) d(M)=d(T)ifandonlyif T(k+1) = -T(k—1).
(B) If k=1 (respk = n) then:
(i) d(T)=d(T)+ lifand only if T(1) = T(2) (resp.T(n) = T(n — 1)),
(i) d(THY=d(T) —1ifandonlyif T(1) = —T(2) (resp.T(n) = —T(n — 1)).
Recall that an oriented matrojtt = (E, C) is acyclicif it does not contain positive circuits
(otherwise M is calledcyclic).

LEMMA 2.1. Let T be a sign n-vector. The# (r, n) is acyclic if and only if dT) <.

ProoOF We shall show thatd(r, n) is cyclic if and only ifd(T) > r. Suppose that
At (r,n) is cyclic. LetC = (ey,..., &41) be a positive circuit indy (r, n). SinceC was
alternating inA(r, n) then this implies thaT (g) = C(g) or —C(g) whereC(i) denote the
sign of element in C. Therefore,T must have at least+ 1 intervals.

Let T be a sigm-vector having as intervalg, ..., I, with| >r.LetC = (e1, ..., &+1)
be a circuit inA(r, n) such thatg € |; foreachi = 1,...,r + 1. SinceT(g§) = —T(§+1),
i = 1,...,r and the elements d are signed alternatively the@ is a positive circuit in
At (r, n). O

We say that an elemeete E of an uniform oriented acyclic matroid isterior if there
exists a signed circult = (C*, C™) with C~ = {e}. It is equivalent to define the interior
elements as the elements whose reorientation give a cyclic matroid.

LEMMA 2.2. Let T be asign n-vector such thdt (r, n) is acyclic. Then (a2 <i <n-1
is an interior element iMdt (r,n) ifand only if T) =rorr — L, and T(i) =T(@{ + 1) =
T(@ — 1) and (b)1 (resp. n) is an interior element iwt (r, n) if and only if &(T) = r and
T(@Q) =T(2) (resp. T(n) = T(n — 1)).

PROOF. LetT be a sigm-vector anck € {1, ..., n}. Let T’ be the sigm-vector such that
T'(j) =T(j) forall j # kandT’(k) = —T (k). We know thak is an interior element if and
only if At (r, n) is acyclic and4y/(r, n) is cyclic. Equivalentlyk is an interior element if and
only if d(T) <r andd(T’) > r + 1. Hence,
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(a) by observation 4i), 2 < k < n — 1is an interior element if and only d(T) <,
d(T) >r +1andd(T’) = d(T) + 2 or equivalently if and only itl(T) =r orr — 1
andT(kk) =Tk+1) =T(k-1).

(b) By observation Bi), 1 (respn) is an interior element if and only d(T) <r, d(T') >
r +1andd(T’) = d(T) + 1 or equivalently if and only ifi(T) =r andT(1) = T(2)
(resp.T(n) = T(n—1)). d

3. THE FORMULA

Let H(d, n) = {hj}1<i<n be an arrangement of hyperplanes &g q,n) its corresponding
oriented matroid. We denote lgy the element ofMy 4 n) corresponding to hyperplarg.

It is well known [6] that an acyclic reorientation aMy@.n having{e,,..., g}, 1 <n
as interior elements corresponds to a celHid, n) which is boarded by hyperplangs ¢
{hiy, ..., hij}.

Hence, fp[ A(d, n)] can be computed by counting all sigrvectorsT such thatAr (r, n)
has exactlyp non-interior elements witd +1 < p < n.

ProPOSITION3.1. Let T be a sign n-vector with intervalg,l.. ., I, _1. Then | contains
exactly|lj| — 2 interior elements ind (r, n) if |1j| > 3 and no interior element ifl| < 2.
Moreover, if L= |{Ij||1j| > 2}| then there are exactly + 1 4 L non-interior elements.

PrROOFE We have two cases.

(8 2<i <r —1. Letl; be an interval off and suppose that < |;. By Lemma2.2 (a),
eis an interior element if and only if (e) = T(e — 1) = T(e+ 1), in other words if
and only ife—1,e+ 1 € |;. Thatis,eis an interior element if and only &is not an
end ofl;. So, if [I;| > 3 thenl; containg|l;| — 2 interior elements and {fi;| < 2 then
I; contains no interior elements.

(b) i = 1orr —1. Assume thae € |1 (the case for = r — 1 is analogous). By Lemnia2
(b), 1is not aninterior element. Seis an interior elementifand onlyd—1,e+1 € |
ande # 1. That is,eis an interior element if and only &is not an end of ;.

Finally, there ard_ intervals of length at least 2. So there are 1 — L of length 1 and the
number of non-interior elementsris—1— L +2L =r — 1+ L. m|

PROPOSITION3.2. Let T be a sign n-vector with intervalg,l..., I;. Then (a) for each
2 < j <r —1, Ij contains exactlylj| — 2 interior elements indy(r, n) if [I;| > 3 and
no interior element iflj| < 2 and (b) k (resp. }) contains|l1| — 1 (resp.|l; | — 1) interior
elements indr (r, n). Moreover, if L= [{lj]|lj| > 2, 2 < ] <r — 1}| then there are exactly
r + L non-interior elements.

