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ABSTRACT. Given a graph G with n vertices, we call ¢ (G) the
minimum number of elementary cycles of length at most & neces-
sary to cover the vertices of G. We bound ¢ (G) from the minimum
degree and the order of the graph.

1. INTRODUCTION AND DEFINITIONS

Let G = (V, E) be a simple non oriented graph and N C V a subset
of V. The order of the graph is the number of vertices of the graph. A
path Pla,b] of G is a path with extremities a and b; such a path is N-
alternated if a is a vertex of N and P does not contain 2 consecutive
vertices not in N. Similarly, a cycle C' is N-alternated if it does not
contain 2 consecutive vertices not in N. If there is no ambiguity we will
just say alternated.

The triangle graph of G, denoted T(G) = (V, E'), is the graph on the
set, of vertices V' whose set of edges is the set of edges of the triangles of
G. We recall that for p and ¢ two non zero integers K, , is the complete
bipartite graph with partite sets of cardinalities p and ¢. Similarly for
p, ¢ and r three non zero integers, K,,, is the complete tripartite
graph with partite sets of cardinalities p, ¢ and r. For any graph G let
a(G) be the cardinality of a maximum stable set of G.For unexplained
terminology, see [1].

In this work we consider coverings of the vertices of a graph by ele-
mentary cycles. A covering of GG is a family of cycles of G such that
each vertex of GG is at least in one cycle of the family. If the minimum
degree is at least half of the order of the graph then by Dirac’s lemma
[2] we know that the graph is hamiltonian. More generally many au-
thors bounded the minimum number of cycles necessary to cover the
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vertices, in function of the minimum degree and the order of the graph.
Let us recall somme results. Kouider and Lonc [4] proved:
"Let G be a graph of order n and s > 2 be an integer. If for every

stable set S C V of cardinality s we have Zdeggx > n, then the

TES
vertex set V' can be covered by at most s — 1 cycles, edges or vertices.

If G is supposed 2-connected we can take only cycles.”

Here we fix an integer k£ and we consider only cycles of length at most
k. We denote by cx(G) the minimum number of such cycles necessary
to cover the vertices. We bound ¢x(G) in function of the minimum

degree and the order of the graph.
k—3
Among other, we get the three following results. For § > g + 3

we have ¢x(G) < [%1 and this bound is almost tight. For § >
16n 5k 16n 8n 2k
e + 5 ¢t(G) has a bound of order - And for § > = + 3

cx(G) has a bound of order 3?“ These results and other will be precised
further.

2. RESULTS
2.1. Case £k =3 and k = 4.

Proposition 2.1. Let G be a graph with t, vertex disjoint triangles.

Then
n — tl

2

Proof. The t; disjoint triangles cover 3t; vertices and the n — 3t; re-
maining vertices are covered at worst 1 by 1 and at most 2 by 2. This

— 3t
! +t1 S Cg(G) S (’I’L— 3t1) +t1. O

< c3(G) < n—2t.

) n
gives

Proposition 2.2. Let G be a graph of order n and T(G) its triangle
graph. Then
TG
() < "HeT(E)
2

Proof. Let S be an independent set of maximum size in T(G). Let M be
a maximum matching in the complement of S. So vertices saturated by
M can be covered by triangles 2 by 2. The remaining vertices of T(G)
form a stable set X' = V' \ (SUV(M)). By maximality of S we have
for every subset X" of X', |IN(X")NS| > |X"|. By Konig-Hall theorem
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there is a matching in SUX’ which saturates X'. So we have a covering
—(a(T(@)) — | X' TG
@)= X1 ey < P0G

n
by at most

Let us take the graph G' with n vertices contructed by adding an edge in
the 2 vertices part in the K5, _o. We have T(G) = G, a(T(G)) = n—2
and ¢3(G) = n—2 while the bound given by the preceeding proposition
isn—1.

-3
For k = 4, there are graphs with n vertices such that c,(G) > 2[”

]

for example, consider a graph H which is a cycle ( z1, 9,3, ..,2¢ )
with a diametral chord [x9, 5 |; the graph G is composed by s copies
of H such that the common vertices to any pair of copies are exactly
Z1,%2,X3.

2.2. General case. We will use intensively the following easy lemma.

Lemma 2.3. Let p > 2 be an integer and ¢ > 1 be a number. Let G =
n
(V, E) be a graph with minimum degree § strictly more than —+c— 1.

Let x1,xo,...,x, be p vertices of G and N1, Ny,..., N, be fubsets of
V' of cardinality at most c. Then there exist two vertices x; and x;
(1 <i<j<n) such that

i) either z; and z; are adjacent;and, z; ¢ N; or z; & N;,

i) or x; and x; have a common neighbor v outside N; U Nj.

Proof. As § > r +c— 1, we have
p

ZdG(-Tz) >n + p(c — 1)
By hypothesis on the sets (1V;),
Z (dg(x;)) +1—mn; ) > n.

This implies that the sets (z; U N(z;)) \ IV;); are not disjoint. O

Theorem 2.4. Let k > 5 be an integer. Let G = (V,E) be a 2-
connected graph with minimum degree § at least 3kn_1 then cx(G) <
n

5—!—%— min( 6,k +1/4 )+ 1.
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Proof. By Dirac’s Lemma there exists a cycle Cy of length at least 24.
If the length of Cj is at most k, we take Cj as a cycle of the covering
and N =V \ V(Cy). If not we make the following construction.

k+1
Let C be a cycle of length ¢(C) at least k + 1. Let p = L%J and
{c1,..., ¢y} be p vertices of C mutually at distance at least 3 in the

cycle C. Since 6§ > BkLl — 1, then by lemma 2.3, there are 2 vertices
¢; and ¢; who are neighbors or with a common neighbor. If ¢; and ¢;
have a common neighbor outside the cycle C' then we get two smaller
cycles than C' with the sum of their size equal to |C| + 4. In the case
they are neighbors or have a common neighbor on the cycle C' we get
two smaller cycles than C' with the sum of their size equal to |C| + 2.
In all these cases, we get by taking the bigger of the two cycles a cycle

L0
of length at least % and strictly less then £(C). Starting with the
cycle C' and iterating, if necessary, this construction we get a cycle of

k+1
length /¢; satisfying % < ¢ < k. In any case the first cycle covers

k+1
man( 20, % ) vertices.
1
Let N the set of uncovered vertices. If |[N| > nt’ then N contains

d+1

two vertices a and b at distance at most 2.

a)If [a,b] is an edge, let us consider a cycle C' which contains the
edge [a,b]. If the length of C is greater than k, we use the preceding
construction. In any case, we get a cycle of length at most £ containing
[a, b].

b)If a and b have a common neighbor ¢, as G is 2-connected there
exists a cycle C' which contains the path [a, ¢, b]. If the length of C' is
greater than k, we use the preceding construction by considering the

neighborhoods in G\ C. As§—1 > 3% — 1, in any case, by lemma

2.3, we get a cycle of length at most & containing [a, c, b].
We can cover the vertices 2 by 2 until we get a set N of uncovered

1 k-1
vertices of cardinality |N| < Zi— <3 that we will cover 1 by 1.
k
So we used at most g-i- 6 min( 6,k +1/4)+1 cycles for a covering
of V. O

Theorem 2.5. Let k > 4 be an integer. Let G = (V,E) be a 2-

connected graph of order n with minimum degree 0 strictly more than
" E T hen (@) < [
g T g M at =1l
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Proof. It is known that the fact that § > g implies that the graph is

hamiltonian. Let vy, vy, ..., v,,v; be an hamiltonian cycle in G. Since
n k-3 .
o > 3 + —5 by lemma 2.3, any two vertices v; and v;1x_o are

adjacent or have a common neighbour outside the interval [v;, v; o]
So we have a cycle C; composed of the interval [v;,...,v; 1k 2| and
eventually one more vertex. This implies that the cycles C\—1) for

j from 0 to [%1 — 1, cover V. O
For n even and 4 < k < ?n , the bound of the last theorem is almost

n—o
. For

tight for the tripartite graph K, ,, with o =k -3 and r =
k odd we have ¢;x(G) = [Z ?] > p n [~ 1.

By using more difficult constructions, we will give smaller coverings
when the minimum degree is bigger then in the previous theorem. The
construction is based on the existence of an alternated cycle of length
between k£ and some fraction of k.

The first step is to show the existence of an N-alternated cycle of size
at least this fraction of & (but maybe bigger than k) in Corollary 2.7.
The second step will be to break this cycle until we get a cycle of size
at most k£ in Theorem 2.8.

Lemma 2.6. Let p be an integer, ¢ > 3 be a positive number. If
n+1
o >

true.
(1) There exists an alternated cycle of length at least c.
(2) There exists a covering of N by at most p— 1 alternated paths.

+ ¢ — 3 then at least one of the two following assertions is

Proof. Let P, be an alternated path starting with a vertex a; of NV of
maximum cardinality. If the (P;)i<;<; are already defined and if they
dont cover N, then let P[a;, b;] be an (N \ U, P;)-alternated path of
maximum cardinality. By this process we construct a covering of N by
say r paths. The vertices a; are necessarily distinct by construction.
We may suppose that assertion (2) is false and we shall show that (1)
is true. So we have r > p. Let N; be the set of ¢ — 2 vertices following
a; in P; if £(P;) > ¢ — 1 and N; be P; \ a; otherwise.