PROOF Part (a) is similar to PropositioB.1 (a). For part (b) assume thate |1 (the case
fori = r is analogous). Suppose thadg§| > 1 (if |I1] = 1 thenl; contains no interior
elements). Sincé& (1) = T(2) then by Lemm&.2(b) 1 is an interior element. Now,# 1 is
an interior element if and only & — 1, e+ 1 € 11. Hence, the right-end df; is the only not
interior element. Thereforé; containg 11| — 1 interior elements.

Finally, the first (and the last) interval has 1 non-interior element and there are ekactly
intervals of length at least 2 (other than the first and last intervals). So, there arelL inter-
vals of length 1 and the number of non-interior elementsfsr2— 2 — L +2L =r + L. O



310 D. Forge and J. L. Rairez Alfonén

PROOF OFTHEOREM 1.1. Let hg(n,r, p) be the number of sign-vectorsT having 1<
k < r intervals such thatlt has exactlyp non-interior elements. We shall compiitgn, r, p)
for each 1< k <r since fp[A(d, n)] = Z’kzl hk(n, r, p). We have three cases.

Case (). k = r. By Proposition3.2 we know thatp = r + L. Thus, we must count all
signn-vectorsT = Ig, ..., |y havingL intervals, say,, ..., lj, with2 <ij <r —1, of size
at least 2. In other words, we have to find all the solutions of

(*) X1+ ---+ X% =n such that
@)X, % =1,
(P)xi; =2with 2<i; <---<iL <r -1
(€)xr =1 with 2<i’ <r —1,i" #1ij.

By settingxi; — 1 = yi; we have that number of solutions @) is ( ) (number of choices
for (b)) times the number of solutions 6fx)

GeR) X1+ Vi, +- -+ Vi, +% =n—( —2—L) — LwithXg, X, Vi, ..., ¥, > L

Since the number of solutions ¢fx) is equal to(”[rgf‘ll) thenh (n,r, p) = ("9

("1*57Y). Notice that by setting = d + 1 andL = p —r we have that

hen,r, ) = (22 (0D = (2at) God) = (et ) (h29).

Case (I). k =r—1.By Propositior8.1we know thatp = r —1+L. Thus, we must count
all signn-vectorsT = Iy, ..., I;_1 havingL intervals of size at least 2. By similar arguments
as in Casgl) we have thahr wn,rp) = ((TH ("D, Notice that by setting = d +1
andL = p —r + 1 we have that

he—an,r ) = (1) i) = (L) (mimd) = (2 (TR2H)-

Case (IlIN). If1 <k <r — 1then by Lemm&.2we have that

0 if n,
fk(n. T, p) = { =Y if o,
Hence,
d-2 n_l d d—1 f p:n
fplA(d, n)] = l=9(|)+(nfd_)+(797) | ,
p[ ( ! {( ndp )(pid)'i' (rr:_(;) (pddl ) if P <n O

4. SOME APPLICATIONS

Let us have a closer look at the extremals cells ofAl, n), that is,simpliceqi.e., (d+1)-
facet cells) anadomplete cellgi.e., n-facets cells).

Shannon 12] has proven tha#A(d, n) has exactlyn simplices. This can easily be verified
by checking thatf41[ A(d, n)] = n. Moreover, Shannon gave the set of simplices explicitly.

THEOREM4.1 ([12]). Let n,d be integers with = d + 1. Then Ad, n), has exactly n
simplices given by the set of4 1 consecutive elements in the $&t. .., n} in cyclic order,
thatis,(1,2,...,d+1),(2,3,...,d+2),...,(n,1,...,d).

Shannon'’s proof uses long geometric arguments. We propose a purely combinatorial proof.
By Theoreml.1, A(d, n) has exactlyn simplices. Now, consider the following two sets of
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sign n-vectors given as a set of intervals (recall that the set of elements of two consecutive
intervals has opposite sign). Foreack 2,...,n—r + 2,
P=[...,i —1,[],....[i +r =3],[i +r —2,...,n]and

r—2
Prraz3=1[1,....,n—=r +2],[n—r +3],...,[n]. And, foreachj =2, ...r — 2,

r—2
Qi=M1L2,....[i —1L[},....,J+n=r+1,[j+n—r+2],...,[n]
r—j+1

andQr_1 =1[1],[2],...,[r = 2],[r —1,...,n].

We claim that each of the signed vect®sandQ; correspond to a simplex iA(d, n). We
leave the proof of this claim to the reader, as an easy combinatorial exercise.

Roudneff P] has shown that the number of complete cell\od, n) is at IeastZ?':’o2 (”i’l)
and that this is tight for alh > 2d + 1 (see alsod] where an asymptotically tight upper
bound on the number of complete cells in arrangements is given). Thehfegives the
exact number of complete cells 8fd, n) for anyn.

Finally, we mention the following result due to @haum ] (see also 10]).

THEOREM4.2 ([5, P. 29]). Let L(2,n), n > 5 be an arrangement of n lines. Then
f4[L(2,n)] < n(n — 3)/2. Moreover, for each n> 5, there exists (up to isomorphism) a
unique simple arrangement bf n lines satisfying 4[L'(2, n)] = n(n — 3)/2.

Although no proof was given, Gnbaum certainly had in mind(2, n), n > 5, for the sec-
ond part of the above theorem. This can easily be verified since, by Thaatefa[A(2, n)] =
n(n —3)/2.
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