By the hypothesis on § and r and Lemma 2.3, there are two vertices a;
and a; which either are adjacent or have a common neighbor outside
N; U Nj. If the vertices a; and a; are adjacent or if their common
neighbor is outside P; U P; it contradicts the maximality of P; or P;.
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And if their common neighbor v is in P, U P; \ (IV; U N;). Let us say it
is in P;. We have a cycle P;[a;, u] U [u, a;] which is of length at least c.
We get assertion (1) and this completes the proof. O

Corollary 2.7. Let p > 2 be an integer and c a positive number. If
1
IN| > (p—1)%c+p—1and§ > ntl + ¢ — 3 then there exists an
p

alternated cycle of length at least c.

Proof. From the previous lemma, we may suppose we have an N-

N
| ] > (p—1)c+1. In the path P

alternated path P of order at least

there exists p vertices,vi, v, ..., vy, of N mutually at distance at least
¢ — 1. We choose an orientation on P. For 1 < < p—1, let N; be
the set of ¢ — 2 vertices following the vertex v;. By the hypothesis on
the minimum degree, there are two of them v; and v; which are either
adjacent or have a common neighbor outside the two intervals N; and
N;. This gives an N-alternated cycle of length at least c. (]

Now we show that once we have a circuit of size at least £ we can
obtain a circuit of size at most £ but bigger than a fraction of k.

k
Theorem 2.8. Let p and k be two integers such that 2 < p < 3

2
Let G = (V, E) be a graph with minimum degree at least L + §k’ and
p

2
N C V. If G has an N-alternated cycle of length at least §k then it has

2
an N-alternated cycle of length between §k and k.

Proof. We may suppose that we have an alternated cycle C = {ay, ..., a:}
of length £ at least £+ 1 and so £ > 8p+1 (1). We will construct from

2
the cycle C' a cycle of length between —k and £ — 1. For any vertex a;
of C' we define N; the interval of the vertices of C' at distance on C' at

{  k 2
least 273 + 1 from a;. The cardinality of N; is between §k — 3 and

2
—k — 1. We may suppose that there is no vertex a; of C N N with a

neighbor in C'\ (N; U {a; 1,a;1+1}) otherwise we have the desired cycle
2
of length at least §k
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Let vy, ..., v, be p vertices of CN N and mutually at distance at least 3
(I > 4p). By lemma 2.3, there exist v; and v; which are either adjacent
and v; € N;, or, have a common neighbor. By the previous remark they
can not be adjacent. So there exist two vertices a; and a;;, (with z > 3)
of CN' N with a common neighbor « in V' \ C. Let us choose a couple

o 14 .
such that x is minimum. We may suppose that - < x < — otherwise we

have the desired cycle. Now, the interval [a;;1, a;+4p] contains at least
p vertices of C' N N and mutually at distance at least 3. By hypothesis
on the minimum degree, this interval contains two vertices a; and a4,
with a common neighbor v in V' \ C. By the minimality of z and the

14 k
hypothesis on p, we have 3 <gand y <4dp+1< 2 + 1 < 2x; the
two segments [a;, ;4] and [a;, a;,] intersect in at least two vertices

otherwise, by (1), we have 3 <z+y< 3 which is a contradiction. Let

14

by =j—i,l, =i1+z—jand l3 =j+y—i—z. Wegetx =¥, +40y > 3
14 k k

andy =/{y +£3 > g and ¢, + 4, +l3 < 4p < 5 It follows that ¢, > 8
The cycle 02 = (aj+y, Qjty+1s -y iy Uy Qi Qjgg—1,- - -, A5, U, CLj_|_y) is as

2
desired: I(Cy) > lo+4+({—4p—1) > §k This completes the proof. [

Using similar proofs we can get the following more general results.

Theorem 2.9. Let t and k be two positive numbers such that t > 4 .

t k
Let G = (V, E) be a graph with minimum degree at least ?n + 5 and

k
N C V. If G has an N-alternated cycle of length at least B then it has

k
an N-alternated cycle of length between 2 and k.

We remark that in our construction the condition ¢ > 4 is necessary.

16
Now we shall give for ¢ > 3 a generalization of Theorem 2.8.

16

Theorem 2.10. Let t and k be two positive numbers such that t > 3
t 8

Let G = (V, E) be a graph with minimum degree at least ?n +k(1- ﬁ)

and N C V. If G has an N-alternated cycle of length at least k(1 — %)

8
then it has an N-alternated cycle of length between k(1 — g) and k.



k
Theorem 2.11. Let p and k be two integers such that 2 < p < 3 Let
2k
G = (V, E) be a graph of order n > (p— 1)23 + (p—1) with minimum

2
degree 0 at least 4 gk Then the number cx(G) verifies:
p

3n log®
Ck(G) S — + 3

Proof. Step 1 We call N the set of uncovered vertices. At the be-
ginning, from Corollary 2.7 and Theorem 2.8, we know that there ex-

+u-2XP—m+L

2k
ists a cycle of G which covers at least — vertices of V. From Corol-
2k
lary 2.7 and Theorem 2.8, while |[N| > (p — 1)23 + p — 1 there
k
exists a cycle in G which covers at least 3 vertices of N. Then at

3 3
most ?n —2(p—1)>%— E(p — 2) cycles are necessary to cover the first

2k
n—(p— 1)2? — (p—1) + 1 vertices.

2k
Step 2 We have that 2(p — 1)2 < |[N|-(p—1) < (p — 1)23_ By

Corollary 2.7 and Theorem 2.8, we can find an N-alternated cycle

Nl —(p—1 Toated oy
W, So it covers at least W
(p—1) =T
vertices of N. Let denote by n'(¢) the number of uncovered vertices after

of length at least

using t cycles in step 2. Let a =1 — 5+ From the preceeding

2(p—1)
remarks, we have that

nt+1) <an'(t) + —.
This inequality is equivalent to
n(t+1)—(p—1) <a('(t) - (p-1)).
It follows that
n'(t) = (p—1) < a'(n'(0) = (p = 1))
We continue to apply Corollary 2.7 and Theorem 2.8 until we get
n'(ty) < 2(p—1)® + (p — 1). So t; is bounded by the smallest solution
of the inequation o' (n'(0) — (p — 1)) < 2(p — 1)%. We get that
k k

log3g log3

llog(@)|” — [log(a)]

to <[ +1.
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Step 3 After step 2 is over, we have | N| < 2(p—1)?+ (p—2) uncovered

vertices. As the minimum degree is bigger then 3 > p we have that

any vertex x is contained in a C5 or a Cy (by applying Lemma 2.3 to
N(z)). So we can recover the remaining 2(p — 1)? + (p — 2) vertices 1
by 1.

3 3
So after the 3 steps we need at most ?n —2(p—-12%—->(p-2) +

k
logk 3 logk
Iy p— 1)+ (-2 =t I
—)(p — 2) + 1 cycles. O

k

Theorem 2.12. Let p and k be two integers such that 2 < p < g Let
G = (V,E) be a graph of order n such that 2(p —1)> <n—(p—1) <
(p— 1)2% with minimum degree § at least g + ;k Then the number
cx(G) verifies:

n—(p—1)

2(p—1)2
cx(G) <

log )
+2(p—1)*+p—2.

Proof. The proof is the same as the previous one, starting at step 2
and replacing n'(0) by n. O

If we take k = 8p, we deduce by using the majoration |log(1 —z)| > x
for a number 0 < x < 1 from the preceeding theorem the following
result.

Corollary 2.13. Let k be an integer and let G = (V, E) be a graph

8
with minimum degree 6 at least en + §k — 2. Then

k
_ 2 o 2
(@) < E= (1aog(By4k B8 <y by LHEZS)

32 3 8 32 8 96

By similar proofs, by using Theorem 2.9 and Theorem 2.10, we get
the following results:
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Theorem 2.14. Let k be an integer and let G = (V, E) be a graph with

4
minimum degree at least ?n + 2" Then the number ¢, (G) verifies:

an (k=42 k k. k(k—4?2 &
< T b S I
(G) < - + 3 l092+4 1ifn> o +7 1
and
(k — 4)? koo ko (k—4)? k k(k — 4)2
< 1 — — <n—(——1)< ———.
e e G

16
Theorem 2.15. Let t and k be two numbers such that t > 3 and
(Bt —8)k(k—1t)? k-t

let G = (V, E) be a graph of order n > 353 ; and
14
with minimum degree at least In +k(1- &) Then the number cix(Q)
verifies:
o 3t logP=Bk k
G) < — - —2). O

By replacing the log by a bound, we get the simpler bound:
2n 3t (k—t)? (Bt—8k  k
< — 2 - _
@) S gt lowg *

4
For example if we take £ = 16p, we deduce directly from the preceeding
theorem the following result.

2).

Corollary 2.16. Let k be an integer and let G = (V, E) be a graph of

1
order n > (116—6)2 and with minimum degree 6 at least % + % - 2.
Then
12n k2 5k k
a(G) < 57"‘@5 ( )+1_6

For the complete bipartite graph K;,_s and k even,we have ¢, =
-0 16 5k
2[” |. By taking § = 21 L 2% _ 9 we obtain that ¢ is of or-

k
1
der % which is not too far from the E of the last Corollary.
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